Expert Systems With Applications 64 (2016) 476-489

Ealor-n-Chiet
Binsnon U

Contents lists available at ScienceDirect Ep:" @](1

e [

. o . Applications E_a

Expert Systems With Applications [

journal homepage: www.elsevier.com/locate/eswa

Smart motion detection sensor based on video processing using
self-organizing maps

@ CrossMark

Francisco Ortega-Zamorano®P?, Miguel A. Molina-Cabello? Ezequiel Lopez-Rubio®*,
Esteban J. Palomo®P"

2 Department of Computer Languages and Computer Science, University of Mdlaga, Mdlaga, Spain
bSchool of Mathematics and Computer Science, University of Yachay Tech, San Miguel de Urcuqui, Ecuador

ARTICLE INFO ABSTRACT

Article history:

Received 8 March 2016
Revised 13 July 2016

Accepted 2 August 2016
Available online 3 August 2016

Most current approaches to computer vision are based on expensive, high performance hardware to
meet the heavy computational requirements of the employed algorithms. These system architectures are
severely limited in their practical application due to financial and technical limitations. In this work a
different strategy is used, namely the development of an inexpensive and easy to deploy computer vision
system for motion detection. This is achieved by three means. First of all, an affordable and flexible hard-
ware platform is employed. Secondly, the motion detection algorithm is specifically tailored to involve a
very small computational load. Thirdly, a fixed point programming paradigm is followed in implementing
the system so as to further reduce the computational requirements. The proposed system is experimen-
tally compared to the standard motion detector for a wide range of benchmark videos. The reported
results indicate that our proposal attains substantially better performance, while it remains affordable
and easy to install in practice.

Keywords:
Self-organizing map
Microcontroller
Arduino

Image processing
Block processing

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Motion detection is the process of detecting a change in the
position of an object relative to its surroundings or a change in
the surroundings relative to an object. Motion detection can be
achieved by either mechanical or electronic methods, but it is most
usually implemented by electronic sensors.

Motion sensors can be passive or active. Passive sensors do not
emit any energy to the environment and they are the most com-
mon kind of electronic sensors. They are sensitive to a person’s
skin temperature through emitted blackbody radiation at mid-
infrared wavelengths, in contrast to background objects at room
temperature. On the other hand, active sensors emit some type
of signal like light, microwave or sound into the environment and
they detect some change in the behavior of the responses.

Currently new techniques are being introduced in motion de-
tection systems with the proliferation of digital cameras capable of
shooting video. Nowadays it is possible to use the output of such
a camera to detect motion in its field of view using software. Mo-
tion detection is usually carried out by a software-based monitor-

* Corresponding author. Fax: +34 952 13 13 97.
E-mail addresses: fortega@lcc.uma.es (F. Ortega-Zamorano), miguelangel@
lcc.uma.es (M.A. Molina-Cabello), ezeqlr@lcc.uma.es (E. Lépez-Rubio), ejpalomo@
Icc.uma.es (E.J. Palomo).

http://dx.doi.org/10.1016/j.eswa.2016.08.010
0957-4174/© 2016 Elsevier Ltd. All rights reserved.

ing algorithm. When the algorithm detects motions it signals the
surveillance camera to begin capturing the event. This is also called
activity detection. An advanced motion detection surveillance sys-
tem can analyze the type of motion to see if it warrants an alarm
(Garcia, Garcia, Ponz, de la Escalera, & Armingol, 2014; G6mez, Gar-
cia, Martin, de la Escalera, & Armingol, 2015).

The Self-Organizing Map (SOM) is a kind of artificial neural net-
work which is capable of unsupervised learning (Kohonen, 1982).
Since its proposal, the SOM has been applied to knowledge dis-
covery, data mining, detection of inherent structures in high-
dimensional data and mapping these data into a two-dimensional
representation space (Kohonen, 2013; Yin, 2008). This mapping re-
tains the relationships among input data and preserves their topol-
ogy. Hence this artificial neural network has had a wide range of
application fields over the decades (Oja, Kaski, & Kohonen, 2003;
Kaski, Kangas, & Kohonen, 1998). In particular, it has been ap-
plied to several areas of computer vision, such as color quanti-
zation (Dekker, 1994; Palomo & Dominguez, 2014; Papamarkos,
1999; Xiao, Leung, Lam, & Ho, 2012), and image segmentation
(Bhandarkar, Koh, & Suk, 1997; Dong & Xie, 2005; Lacerda &
Mello, 2013; Maddalena & Petrosino, 2008a). The SOM is based on
an incremental (online) learning process, which has better abil-
ity to escape from local minima than batch learning (Bermejo
& Cabestany, 2002) and consumes less computational time in

http://dx.doi.org/10.1016/j.eswa.2016.08.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.08.010&domain=pdf
mailto:fortega@lcc.uma.es
mailto:miguelangel@lcc.uma.es
mailto:ezeqlr@lcc.uma.es
mailto:ejpalomo@lcc.uma.es
http://dx.doi.org/10.1016/j.eswa.2016.08.010

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 477

color quantization problems (Chang, Pengfei, Xiao, & Srikanthan,
2005). Moreover, it has been employed previously to detect fore-
ground objects in video sequences (Lopez-Rubio, Luque-Baena, &
Dominguez, 2011; Maddalena & Petrosino, 2008a). However, these
approaches require a SOM for each pixel of the video frame. Con-
sequently a SOM must be trained and queried for each pixel and
frame in real time as the video sequence progresses. Therefore they
are not suitable for implementation on microcontrollers, which do
not have the computational resources to accomplish such a com-
plex task.

All of these schemes require a large amount of computa-
tion, which is an important challenge of computer vision systems
(Casanova, Franco, Lumini, & Maio, 2013). For this reason it has
been necessary the use of PCs to implement these types of learn-
ing processes, so that the resultant systems are very expensive
and complex to produce on a large scale. In this work we propose
changing the strategy to obtain simpler and cheaper motion detec-
tors.

Microcontroller boards are economic, small and flexible hard-
ware devices. They are commonly employed in important tech-
nologies such as Embedded systems (Mamdoohi et al., 2012; Mar-
wedel, 2006), Real-time systems (Kopetz, 1997; Wang, Xu, & Gong,
2010) and Wireless sensor networks (Sengupta, Das, Nasir, & Pani-
grahi, 2013; Yick, Mukherjee, & Ghosal, 2008). They have a reduced
amount of hardware resources and limited computing speed, not
allowing extensive use of these devices in complex tasks. However,
recent advances in the computing power of microcontrollers and
a change in their programming paradigm allows the inclusion of
learning schemes in the device (“on-chip” learning), adapting their
behavior dynamically according to the sensed data (Aleksendric,
Jakovljevi¢, & Irovi¢, 2012; Mahmoud, Lotfi, & Langensiepen, 2013;
Ortega-Zamorano, Jerez, Subirats, Molina, & Franco, 2014).

Microcontrollers are frequently employed in motion detection
systems due to their low energy consumption and reduced cost.
Kinetically challenged people can benefit from microcontroller
based input devices specifically designed for them, which measure
motion on a plane in real time (Papadimitriou, Dollas, & Sotiropou-
los, 2006). A flexible Printed Board Circuit (PCB) prototype which
integrates a microcontroller has been proposed to estimate motion
and proximity (Dobrzynski, Pericet-Camara, & Floreano, 2012). In
this prototype, eight photodiodes are used as light sensors. The ef-
ficiency of solar energy plants can be improved by low power sys-
tems which estimate cloud motion (Fung, Bosch, Roberts, & Kleissl,
2014). The approximation of the cloud motion vectors is carried
out by an embedded microcontroller, so that the arrangement of
the solar panels can be optimized for maximum electricity output.
Finally, energy-saving street lighting for smart cities can be accom-
plished by low power motion detection systems equipped with low
consumption microcontrollers and wireless communication devices
(Adnan, Yussoff, Johar, & Baki, 2015). This way, the street lamps are
switched on when people are present in their surroundings.

In the present work, we have fully implemented the SOM in
an Arduino DUE board, including the whole learning process to
implement the automatic motion detection process for decision-
making into the detector in all types of environments, avoiding of-
fline computation and communication to other devices.

