
Expert Systems With Applications 64 (2016) 476–489

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Smart motion detection sensor based on video processing using

self-organizing maps

Francisco Ortega-Zamorano

a , b , Miguel A. Molina-Cabello

a , Ezequiel López-Rubio

a , ∗,
Esteban J. Palomo

a , b

a Department of Computer Languages and Computer Science, University of Málaga, Málaga, Spain
b School of Mathematics and Computer Science, University of Yachay Tech, San Miguel de Urcuquí, Ecuador

a r t i c l e i n f o

Article history:

Received 8 March 2016

Revised 13 July 2016

Accepted 2 August 2016

Available online 3 August 2016

Keywords:

Self-organizing map

Microcontroller

Arduino

Image processing

Block processing

a b s t r a c t

Most current approaches to computer vision are based on expensive, high performance hardware to

meet the heavy computational requirements of the employed algorithms. These system architectures are

severely limited in their practical application due to financial and technical limitations. In this work a

different strategy is used, namely the development of an inexpensive and easy to deploy computer vision

system for motion detection. This is achieved by three means. First of all, an affordable and flexible hard-

ware platform is employed. Secondly, the motion detection algorithm is specifically tailored to involve a

very small computational load. Thirdly, a fixed point programming paradigm is followed in implementing

the system so as to further reduce the computational requirements. The proposed system is experimen-

tally compared to the standard motion detector for a wide range of benchmark videos. The reported

results indicate that our proposal attains substantially better performance, while it remains affordable

and easy to install in practice.

© 2016 Elsevier Ltd. All rights reserved.

i

s

a

t

(

c

w

S

c

d

r

t

o

a

K

p

z

1

(
1. Introduction

Motion detection is the process of detecting a change in the

position of an object relative to its surroundings or a change in

the surroundings relative to an object. Motion detection can be

achieved by either mechanical or electronic methods, but it is most

usually implemented by electronic sensors.

Motion sensors can be passive or active. Passive sensors do not

emit any energy to the environment and they are the most com-

mon kind of electronic sensors. They are sensitive to a person’s

skin temperature through emitted blackbody radiation at mid-

infrared wavelengths, in contrast to background objects at room

temperature. On the other hand, active sensors emit some type

of signal like light, microwave or sound into the environment and

they detect some change in the behavior of the responses.

Currently new techniques are being introduced in motion de-

tection systems with the proliferation of digital cameras capable of

shooting video. Nowadays it is possible to use the output of such

a camera to detect motion in its field of view using software. Mo-

tion detection is usually carried out by a software-based monitor-
∗ Corresponding author. Fax: +34 952 13 13 97.

E-mail addresses: fortega@lcc.uma.es (F. Ortega-Zamorano), miguelangel@

lcc.uma.es (M.A. Molina-Cabello), ezeqlr@lcc.uma.es (E. López-Rubio), ejpalomo@

lcc.uma.es (E.J. Palomo).

M

a

i

&

http://dx.doi.org/10.1016/j.eswa.2016.08.010

0957-4174/© 2016 Elsevier Ltd. All rights reserved.
ng algorithm. When the algorithm detects motions it signals the

urveillance camera to begin capturing the event. This is also called

ctivity detection. An advanced motion detection surveillance sys-

em can analyze the type of motion to see if it warrants an alarm

 García, García, Ponz, de la Escalera, & Armingol, 2014; Gómez, Gar-

ía, Martín, de la Escalera, & Armingol, 2015).

The Self-Organizing Map (SOM) is a kind of artificial neural net-

ork which is capable of unsupervised learning (Kohonen, 1982).

ince its proposal, the SOM has been applied to knowledge dis-

overy, data mining, detection of inherent structures in high-

imensional data and mapping these data into a two-dimensional

epresentation space (Kohonen, 2013; Yin, 2008). This mapping re-

ains the relationships among input data and preserves their topol-

gy. Hence this artificial neural network has had a wide range of

pplication fields over the decades (Oja, Kaski, & Kohonen, 2003;

aski, Kangas, & Kohonen, 1998). In particular, it has been ap-

lied to several areas of computer vision, such as color quanti-

ation (Dekker, 1994; Palomo & Domínguez, 2014; Papamarkos,

999; Xiao, Leung, Lam, & Ho, 2012), and image segmentation

 Bhandarkar, Koh, & Suk, 1997; Dong & Xie, 2005; Lacerda &

ello, 2013; Maddalena & Petrosino, 2008a). The SOM is based on

n incremental (online) learning process, which has better abil-

ty to escape from local minima than batch learning (Bermejo

 Cabestany, 2002) and consumes less computational time in

http://dx.doi.org/10.1016/j.eswa.2016.08.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.08.010&domain=pdf
mailto:fortega@lcc.uma.es
mailto:miguelangel@lcc.uma.es
mailto:ezeqlr@lcc.uma.es
mailto:ejpalomo@lcc.uma.es
http://dx.doi.org/10.1016/j.eswa.2016.08.010