The Arduino DUE board was used (Oxer & Blemings, 2009) as
it is a popular, economic and efficient open source single-board
microcontroller that allows easy project development (Cela et al.,
2013; Kornuta, Nipper, & Brandon Dixon, 2012; Lian, Hsiao, & Sung,
2013; Ortega-Zamorano, Jerez, Urda Munoz, Luque-Baena, & Franco,
2015). We also propose a change in the data type representation
used in the programming of the Arduino from the floating point
representation commonly employed in this type of system to fixed
point representation, in order to obtain a faster system with less

Fig. 1. Picture of an Arduino DUE board used for the implementation of the SOM-
based motion detection model.

hardware resources. This enables the utilization of the SOM in this
kind of device.

The paper is structured as follows. In Section 2 the microcon-
troller system is briefly described, and our fixed point program-
ming approach is outlined. Then we introduce a new motion de-
tection model including the SOM, which is specifically designed to
meet the computation capabilities of microcontrollers (Section 3).
Section 4 explains the details of the implemented application. The
obtained experimental results are reported in Section 5. Finally,
conclusions are extracted in Section 6.

2. Microcontroller (11C) system description

We have implemented the SOM-based motion detection model
in an Arduino DUE microcontroller. The details of the implemented
system are described below, with an emphasis on the comparison
between using a fixed point representation or a floating point one.
Section 2.1 describes the Arduino hardware, Section 2.2 gives an
overall view of the motion detection software, and Section 2.3 dis-
cusses the options to implement arithmetic operations.

2.1. The Arduino board

Arduino is a single-board microcontroller designed to make the
process of using electronics in multidisciplinary projects more ac-
cessible (Oxer & Blemings, 2009). The hardware consists of a sim-
ple open source board designed around an 32-bit Atmel ARM core
microcontroller, and the software includes a standard program-
ming language compiler that runs in a standard PC and a boot
loader for loading the compiled code on the microcontroller. Ar-
duino is a descendant of the open-source Wiring platform and is
programmed using a Wiring-based language (syntax and libraries),
similar to C++ with some slight simplifications and modifications,
and a processing-based integrated development environment. Ar-
duino boards can be purchased pre-assembled or do-it-yourself
kits, and hardware design information is available. The maximum
length and width of the Arduino UNO board are 10.2 and 5.3 cm
respectively, with the USB connector and power jack extending be-
yond the former dimension.

The Arduino DUE is based on the SAM3X8E ARM Cortex-M 3
CPU (Atmel), and it has 54 digital input/output pins (of which 12
can be used as PWM outputs), 12 analog inputs, four UARTs (hard-
ware serial ports), a 84 MHz clock, an USB OTG capable connec-
tion, two DAC (digital to analog), and a reset and erase buttons.
The SAM3X has 512 KB (two blocks of 256 KB) of flash memory
for storing code, it also comes with a preburned bootloader that is
stored in a dedicated ROM memory. The available SRAM amounts
to 96 KB in two contiguous banks of 64 and 32 KB. A picture of
the Arduino DUE board is shown in Fig. 1.

The Arduino Due has a number of facilities for communicat-
ing with a computer, another Arduino or other microcontrollers,

478 E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489

Table 1

Computation time required for the basic arithmetic op-
erations depending on the variable type (integer, float
and double) used in the Arduino DUE microcontroller.

Variable Basic operations

Type + - * /
Integer 59.8 59.8 71.7 99.9
Float 39654 41469 3751.8 5269.8
Double 5113.2 51394 47633 13635.2

and different devices like phones, tablets, cameras and so on. The
SAM3X provides one hardware UART and three hardware USARTs
for TTL (3.3V) serial communication.

2.2. Initialization and execution phases of the algorithm

The implementation of the proposed SOM-based motion detec-
tion model comprises two phases: the initialization phase which
generates the initial state of the model, and the execution phase
in which the microcontroller updates the model and makes deci-
sions according to the input data. The input video frame is divided
into several non overlapping pixel blocks, so that a SOM model is
associated to each block.

The initialization phase generates the initial state of the SOM
model associated to each pixel block. In order to do this, the pro-
totypes of all the neurons of the SOM are initialized to the average
color of the pixels which belong to the pixel block in the first in-
coming video frame.

The execution phase has been divided into two different pro-
cesses: the learning process and the decision process. For each
pixel block, the learning process summarizes the color information
from all the pixels of the block into an input vector which is sup-
plied as a training sample to the SOM associated to the block. Then
the decision process estimates whether each individual block con-
tains moving objects with the help of the SOM model associated to
the block. More details about the learning and decision processes
are given in Section 3.

2.3. Data type representation

Microcontrollers are devices with limited computing power so
in order to speed up the learning process, it was decided to employ
a fixed-point data type representation. Please note that floating-
point is the most commonly employed data type representation in
this kind of device, but this representation is not always the most
efficient one.

The change of the paradigm in the data type representation in-
volves a change in the type of variables used in the software im-
plementation of the SOM model. The floating-point representation
is stored in a “float” or “double” variable with a size of 4 or 8 bytes
respectively, depending on the precision that is required. On the
other hand, the fixed-point representation is stored in an “integer”
variable with a size of 4 bytes.

This paradigm shift involves profound changes in the way the
SOM model is programmed but in return it offers a faster learn-
ing process and a smaller size representation of variables. Table 1
shows the computational time (in ps) required for the calculation
of each basic arithmetic operation { +, -, *, / } with the men-
tioned three variable types (integer, float and double) in the Ar-
duino DUE microcontroller.

3. Motion detection model

The motion detection system proposed in this work is based
on the subdivision of the input frame into several non overlapping

rectangular blocks of the same size. A color model is learned for
each block by means of a SOM, so that color anomalies can be
measured in each region separately. Then the color anomalies are
analyzed so as to determine whether they are associated to mov-
ing foreground objects. Section 3.1 explains the frame subdivision
arrangement, Section 3.2 describes the self-organizing map model,
and Section 3.3 details how to analyze the measured anomalies.
Section 3.4 gives details about the storage of the SOMs. The em-
ployed algorithm to compute the exponential function is explained
in Section 3.4. Finally, Section 3.6 is devoted to compare the fixed
point and floating point implementations of the proposed model.

3.1. Frame subdivision

Most current approaches to motion detection either build a
color model for each pixel (Bouwmans, 2014b). However, this is
not feasible for microcontrollers due to their hardware limitations.
Therefore we propose to use a subdivision of the input frame
into non overlapping rectangular blocks, so that a color model is
learned for each region.

Let us assume that the input video frames have size Nyow x Ngy;
pixels, and that for each pixel a RGB color vector y;, € [0, 1]* is ob-
tained from the camera, where h e {1,..., Ngw} x {1,..., Ny} are
the pixel coordinates. Then the input frame is divided into By x
B.,; non overlapping blocks each of size ’g;gm” X % pixels, where
Nrow is an integer multiple of Byow and N, is an integer multiple
of BCO!'

For each block it is necessary to summarize the color informa-
tion provided by the pixel color data y, in a fast way. Here we
propose to compute the average color of each block:

1
Xr = N (1)
block heB:
where x; € [0, 1]3, B; is the set of the pixels which belong to the
block with coordinates r € {1,...,Brow} x {1,..., By}, and Npjcr is
the number of pixels per block:

Nrochol
N = — 2
bock = 55 (2)

For each incoming video frame and block, the average block
color x; is provided to the self-organizing map associated to the
block as an input training sample, as seen next.

3.2. Self-organizing map

Next we are going to describe Kohonen’s SOFM model which is
used to learn a color model of a block of the input frame. Let M
be the number of neurons of the self-organizing map associated
to a certain block of the input frame. The neurons are arranged
in a lattice of size a x b, where M = ab. The topological distance
between the neurons i and 7/, located at positions (y;,y,) € N? and
(v;.¥4) € N? in the lattice space, is given by:

d(i.i') = \/(y1 —y) + (2 -w) (3)

Every neuron i has a prototype vector w; which represents a
cluster of input samples. Please note that w; < [0, 1]3, where we
consider three-dimensional real valued vector inputs which codify
colors in the RGB color space. At time step n, a new sample x(n)
which represents the average color for the block is presented to
the network, and a winner neuron is declared:

Winner(x(n)) = arngHlinM} [x(n) — w;(m)| (4)

Then the prototypes of all the units are adjusted, for ie
{1,....M}:

wi(n+1) =

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 479

w;(n) +n(n)A (i, Winner (x(n))) (x(n) — w;(1)) (5)

where n(n) is a decaying learning rate and the neighborhood func-
tion A varies with the time step n and depends on a decaying
neighborhood radius A(n):

nmn+1) <nmn) (6)

A (i, Winner(x(n))) =

d(i, Winner(x(n))) ’
exp (‘(A(n))) v

An+1)<A) (8)

At initialization time n = 0, each prototype w; is set to the ob-
served sample x(0) forie {1,..., Mj}:

w;(0) =x(0) (9)

The receptive field of neuron i, i.e. the region of the input space
which is represented by i, is defined as:

F = {x e R" | i=Winner(x)} (10)

Vector quantization is one of the main goals of self-organizing
maps. We are interested in the quantization error g, associated to
an input X:

= min (X, —W; 1
q jfin M}” k]H (11)

The global performance of a map for this task is commonly
measured by the mean squared error (Beaton, Valova, & MacLean,

2010; Dlugosz, Talaska, Pedrycz, & Wojtyna, 2010; Hsu & Halga-
muge, 2003; Yin, 2008):

18,
MSE = ;qk (12)
K=

3.3. Anomaly analysis

As the self-organizing map associated to each block learns the
color information corresponding to that block, it is possible to esti-
mate whether the block contains a substantial part of moving ob-
jects. This is done in a fast way by considering the quantization
error ¢n, r at time step n of the current average block color Xy, r, as
represented by the self-organizing map associated to the block:

Gnr = je{PiHM} ”xn.r - Wj.n,r” (13)

where W,y € [0, 1]® stands for the prototype at time step n of
the j-th neuron of the self-organizing map associated to the block
with coordinates r. The block is declared to contain moving objects

if and only if gy, is above a threshold T:
Block r contains moving objects < gy > T (14)

where T > 0 is a tunable parameter of the system. The rationale
behind this is that moving objects usually have a color which dif-
fers significantly from the background color.

3.4. SOM model storage

The number of bytes used for representing the SOM model in
each pixel block depends on the data type representation. Employ-
ing fixed-point representation allows using 32 bits for each vari-
able since they are stored in an “integer” variable. In this case as
the SOM model values range between 0 and 1, the precision of this
type of variables is 2732 = 2.328 . 1010,

Taking into account that the available SRAM memory amounts
96 KB to store all variables of the algorithm and that the SOM
models are the most memory consuming variables, the SRAM
memory has been divided in two parts. One part stores the SOM
models of all pixel blocks with 80 KB, and the other part comprises
the rest of the variables involved in the execution of the algorithm
with 16 KB. Therefore, the maximum number of pixel blocks that
can be stored in the implemented system is given by the following
equation:

80KB

M 4Byte 1>

Nblocks =

where Nyjocks = BrowBeor 1S the number of pixel blocks and M =
a x b is the number of neurons in the SOM of each pixel block,
which has been set to M =3 x4 =12 because it offers a good
tradeoff between the ability of the SOMs to represent complex
input color distributions and the computational load required to
train the SOMs.

Therefore the maximum number of pixel blocks that can be
stored is 1706 pixel blocks for variables with a size of 4 bytes.

3.5. Computation of the exponential function

The computation of the exponential function can be carried out
using the specific ALU (Arithmetic and Logic Unit) by means of the
specific library “math.h” in order to evaluate the exponential func-
tions involved in the model. The computational time for this pro-
cedure is equal to 58.9 s in the used microcontroller.

An approximation to carry out the exponential function has
been implemented in order to reduce the computational time for
this function. This reduction in the computation time allows up-
dating more pixel blocks in a given time, thereby increasing the
maximum number of pixel blocks that can be processed.

The approximation has been performed by a table lookup fol-
lowed by a linear interpolation. This method has been extensively
studied in previous works (Ortega-Zamorano, Jerez, Juarez, Perez,
& Franco, 2014).

The look-up table contains the values of the exponential func-
tion for equispaced values of the independent variable. Neverthe-
less, as high precision values are needed for the correct execution
of the algorithm, the computation of the function approximation
is further complemented by a linear interpolation procedure using
two adjacent tabulated values (lower and larger) with respect to
the input value of the independent variable. In this case the re-
quired computation time is reduced to 1.437 s, which means a
97.5% reduction in comparison to the specific library “math.h”.

Storing table values requires large amounts of memory depend-
ing on the accuracy of the approximation. Fig. 2 shows the neces-
sary memory size according to the accuracy of the approximation
of the optimized method based on a lookup table plus linear inter-
polation of adjacent values.

A maximum absolute error lower than 5-10~> has been se-
lected. Therefore the memory size necessary to store the lookup
table is equal to 4 KB.

Fig. 3 shows the absolute error involved in the computation of
the negative exponential function in the range from 0 to 16.

480 E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489

Memory size of the tabulated table as a function of accuracy

10° 5 ; ; ; ; :
o
o

10*E 4
0 o
o © °
> 3
j= 10 |- 4
£ o
s o

102* o E

o
101 L L L L L O
107 107 107° 107 107° 107 107

Accuracy

Fig. 2. Required memory size according to the accuracy of the approximation of
the optimized method based on a lookup table plus linear interpolation of adjacent
values.

Absolute error

e - f(x)

6 8 10 12 14 16
X

Fig. 3. Absolute error committed in the approximation of the exponential function
(see text for more details).

Time to modify the model in a pixel

1600 12
1400 110.5
1200 19 S
[
c
©
1000 175 =
\% —@— Float >
o 800 r O Integer 16 g
E —%¥— #Times faster -
o)
600 | 145 2
3
400 - 13 =
=
200 [— 115
oooOoO
goooood
0 ooof ‘ ‘ g
0 5 10 15 20

neuron

Fig. 4. Computation time (left y-axis) in ps required to update the SOM model of
a pixel block with different implementations of variables (Integer and Float) and
the number of times (right y-axis) that “integer” variables are faster than “float”
variables as a function of the number of neurons of the model.

3.6. Fixed point vs floating point representation comparison

Fig. 4 shows the computation time (left y-axis) in ps required
to update the SOM model of a single pixel block when it is imple-
mented with variables of “integer” and “float” type and the num-
ber of times (right y-axis) that the “integer” variables are faster
than “float” variables as a function of the number of neurons of
the SOM model.

The computation time for updating a pixel block places an up-
per bound on the number of pixels that the system can update
in real-time. Nowadays real-time operation for computer vision
means that a single frame must be processed within 30-40 ms
(Pulli, Baksheev, Kornyakov, & Eruhimov, 2012). Since the video
camera used for the experiments acquires 30 frames per second,
which is 33.33 ms per frame, it can be considered that for real
time operation a full video frame must be processed in less than
1/30 s. This way, the maximum number of pixel blocks that can
be processed in the implemented system is given by the following
equation:

0.03333¢(s
blocks = Ti()v (16)
up

where Npjqs is the number of pixel blocks and Typ is the compu-
tation time for updating the SOM model of a pixel block.

As the number of neurons (M) has been set to 12, Ty is equal to
93 ps for “integer” variables and 969 ps for “float” variables. There-
fore the maximum number of pixel blocks that can be updated is
358 blocks for “integer” variables and 34 blocks for “float” vari-
ables.

4. Application

Intrusion detection systems are widely used in all types of
premises from households to public buildings, so that there are
many contexts where this kind of system could be deployed. We
have focused on making the system easy to replicate in order to
be able to have multiple motion detectors. In particular, we have
focused on low cost and low power consumption.