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 477

c

2

g

D

a

s

f

a

n

p

t

(

b

i

a

c

t

w

n

w

2

g

a

a

r

a

l

b

J

O

s

K

b

m

l

i

a

t

fi

t

2

o

t

F

p

c

(

s

a

i

m

fl

i

m

2

2

2

u

r

p

Fig. 1. Picture of an Arduino DUE board used for the implementation of the SOM-

based motion detection model.

h

k

t

m

t

m

S

o

c

2

i

s

b

S

o

c

2

p

c

p

m

m

l

d

p

s

a

d

k

l

r

y

C

c

w

t

T

f

s

t

t

olor quantization problems (Chang, Pengfei, Xiao, & Srikanthan,

005). Moreover, it has been employed previously to detect fore-

round objects in video sequences (López-Rubio, Luque-Baena, &

omínguez, 2011; Maddalena & Petrosino, 2008a). However, these

pproaches require a SOM for each pixel of the video frame. Con-

equently a SOM must be trained and queried for each pixel and

rame in real time as the video sequence progresses. Therefore they

re not suitable for implementation on microcontrollers, which do

ot have the computational resources to accomplish such a com-

lex task.

All of these schemes require a large amount of computa-

ion, which is an important challenge of computer vision systems

 Casanova, Franco, Lumini, & Maio, 2013). For this reason it has

een necessary the use of PCs to implement these types of learn-

ng processes, so that the resultant systems are very expensive

nd complex to produce on a large scale. In this work we propose

hanging the strategy to obtain simpler and cheaper motion detec-

ors.

Microcontroller boards are economic, small and flexible hard-

are devices. They are commonly employed in important tech-

ologies such as Embedded systems (Mamdoohi et al., 2012; Mar-

edel, 2006), Real-time systems (Kopetz, 1997; Wang, Xu, & Gong,

010) and Wireless sensor networks (Sengupta, Das, Nasir, & Pani-

rahi, 2013; Yick, Mukherjee, & Ghosal, 2008). They have a reduced

mount of hardware resources and limited computing speed, not

llowing extensive use of these devices in complex tasks. However,

ecent advances in the computing power of microcontrollers and

 change in their programming paradigm allows the inclusion of

earning schemes in the device (“on-chip” learning), adapting their

ehavior dynamically according to the sensed data (Aleksendri ́c,

akovljevi ́c, & Irovi ́c, 2012; Mahmoud, Lotfi, & Langensiepen, 2013;

rtega-Zamorano, Jerez, Subirats, Molina, & Franco, 2014).

Microcontrollers are frequently employed in motion detection

ystems due to their low energy consumption and reduced cost.

inetically challenged people can benefit from microcontroller

ased input devices specifically designed for them, which measure

otion on a plane in real time (Papadimitriou, Dollas, & Sotiropou-

os, 2006). A flexible Printed Board Circuit (PCB) prototype which

ntegrates a microcontroller has been proposed to estimate motion

nd proximity (Dobrzynski, Pericet-Camara, & Floreano, 2012). In

his prototype, eight photodiodes are used as light sensors. The ef-

ciency of solar energy plants can be improved by low power sys-

ems which estimate cloud motion (Fung, Bosch, Roberts, & Kleissl,

014). The approximation of the cloud motion vectors is carried

ut by an embedded microcontroller, so that the arrangement of

he solar panels can be optimized for maximum electricity output.

inally, energy-saving street lighting for smart cities can be accom-

lished by low power motion detection systems equipped with low

onsumption microcontrollers and wireless communication devices

 Adnan, Yussoff, Johar, & Baki, 2015). This way, the street lamps are

witched on when people are present in their surroundings.

In the present work, we have fully implemented the SOM in

n Arduino DUE board, including the whole learning process to

mplement the automatic motion detection process for decision-

aking into the detector in all types of environments, avoiding of-

ine computation and communication to other devices.

The Arduino DUE board was used (Oxer & Blemings, 2009) as

t is a popular, economic and efficient open source single-board

icrocontroller that allows easy project development (Cela et al.,

013; Kornuta, Nipper, & Brandon Dixon, 2012; Lian, Hsiao, & Sung,

013; Ortega-Zamorano, Jerez, Urda Munoz, Luque-Baena, & Franco,

015). We also propose a change in the data type representation

sed in the programming of the Arduino from the floating point

epresentation commonly employed in this type of system to fixed

oint representation, in order to obtain a faster system with less
i
ardware resources. This enables the utilization of the SOM in this

ind of device.

The paper is structured as follows. In Section 2 the microcon-

roller system is briefly described, and our fixed point program-

ing approach is outlined. Then we introduce a new motion de-

ection model including the SOM, which is specifically designed to

eet the computation capabilities of microcontrollers (Section 3).

ection 4 explains the details of the implemented application. The

btained experimental results are reported in Section 5 . Finally,

onclusions are extracted in Section 6 .