The proposed system is composed of a camera to obtain the
image of the scene and a microcontroller to decide the existence
of unusual movement in the scene. Both the microcontroller and
the camera have been selected to be devices of low cost and low
power consumption. The selected microcontroller is the Arduino
DUE (see Section 2.1) and the video camera used in the applica-
tion is the C429-RS232, a highly integrated, compact serial and en-
coded video camera module. The module uses an OmniVision™
CMOS MT9V011 VGA color sensor, matched with a Vimicro VC0706
control chip to provide a complete low cost, low power camera
system. It has an on-board RS232 serial interface for direct con-
nection to a microcontroller. Serial transfer rate is at 115.2 Kbps
for transferring color or monochrome images in VGA (640 x 480),
QVGA (320 x 240), or QQVGA (160 x 120) resolution. Real-time
video output is provided at 30 fps as CVBS signal, NTSC or PAL.
C429-RS232 needs only 80 mA from a 5 V power supply.

Fig. 5 illustrates the tasks that are carried out as an incoming
video frame is processed. The five pictures on the left side depict
the processing of a video frame with no intrusion detected, while
the five pictures on the right side correspond to a video frame
where an intrusion is detected.

The pictures on the first row show the RGB image that is cap-
tured by the video camera. These pictures are the starting point of
the intrusion detection process.

The pictures on the second row show the downsized images
that are sent to the microcontroller to be processed. The maximum
size of the downsized images is determined by Eq. 16. However,
in this case the selected size is 12 x 16 = 192 blocks in order to
demonstrate that smaller sizes also can be used for this applica-
tion with no significant decrease of the efficiency. With this num-
ber of blocks, real time operation is attained since the number of
blocks is below the upper limit for real time which is 358 blocks,
as explained before.

The third row shows the SOM models for every pixel (see
Section 3.2). For each of the 12 x 16 blocks of the downsized im-
ages a mosaic is shown with 3 x 4 small rectangles, where each

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 481

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 5. The steps carried out in the imaging processing of a frame for a detection of intrusion (the five pictures in the right side) and another scene without detection(the

five pictures in the left side). (see text for more details).

small rectangle represents the prototype of a neuron of the SOM
associated to the block. This is because the used SOM networks
have a rectangular topology with 3 x 4 = 12 neurons. The small
rectangles show the prototype of the associated neuron as a RGB
color. It can be observed that the neurons associated to the same
block are quite similar on the left side when the intrusion has not

been detected yet. On the other hand, the neurons of the same
block are significantly different on the right side when the intru-
sion is being detected. This is because some neurons learn the col-
ors of the intruding object.

The fourth row (second row from the bottom) shows the quan-
tization error of each input block of the captured pictures given by

482 E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489

Frames = 1750

«— Threshold (T)

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
mean squared error

Fig. 6. The histogram of the maximum quantization error of all blocks for a video
sequence which comprises 1750 frames. The threshold which separates the quanti-
zation errors for blocks with no movement (left) and blocks with movement (right)
is shown as a vertical dash-dot line.

Eq. (13). It can be observed that the maximum and the minimum
tones used in the colorbar are the same for both pictures, so that
the shown quantization errors can be compared. As seen, the video
frame without any intruding objects (left) yields smaller quantiza-
tion errors than the video frame with an intruding object (right).

The fifth and last row shows the decision whether each block
contains moving objects, as calculated from Eq. (14). The decision
is made depending on the value of quantization error in every time
instant. If the error is higher than a determined “threshold” (T),
then the block is declared as foreground, i.e. a block with a de-
tected intrusion. In the pictures the blocks which exhibit a quanti-
zation error higher than the threshold are painted in white, while
the blocks with quantization errors lower than the threshold are
painted in black. A frame is declared to contain an intrusion in a
video scene whenever two or more blocks have a quantization er-
ror higher than the threshold.

In order to determine the value of the threshold we have ana-
lyzed a video sequence and we have obtained the histogram of the
maximum quantization errors for all the blocks of a frame. In Fig. 6
it can be observed that the histogram exhibits two modes. The left
mode corresponds to absence of intrusion, while the right mode is
associated to intrusions. As seen, the majority frames without in-
trusion detection have a quatization error in the range from 10~4
to 10~5, while for the frames with intrusion detection the quanti-
zation error is around 102, For this reason we have selected the
value of the threshold (T) as 1073,

5. Results

In this section, we have tested the implemented system for dif-
ferent well-known benchmark videos (Wang et al., 2014) in order
to demonstrate the utility of the proposed scheme. Each raw RGB
video comes with an associated “ground truth” black and white
video sequence which establishes which regions of each frame ac-
tually correspond to moving objects. The ground truth video is
only used to measure the detection performance of the competing
approaches; it is not provided to the detection systems in any way.
In order to obtain replicable results with known videos, we have
connected the Arduino microcontroller by the USB port with a se-
rial communication to the PC. Under this configuration the PC is
programmed to simulate a camera. That is, the PC sends the video
in the same way that the camera does, so that the microcontroller
does not notice the difference.

The traditional detector can be implemented in different ways
(Naghiyev, Gillott, & Wilson, 2014; Park et al., 2015), although the
most useful has frequently been passive infrared sensors (PIR). The

traditional detector looks for abrupt changes in the global illumi-
nance of the scene y:

_ 1
y= m; (3’1114‘)’%"‘3%) (17)
eBr
where y{1 is the value of the jth color channel at the pixel with
coordinates h.
In order to measure the changes in y across time steps n, the
time average of y can be estimated at time n as follows:

J(n+1) =9(n) +n(m)(y(n) - y(n)) (18)

where 7(n) stands for the learning rate already introduced in (5).
At initialization time n = 0 the estimation is set to the observed
global illuminance:

¥(0) =3(0) (19)

Motion is detected at time n whenever the current global il-
luminance y(n) differs from the estimated average j(n) by more
than a threshold T:

en = |7(n) ()| (20)

The frame contains moving objects < e, > T (21)

Furthermore, we have selected some reference pixel-level fore-
ground detection methods from previous literature which have
a public and reasonably well tested implementation, in order to
carry out comparisons with them. These methods have been run
on a standard PC with a 3 GHz CPU and 8 GB RAM, since they
are too computationally demanding to be executed on a micro-
controller. The first algorithm we have considered is the method
we note as WrenGA (Wren, Azarbayejani, Darrell, & Pentl, 1997),
which is the oldest one and features a single Gaussian proba-
bilistic model. Other chosen Gaussian methods are GrimsonGMM
(Stauffer & Grimson, 1999), that uses two Mixture of Gaussians;
and the ZivkovicGMM (Zivkovic, 2004; Zivkovic & van der Heij-
den, 2006) method, which has a non-fixed number of Gaussian
distributions. Additionally, an artificial neural networks approach
method noted MaddalenaSOBS (Maddalena & Petrosino, 2008b) is
also considered. These tested methods are available on BGS library
version 1.3.0, which is accessible from its website!. In addition,
we have selected the MFBM (Lopez-Rubio & Lépez-Rubio, 2015)
method which is based on the stochastic approximation theory and
was recently published by our research group. The tuned values
of each method are selected from the authors’ recommendations.
They are shown in Table 2.

It must be pointed out that the motion detection problem that
the traditional and the proposed detectors aim to solve is a binary
classification problem. The positive class is formed by those video
frames where there are moving objects. On the other hand, the
negative class comprises those video frames where no moving ob-
jects exist. Therefore we have considered the binary classification
performance measures recommended in the CDnet 2014% motion
detection benchmark:

TP
Recall = TPTFN (22)
e TN
Specificity = TN+ FP (23)
FP
FPR = FP+TN (24)

T https://github.com/andrewssobral/bgslibrary.
2 http://www.changedetection.net.

https://github.com/andrewssobral/bgslibrary
http://www.changedetection.net

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 483

Table 2
Considered parameter values for the competing methods, forming the set
of experimental configurations.

Method Parameters

MFBM Features, F = {1,2, 3}
Step size, @ = 0.01

GrimsonGMM Threshold, T = 12

Learning rate, o = 0.0025

Number of Gaussians in the mixture model, K = 3
Sensitivity, s; = 75

Training sensitivity, so = 245

Learning rate, a; = 75

Training step, N = 100

MaddalenaSOBS

WrenGA Threshold, T = 12
Learning rate, o = 0.005
ZivkovicGMM Learning rate, « = 0.001
Number of Gaussians components, K = 3
Threshold, T = 30
FN
FNR = ——— 25
TP+FN (25)
FN + FP
PBC =100 26
TP+FP+FN+TN (26)
- TP
Precision = TP+ FD (27)
Recall - Precision
F — Measure = 2 (28)

Recall + Precision

It must be noted that, since the aim of our work is global mo-
tion detection, the above performance measures have been com-
puted at the frame level and not at the pixel level. To this end, a
frame is declared to contain movement when the fraction of pix-
els which belong to foreground objects is higher than %2, which
is the same criterion considered in Section 4.

The quantitative performance results are reported as follows.
Tables 3 and 4 present the frames per second and the number of
executed instructions per frame of each tested method over the
evaluated videos, respectively. It can be seen that the pixel-level
methods (last five columns) do not attain real time operation, even
if they are executed on a standard PC. On the other hand, the Ar-
duino based approaches can run in real time, including our pro-
posal. Each Arduino based approach has the same computational
requirements for all the videos, because these methods execute
the same instructions for a given frame size, independently of the
content of the video. Moreover, under Arduino there is no virtual
memory or any other source of variability in the running time.

The recall, the specificity, the false positive rate (FPR) and the
false negative rate (FNR) of the competing methods over the tested
sequences are reported in Tables 5-8, respectively. Finally, the

Table 3

probability of bad classification (PBC), the precision and the F-
measure of the tested methods over the performed sequences are
detailed in Tables 9-11, respectively. From all these selected mea-
sures, the F-measure can be regarded as a reliable overall evalua-
tion of a method, as it characterizes the performance of a classifier
in the precision-detection rate space (Bouwmans, 2014a). As it can
be observed our proposal obtains the best average result in terms
of F-measure. As seen in Tables 7 and 8, Ilu attains a low rate of
false positives, but it has a large rate of false negatives, and this
imbalance hampers its performance (Table 11). On the other hand,
FrameDiff has a very low rate of false negatives, but it has a very
high rate of false positives, and again this produces a rather bad
overall performance.

Another aspect to be pointed out is that the selected pixel
based methods from the literature (the last five columns of
Tables 3-11) obtain similar results in most cases. This happens be-
cause these methods are designed to detect foreground objects at
the pixel level, which is different from motion detection at the
frame level. Motion detection at the frame level is a simpler prob-
lem, so pixel level accuracy is not necessary to attain a good per-
formance. We must also mention that the inherent characteristics
of each tested video have a high impact in the outcomes.

In order to have a more accurate assessment of the quantita-
tive performance of the approaches, Fig. 7 shows the receiver op-
erating curves (ROC) for the proposed system (a), the traditional
and frame difference detectors running on Arduino (b-c) and the
competing methods running on a standard PC (d-g) for all videos.
The plots represent the dependence between the true positive rate
(TPR, higher is better), also known as recall or sensitivity, and the
false positive rate (FPR, lower is better), also known as fall-out, at
various threshold settings. Please note that a perfect classification
would correspond to the upper left corner of the plots. Also, we
have calculated the Area Under Curve (AUC, higher is better) as
a single measure of the quality of a binary classifier, since it is
the probability that a randomly selected positive case will receive
a higher score than a randomly selected negative case. Our SOM
based approach consistently attains much better results than the
other Arduino based detectors, while its performance is similar to
those of the PC based detectors.

Finally, from a qualitative point of view, Figs. 8 and 9 depict the
detection decisions for each competing method in several frames
of a sequence for the “Pedestrians” and “Sofa” videos, respectively.
The first row shows five frames of the real sequence captured by
the video camera, and the second row shows the detection deci-
sion for each block in these five frames for the proposed system
according to Eq. (14). The third and row show the decision for a
traditional sensor running on the Arduino board, taking into ac-
count that a whole frame in black means no motion detected (neg-
ative class) and a whole frame in white means motion detected
(positive class). The fourth row corresponds to the frame difference
algorithm running on the Arduino board. The remaining rows rep-

Maximum frames per second of the competing methods over the tested sequences (higher is better). Please note that SOM, Ilu and
FrameDiff run on the Arduino DUE in real time, while the rest of the methods run on a standard PC. Best results of each sequence

are highlighted in bold.

Video SOM Ilu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 56.0036 347.2222 62.7510 8.7140 18.0037 12.6464 19.0158 323135
PETS2006 56.0036 347.2222 62.7510 2.0630 41255 2.7120 5.9493 5.9392
Highway 56.0036 347.2222 62.7510 9.4857 18.7410 14.2416 20.0945 20.0905
Pedestrians ~ 56.0036 347.2222 62.7510 9.8522 20.4964 12.6251 28.9922 30.7618
Sofa 56.0036 347.2222 62.7510 10.5132 20.2561 15.3184 25.0976 25.4189
Canoe 56.0036 347.2222 62.7510 9.3113 20.1149 14.3254 30.5428 31.4138
Fountain02 56.0036 347.2222 62.7510 6.3019 12.9921 8.8917 14.5588 22.4193
Fall 56.0036 347.2222 62.7510 2.5021 44226 3.7189 7.2360 6.7668
Average 56.0036 347.2222 62.7510 7.3429 14.8940 10.5599 18.9359 21.8905

484 E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489

Table 4

Number of executed instructions per frame of the competing methods over the tested sequences (in millions, lower is better). Please
note that SOM, Ilu and FrameDiff run on the Arduino DUE in real time, while the rest of the methods run on a standard PC. Best results
of each sequence are highlighted in bold.

Video SOM Mlu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 1.0483 0.0873 0.8235 294.1926 192.4942 299.4168 125.5993 111.4860
PETS2006 1.0483 0.0873 0.8235 1,341.5196 1,023.0307 1,478.7173 600.2945 540.3325
Highway 1.0483 0.0873 0.8235 263.7813 199.5114 266.5234 112.5730 103.7825
Pedestrians ~ 1.0483 0.0873 0.8235 296.0330 187.0545 307.9948 125.8543 112.0348
Sofa 1.0483 0.0873 0.8235 263.0099 185.8824 269.5781 111.4275 100.1956
Canoe 1.0483 0.0873 0.8235 265.6015 190.8002 260.7247 113.1358 106.8618
Fountain02 1.0483 0.0873 0.8235 419.9596 305.8514 439.8973 179.6190 159.1311
Fall 1.0483 0.0873 0.8235 1,158.3201 975.5466 1,102.7957 492.2767 468.2882
Average 1.0483 0.0873 0.8235 537.8022 407.5214 553.2060 232.5975 212.7641
Table 5
Recall of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted in
bold.
Video SOM lu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 0.8544 0.2088 0.9905 0.9905 0.9845 0.9928 0.9940 0.9606
PETS2006 0.4715 0.0976 0.9009 0.7293 0.7955 0.7789 0.4060 0.4632
Highway 0.9304 0.4485 0.9982 0.8670 0.9789 1.0000 0.9700 0.9665
Pedestrians 0.9540 0.1206 0.9889 0.9222 0.9587 0.9683 0.9206 0.9413
Sofa 09150 04511 0.9985 0.9872 09737 0.9962 0.9714 0.9714
Canoe 0.9637 0.3387 1.0000 0.9032 1.0000 1.0000 1.0000 1.0000
Fountain02 0.7192 0.0000 0.9557 0.5616 0.8177 1.0000 0.6305 0.5123
Fall 0.6371 0.5747 0.9966 0.7323 1.0000 1.0000 1.0000 1.0000
Average 0.8057 0.2800 0.9787 0.8367 0.9386 0.9670 0.8616 0.8519
Table 6
Specificity of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted
in bold.
Video SOM Ilu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 0.5810 09866 0.0126 0.0140 0.1326 0.0140 0.0140 0.1732
PETS2006 0.9944 0.9983 0.3952 0.9915 0.9786 0.9957 1.0000 1.0000
Highway 0.9753 1.0000 0.0229 1.0000 0.9681 0.3617 0.9787 0.9787
Pedestrians 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Sofa 0.8309 0.8138 0.0024 0.4707 0.6772 0.1511 0.6413 0.6402
Canoe 1.0000 09266 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
Fountain02 0.9500 0.9951 0.0206 1.0000 0.9384 0.0000 1.0000 1.0000
Fall 0.5834 0.4162 0.0022 0.8870 0.0000 0.0000 0.0000 0.0000
Average 0.8644 0.8921 0.1827 0.7954 0.5869 0.3153 0.5793 0.5990
Table 7

False positive rate (FPR) of the competing methods over the tested sequences (lower is better). Best results of each sequence are
highlighted in bold.

Video SOM Ilu FrameDiff =~ MFBM GrimsonGMM ~ MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 0.4190 0.0134 0.9874 0.9860 0.8674 0.9860 0.9860 0.8268
PETS2006 0.0056 0.0016 0.6048 0.0085 0.0214 0.0043 0.0000 0.0000
Highway 0.0247 0.0000 0.9770 0.0000 0.0319 0.6383 0.0213 0.0213
Pedestrians 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sofa 0.1691 0.1862 0.9976 0.5293 0.3228 0.8489 0.3587 0.3598
Canoe 0.0000 0.0734 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
Fountain02 0.0500 0.0049 0.9794 0.0000 0.0616 1.0000 0.0000 0.0000
Fall 0.4166 0.5838 0.9978 0.1130 1.0000 1.0000 1.0000 1.0000
Average 0.1356 0.1079 0.8180 0.2046 0.4131 0.6847 0.4207 0.4010
Table 8

False negative rate (FNR) of the competing methods over the tested sequences (lower is better). Best results of each sequence
are highlighted in bold.

Video SOM Ilu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 0.1456 0.7912 0.0095 0.0095 0.0155 0.0072 0.0060 0.0394
PETS2006 0.5285 0.9024 0.0991 0.2707 0.2045 0.2211 0.5940 0.5368
Highway 0.0696 0.5515 0.0018 0.1330 0.0211 0.0000 0.0300 0.0335
Pedestrians 0.0460 0.8794 0.0111 0.0778 0.0413 0.0317 0.0794 0.0587
Sofa 0.0849 0.5489 0.0015 0.0128 0.0263 0.0038 0.0286 0.0286
Canoe 0.0362 0.6613 0.0000 0.0968 0.0000 0.0000 0.0000 0.0000
Fountain02 0.2808 1.0000 0.0443 0.4384 0.1823 0.0000 0.3695 0.4877
Fall 03629 0.4253 0.0033 0.2677 0.0000 0.0000 0.0000 0.0000

Average 0.1944 0.7198 0.0213 0.1633 0.0614 0.0330 0.1384 0.1481

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 485

17 ———— — 1
S
/—”’_//—/d/
o
0.8 1 0.8
2 2
[[
o 0.6 7 o 06
= =
-‘5)’ office AUC = 0.92994 ‘ﬁ office AUC = 0.70067
8 PETS2006 AUC = 0.95654 8_ PETS2006 AUC = 0.62504
o 0.4 highway ~ AUC = 0.98931 1 © highway ~ AUC = 0.89405 |
E pedestrians AUC = 0.99512 E pedestrians AUC = 0.77175
sofa AUC = 0.9914 sofa AUC = 0.67827
0.2 canoe AUC =0.99919 g canoe AUC =0.67707 | -
fountain02 AUC = 0.96985 fountain02 AUC = 0.74493
fall AUC = 0.82499 fall AUC = 0.54786
0 I I I I I I I I I 0 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate False positive rate
(a) (b)
1 1
[
0.8 1 0.8,
2 2
S S
o 0.6 1 o 0.6
= =
= office AUC = 0.50604 5
8 —— PETS2006 AUC = 0.87282 8 office AUC = 0.73296
o 04 ——highway ~ AUC = 0.96226 | | o 0.4 PETS2006 AUC = 0.96846
E pedestrians AUC = 0.9964 2 highway ~ AUC = 0.99514
—— sofa = pedestrians AUC = 0.99846
: sofa AUC =0.94419
0.2 canoe. AUC =0.99026 | 0.2 canoe AUC = 0.99988
fountain02 AUC = 0.9355 fountain02 AUC = 0.99313
— fall AUC = 0.73685 fall AUC = 0.89389
0 L L L L L L L L L 0 L L L L L L L L L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate False positive rate
(© (d)
1 1k
0.8 0.8
L 2
[o
o 0.6 » 0.6
= =
‘@ ‘@
8 office AUC =0.79322 8 office AUC =0.57477
o 0.4 PETS2006 AUC = 0.96863 o 0.4 PETS2006 AUC = 0.98007
=] highway ~ AUC = 0.99463 = highway ~ AUC = 0.99463
= pedestrians AUC = 0.99889 = pedestrians AUC = 0.99791
sofa AUC = 0.95504 sofa AUC =0.92823
0.2 canoe AUC = 0.97003 0.2 canoe AUC = 0.97389
fountain02 AUC = 0.95771 fountain02 AUC = 0.92419
fall AUC = 0.7401 fall AUC = 0.67405
0 L L L L L L L L L 1 0 L L L L L L L L L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate False positive rate
(e ®
1 - 1 [
0.8 0.8
L 2
[[
o 06 o 0.6
= =
= =
8 office AUC =0.73683 8 office AUC =0.7195
© 0.4 PETS2006 AUC = 0.97894 o 0.4 PETS2006 AUC = 0.9748
2 highway AUC = 0.99484 2 highway AUC = 0.99392
= pedestrians AUC = 0.99781 = pedestrians AUC = 0.99859
sofa AUC = 0.93835 sofa AUC =0.91228
0.2 canoe AUC = 0.92861 0.2 canoe AUC = 0.98423
fountain02 AUC = 0.97768 fountain02 AUC = 0.97459
fall AUC = 0.68937 fall AUC =0.70721
0 L L L L L L L L L 1 0 L L L L L L L L L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate False positive rate
(€3] (b

Fig. 7. ROC curves corresponding to the eight analyzed benchmark videos for the different tested methods. First row show the proposed system (a) and the traditional
detector (b). FrameDiff (c) and MFBM (d) are in the second row. Third row exhibits the ROC curves for the GrimsonGMM (e) and MaddalenaSOBS (f) methods. Finally the
fourth and last row presents the WrenGA (g) and ZivkovicGMM (h). Their corresponding Areas Under Curve (AUC, higher is better) are shown in the legends inside the plots.

486

Table 9

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489

Probability of bad classification (PBC) of the competing methods over the tested sequences (lower is better). Best results of each
sequence are highlighted in bold.

Video SOM Ilu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 20.04 44.5 4311 432725 384719 431373 43.0696 38.0663
PETS2006 34.71 47.48 20.05 20.2447 15.6841 16.4627 43.9377 39.7108
Highway 6.66 35.55 712 12.2864 2.1969 4.8820 2.9292 3.2547
Pedestrians 4.401 46.79 1.099 6.1404 3.2581 2.5063 6.2657 4.6366
Sofa 9.28 40.28 38.05 22.4100 14.7621 34.9489 16.3628 16.4073
Canoe 3.502 41.65 31.49 6.1856 36.0825 36.0825 36.0825 36.0825
Fountain02 22.81 50.12 68.23 8.9178 8.6172 79.6593 7.5150 9.9198
Fall 38.35 50.54 60.54 17.4116 60.5070 60.5070 60.5070 60.5070
Average 17.8062 44.6138 33.7111 17.1086 22.4475 34.7732 27.0837 26.0731
Table 10
Precision of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted in
bold.
Video SOM Tlu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 0.8905 0.9511 0.5697 0.5677 0.5974 0.5683 0.5686 0.6030
PETS2006 0.9937 0.9848 0.8559 0.9959 0.9906 0.9981 1.0000 1.0000
Highway 0.9981 1.0000 0.930 1.0000 0.9973 0.9498 0.9982 0.9982
Pedestrians 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Sofa 0.9815 0.7823 0.6197 0.7293 0.8133 0.6290 0.7964 0.7959
Canoe 1.0000 0.866 0.6851 1.0000 0.6392 0.6392 0.6392 0.6392
Fountain02 0.9799 0.0000 0.3124 1.0000 0.7721 0.2034 1.0000 1.0000
Fall 0.7109 0.4906 0.3943 0.8088 0.3949 0.3949 0.3949 0.3949
Average 0.9443 0.7593 0.6709 0.8877 0.7756 0.6728 0.7997 0.8039
Table 11
F-measure of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted
in bold.
Video SOM Mlu FrameDiff =~ MFBM GrimsonGMM MaddalenaSOBS ~ WrenGA ZivkovicGMM
Office 0.8721 03425 0.7233 0.7217 0.7436 0.7228 0.7234 0.7409
PETS2006 0.6395 01776 0.8778 0.8420 0.8824 0.8750 0.5775 0.6331
Highway 0.9631 0.6192 0.9630 0.9287 0.9880 0.9742 0.9839 0.9821
Pedestrians ~ 0.9764 0.2153 0.9944 0.9595 0.9789 0.9839 0.9587 0.9697
Sofa 09471 0.5722 0.7648 0.8389 0.8863 0.7711 0.8753 0.8750
Canoe 09815 0.487 0.8131 0.9492 0.7799 0.7799 0.7799 0.7799
Fountain02 0.8295 0.0000 0.4709 0.7192 0.7943 0.3381 0.7734 0.6775
Fall 0.672 0.5293 0.5651 0.7686 0.5662 0.5662 0.5662 0.5662
Average 0.8601 0.3679 0.7716 0.8410 0.8274 0.7514 0.7798 0.7781

resent the output of the pixel level algorithms running on a stan-
dard PC. As seen, our method outperforms the methods running on
the Arduino board, while it is still competitive with respect to the
PC based ones. This confirms the previously reported quantitative
results.

6. Conclusions

The SOM algorithm has been successfully implemented in a mi-
crocontroller DUE board. The SOM has been adapted to overcome
the limitations imposed by the limited resources of memory and
computing speed of the hardware device. The correct implementa-
tion of the algorithm has been verified, and it has been found that
as the precision is increased to avoid rounding effects, the micro-
controller needs more memory size. Furthermore, a detailed study
of the differences of using floating point or fixed precision rep-
resentations has been carried out, concluding that better results
can be obtained with an 32-bit precision fixed point representation
leading to computation times up 10 times faster in the largest neu-
ral architecture (more neurons) than using the standard floating
point representation. Also, the change in the data type representa-
tion paradigm allows using SOM architectures with more neurons

and processing images with more resolution, obtaining a more pre-
cise block based motion detection in the proposed system.

The implemented SOM algorithm has been employed as a mo-
tion detector obtaining a cheap and versatile system with which
it is possible to carry out efficient video surveillance. The whole
learning process has been implemented in the chip, whereby the
decision-making procedure of the detector is adapted in real time
to the observed changes in the scene. This way decision errors pro-
duced by the evolution in the captured environment are signifi-
cantly reduced.

The efficiency of the proposed system is significantly higher
than that of the traditional motion detection method. It has a
higher success rate with less false positives. False positives can be
reduced almost to 0 by tuning the threshold, due to the favorable
dependency between the true and false positive rates reported by
the ROC curves.

As an overall conclusion, we have shown the suitability of SOM
algorithm for its application in a motion detection using an Ar-
duino DUE microcontroller. Therefore the present study demon-
strates the potential of the proposed methodology for its applica-
tion to inexpensive systems in real scenarios. The detection per-
formance can be further enhanced by employing more powerful

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 487

Input

SOM

Tlu

FrameDifft

MFBM

GrimsonGMM

MaddalenaSOBS

WrenGA

ZivkovicGMM

Fig. 8. Motion detection examples for the Pedestrians video. First row: raw RGB video captured by the video camera. Remaining rows: detection decision by the proposed
system (SOM), the traditional detector (Ilu), FrameDiff, MFBM, GrimsonGMM, MaddalenaSOBS, WrenGA and ZivkovicGMM, respectively.

computing resources and ad hoc devices than the microcontroller
board considered here.

Acknowledgments

This work is partially supported by the Ministry of Economy
and Competitiveness of Spain under grants TIN2010-16556 and
TIN2014-53465-R, project name Video surveillance by active search
of anomalous events. It is also partially supported by the Au-

tonomous Government of Andalusia (Spain) under projects P10-
TIC-5770, PO8-TIC-04026, TIC-6213, project name Development of
Self-Organizing Neural Networks for Information Technologies, and
TIC-657, project name Self-organizing systems and robust estima-
tors for video surveillance. All of them include funds from the Eu-
ropean Regional Development Fund (ERDF). The authors thankfully
acknowledge the computer resources, technical expertise and as-
sistance provided by the SCBI (Supercomputing and Bioinformatics)
center of the University of Malaga.

488 E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489

Input

Som

Tlu

FrameDiff

MFBM
GrimsonGMM
MaddalenaSOBS

WrenGA

-t
[

Fig. 9. Motion detection examples for the Sofa video. First row: raw RGB video captured by the video camera. Remaining rows: detection decision by the proposed system
(SOM), the traditional detector (Ilu), FrameDiff, MFBM, GrimsonGMM, MaddalenaSOBS, WrenGA and ZivkovicGMM, respectively.

References

Adnan, L., Yussoff, Y., Johar, H., & Baki, S. (2015). Energy-saving street lighting sys-
tem based on the waspmote mote. Jurnal Teknologi, 76(4), 55-58.

Aleksendri¢, D., Jakovljevi¢, 1., & Irovi¢, V. (2012). Intelligent control of braking pro-
cess. Expert Systems with Applications, 39(14).

Atmel, DataSheet Atmel SAM3X8E ARM Cortex-M3 CPU. http://www.atmel.com/
Images/doc11057.pdf.

Beaton, D., Valova, I, & MacLean, D. (2010). CQoCO: A measure for comparative
quality of coverage and organization for self-organizing maps. Neurocomputing,
73(10-12), 2147-2159.

Bermejo, S., & Cabestany, J. (2002). The effect of finite sample size on on-line
k-means. Neurocomputing, 48(1), 511-539.

Bhandarkar, S., Koh, J., & Suk, M. (1997). Multiscale image segmentation using a
hierarchical self-organizing map. Neurocomputing, 14(3), 241-272.

Bouwmans, T. (2014a). Background modeling and foreground detection for video
surveillance (pp. 1-54). Chapman and Hall/CRC.

Bouwmans, T. (2014b). Traditional and recent approaches in background model-
ing for foreground detection: An overview. Computer Science Review, 11-12, 31-
66.

Casanova, C., Franco, A., Lumini, A., & Maio, D. (2013). SmartVisionApp: A frame-
work for computer vision applications on mobile devices. Expert Systems with
Applications, 40(15), 5884-5894.

Cela, A., Yebes,]. ., Arroyo, R., Bergasa, L. M., Barea, R., & Lopez, E. (2013). Com-
plete low-cost implementation of a teleoperated control system for a humanoid
robot. Sensors, 13(2), 1385-1401.

Chang, C.-H., Pengfei, X., Xiao, R., & Srikanthan, T. (2005). New adaptive color quan-
tization method based on self-organizing maps. IEEE Transactions on Neural Net-
works, 16(1), 237-249.

Dekker, A. (1994). Kohonen neural networks for optimal color quantization. Network,
5, 351-367.

Dlugosz, R., Talaska, T., Pedrycz, W., & Wojtyna, R. (2010). Realization of the con-
science mechanism in CMOS implementation of winner-takes-all self-organizing
neural networks. [EEE Transactions on Neural Networks, 21(6), 961-971.

Dobrzynski, M., Pericet-Camara, R., & Floreano, D. (2012). Vision tape-a flexible com-
pound vision sensor for motion detection and proximity estimation. IEEE Sensors
Journal, 12(5), 1131-1139.

Dong, G., & Xie, M. (2005). Color clustering and learning for image segmentation
based on neural networks. IEEE Transactions on Neural Networks, 16(4), 925-
936.

http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://www.atmel.com/Images/doc11057.pdf
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014

E Ortega-Zamorano et al./Expert Systems With Applications 64 (2016) 476-489 489

Fung, V., Bosch, J., Roberts, S., & Kleissl, J. (2014). Cloud shadow speed sensor. At-
mospheric Measurement Techniques, 7(6), 1693-1700.

Garcia, F, Garcia, J., Ponz, A., de la Escalera, A., & Armingol,]. M. (2014). Context
aided pedestrian detection for danger estimation based on laser scanner and
computer vision. Expert Systems with Applications, 41(15), 6646-6661.

Gémez, M. J., Garcia, F, Martin, D., de la Escalera, A.,, & Armingol, J. M. (2015). In-
telligent surveillance of indoor environments based on computer vision and 3D
point cloud fusion. Expert Systems with Applications, 42(21), 8156-8171.

Hsu, A., & Halgamuge, S. (2003). Enhancement of topology preservation and hierar-
chical dynamic self-organising maps for data visualisation. International Journal
of Approximate Reasoning, 32(2-3), 259-279.

Kaski, S., Kangas, J., & Kohonen, T. (1998). Bibliography of self-organizing map (SOM)
papers: 1981-1997. Neural Computing Surveys, 1, 102-350.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1), 59-69.

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37,
52-65.

Kopetz, H. (1997). Real-time systems: Design principles for distributed embedded appli-
cations (1st). Norwell, MA, USA: Kluwer Academic Publishers.

Kornuta, J. A., Nipper, M. E., & Brandon Dixon, J. (2012). Low-cost microcontroller
platform for studying lymphatic biomechanics in vitro. Journal of Biomechanics,
46(1), 183-186.

Lacerda, E. B., & Mello, C. A. (2013). Segmentation of connected handwritten dig-
its using self-organizing maps. Expert Systems with Applications, 40(15), 5867-
5877.

Lian, K.-Y., Hsiao, S.-J., & Sung, W.-T. (2013). Intelligent multi-sensor control system
based on innovative technology integration via ZigBee and Wi-Fi networks. Jour-
nal of Network and Computer Applications, 36(2), 756-767.

Lépez-Rubio, E., Luque-Baena, R. M., & Dominguez, E. (2011). Foreground detection
in video sequences with probabilistic self-organizing maps. International Journal
of Neural Systems, 21(3), 225-246.

Lopez-Rubio, F. J., & Lopez-Rubio, E. (2015). Features for stochastic approxima-
tion based foreground detection. Computer Vision and Image Understanding, 133,
30-50.

Maddalena, L., & Petrosino, A. (2008a). A self-organizing approach to background
subtraction for visual surveillance applications. IEEE Transactions on Image Pro-
cessing, 17(7), 1168-1177.

Maddalena, L., & Petrosino, A. (2008b). A self-organizing approach to background
subtraction for visual surveillance applications. IEEE Transactions on Image Pro-
cessing, 17(7), 1168-1177.

Mahmoud, S., Lotfi, A., & Langensiepen, C. (2013). Behavioural pattern identifica-
tion and prediction in intelligent environments. Applied Soft Computing, 13(4),
1813-1822.

Mamdoohi, G., Fauzi Abas, A. Samsudin, K, Ibrahim, N. H., Hidayat, A, &
Mahdi, M. A. (2012). Implementation of genetic algorithm in an embedded mi-
crocontroller-based polarization control system. Engineering Application of Artifi-
cial Intelligence, 25(4), 869-873.

Marwedel, P. (2006). Embedded system design. Secaucus, NJ, USA: Springer-Verlag
New York, Inc..

Naghiyev, E., Gillott, M., & Wilson, R. (2014). Three unobtrusive domestic occupancy
measurement technologies under qualitative review. Energy and Buildings, 69,
507-514.

Oja, M., Kaski, S., & Kohonen, T. (2003). Bibliography of self-organizing map (SOM)
papers: 1998-2001 addendum. Neural Computing Surveys, 3(1), 1-156.

Ortega-Zamorano, F, Jerez,], Juarez, G., Perez, J., & Franco, L. (2014). High preci-
sion FPGA implementation of neural network activation functions. In 2014 IEEE
symposium on intelligent embedded systems (IES) (pp. 55-60).

Ortega-Zamorano, F., Jerez,]., Urda Munoz, D., Luque-Baena, R., & Franco, L. (2015).
Efficient implementation of the backpropagation algorithm in FPGAs and micro-
controllers. IEEE Transactions on Neural Networks and Learning Systems, PP(99).
1-1

Ortega-Zamorano, F, Jerez,]J. M., Subirats, J. L., Molina, L., & Franco, L. (2014). Smart
sensor/actuator node reprogramming in changing environments using a neural
network model. Engineering Applications of Artificial Intelligence, 30(0), 179-188.

Oxer, J., & Blemings, H. (2009). Practical arduino: Cool projects for open source hard-
ware. Berkely, CA, USA: Apress.

Palomo, E.]., & Dominguez, E. (2014). Hierarchical color quantization based on self-
-organization. Journal of Mathematical Imaging and Vision, 49(1), 1-19.

Papadimitriou, K., Dollas, A., & Sotiropoulos, S. (2006). Low-cost real-time 2-D mo-
tion detection based on reconfigurable computing. IEEE Transactions on Instru-
mentation and Measurement, 55(6), 2234-2243.

Papamarkos, N. (1999). Color reduction using local features and a SOFM neural net-
work. Journal of Imaging Systems and Technology, 10(5), 404-409.

Park, H., Park, J., Kim, H., Jun,], Son, S. H., & Park, T. (2015). ReLiSCE: Utilizing
resource-limited sensors for office activity context extraction. IEEE Transactions
on Systems, Man, and Cybernetics, 45(8), 1151-1164.

Pulli, K., Baksheev, A., Kornyakov, K., & Eruhimov, V. (2012). Real-time computer
vision with OpenCV. Communications of the ACM, 55(6), 61-69.

Sengupta, S., Das, S., Nasir, M., & Panigrahi, B. K. (2013). Multi-objective node de-
ployment in WSNs: In search of an optimal trade-off among coverage, lifetime,
energy consumption, and connectivity.. Engineering Applications of Artificial In-
telligence, 26(1), 405-416.

Stauffer, C., & Grimson, W. (1999). Adaptive background mixture models for real-
time tracking. In Proceedings of thelEEE international conference on computer vi-
sion and pattern recognition (pp. 246-252).

Wang, J., Xu, W., & Gong, Y. (2010). Real-time driving danger-level prediction. Engi-
neering Applications of Artificial Intelligence, 23(8), 1247-1254.

Wang, Y., Jodoin, P.-M., Porikli, F., Konrad,]J., Benezeth, Y., & Ishwar, P. (2014). CDnet
2014: An expanded change detection benchmark dataset. In Computer vision and
pattern recognition workshops (cvprw), 2014 ieee conference on (pp. 393-400).
doi:10.1109/CVPRW.2014.126.

Wren, C., Azarbayejani, A., Darrell, T., & Pentl, A. (1997). Pfinder: Real-time track-
ing of the human body. IEEE Trans. on Pattern Analysis and Machine Intelligence,
19(7), 780-785.

Xiao, Y., Leung, C.-S., Lam, P.-M., & Ho, T.-Y. (2012). Self-organizing map-based color
palette for high-dynamic range texture compression. Neural Computing and Ap-
plications, 21(4), 639-647.

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Com-
puter Networks, 52(12), 2292-2330.

Yin, H. (2008). The self-organizing maps: Background, theories, extensions and ap-
plications. Studies in Computational Intelligence, 115, 715-762.

Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background sub-
traction. In Proceedings of the pattern recognition, 17th international conference on
(icpr’04) volume 2 - volume 02. In ICPR '04 (pp. 28-31). Washington, DC, USA:
IEEE Computer Society.

Zivkovic, Z., & van der Heijden, F. (2006). Efficient adaptive density estimation per
image pixel for the task of background subtraction. Pattern Recognition Letters,
27(7), 773-780.

http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://dx.doi.org/10.1109/CVPRW.2014.126
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053

	Smart motion detection sensor based on video processing using self-organizing maps
	1 Introduction
	2 Microcontroller (µC) system description
	2.1 The Arduino board
	2.2 Initialization and execution phases of the algorithm
	2.3 Data type representation

	3 Motion detection model
	3.1 Frame subdivision
	3.2 Self-organizing map
	3.3 Anomaly analysis
	3.4 SOM model storage
	3.5 Computation of the exponential function
	3.6 Fixed point vs floating point representation comparison

	4 Application
	5 Results
	6 Conclusions
	 Acknowledgments
	 References