. Microcontroller (μC) system description

We have implemented the SOM-based motion detection model

n an Arduino DUE microcontroller. The details of the implemented

ystem are described below, with an emphasis on the comparison

etween using a fixed point representation or a floating point one.

ection 2.1 describes the Arduino hardware, Section 2.2 gives an

verall view of the motion detection software, and Section 2.3 dis-

usses the options to implement arithmetic operations.

.1. The Arduino board

Arduino is a single-board microcontroller designed to make the

rocess of using electronics in multidisciplinary projects more ac-

essible (Oxer & Blemings, 2009). The hardware consists of a sim-

le open source board designed around an 32-bit Atmel ARM core

icrocontroller, and the software includes a standard program-

ing language compiler that runs in a standard PC and a boot

oader for loading the compiled code on the microcontroller. Ar-

uino is a descendant of the open-source Wiring platform and is

rogrammed using a Wiring-based language (syntax and libraries),

imilar to C++ with some slight simplifications and modifications,

nd a processing-based integrated development environment. Ar-

uino boards can be purchased pre-assembled or do-it-yourself

its, and hardware design information is available. The maximum

ength and width of the Arduino UNO board are 10.2 and 5.3 cm

espectively, with the USB connector and power jack extending be-

ond the former dimension.

The Arduino DUE is based on the SAM3X8E ARM Cortex-M 3

PU (Atmel) , and it has 54 digital input/output pins (of which 12

an be used as PWM outputs), 12 analog inputs, four UARTs (hard-

are serial ports), a 84 MHz clock, an USB OTG capable connec-

ion, two DAC (digital to analog), and a reset and erase buttons.

he SAM3X has 512 KB (two blocks of 256 KB) of flash memory

or storing code, it also comes with a preburned bootloader that is

tored in a dedicated ROM memory. The available SRAM amounts

o 96 KB in two contiguous banks of 64 and 32 KB. A picture of

he Arduino DUE board is shown in Fig. 1 .

The Arduino Due has a number of facilities for communicat-

ng with a computer, another Arduino or other microcontrollers,

478 F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489

Table 1

Computation time required for the basic arithmetic op-

erations depending on the variable type (integer, float

and double) used in the Arduino DUE microcontroller.

Variable Basic operations

Type + − ∗ /

Integer 59 .8 59 .8 71 .7 99 .9

Float 3965 .4 4146 .9 3751 .8 5269 .8

Double 5113 .2 5139 .4 4763 .3 13635 .2

r

e

m

a

i

a

a

S

p

i

p

3

c

n

T

i

l

p

t

t

B

N

o

t

p

x

w

b

t

N

c

b

3

u

b

t

i

b (
d

c

c

c

w

t

W

{
w

and different devices like phones, tablets, cameras and so on. The

SAM3X provides one hardware UART and three hardware USARTs

for TTL (3.3V) serial communication.

2.2. Initialization and execution phases of the algorithm

The implementation of the proposed SOM-based motion detec-

tion model comprises two phases: the initialization phase which

generates the initial state of the model, and the execution phase

in which the microcontroller updates the model and makes deci-

sions according to the input data. The input video frame is divided

into several non overlapping pixel blocks, so that a SOM model is

associated to each block.

The initialization phase generates the initial state of the SOM

model associated to each pixel block. In order to do this, the pro-

totypes of all the neurons of the SOM are initialized to the average

color of the pixels which belong to the pixel block in the first in-

coming video frame.

The execution phase has been divided into two different pro-

cesses: the learning process and the decision process. For each

pixel block, the learning process summarizes the color information

from all the pixels of the block into an input vector which is sup-

plied as a training sample to the SOM associated to the block. Then

the decision process estimates whether each individual block con-

tains moving objects with the help of the SOM model associated to

the block. More details about the learning and decision processes

are given in Section 3 .

2.3. Data type representation

Microcontrollers are devices with limited computing power so

in order to speed up the learning process, it was decided to employ

a fixed-point data type representation. Please note that floating-

point is the most commonly employed data type representation in

this kind of device, but this representation is not always the most

efficient one.

The change of the paradigm in the data type representation in-

volves a change in the type of variables used in the software im-

plementation of the SOM model. The floating-point representation

is stored in a “float” or “double” variable with a size of 4 or 8 bytes

respectively, depending on the precision that is required. On the

other hand, the fixed-point representation is stored in an “integer”

variable with a size of 4 bytes.

This paradigm shift involves profound changes in the way the

SOM model is programmed but in return it offers a faster learn-

ing process and a smaller size representation of variables. Table 1

shows the computational time (in μs) required for the calculation

of each basic arithmetic operation { + , - , ∗ , / } with the men-

tioned three variable types (integer, float and double) in the Ar-

duino DUE microcontroller.

3. Motion detection model

The motion detection system proposed in this work is based

on the subdivision of the input frame into several non overlapping
ectangular blocks of the same size. A color model is learned for

ach block by means of a SOM, so that color anomalies can be

easured in each region separately. Then the color anomalies are

nalyzed so as to determine whether they are associated to mov-

ng foreground objects. Section 3.1 explains the frame subdivision

rrangement, Section 3.2 describes the self-organizing map model,

nd Section 3.3 details how to analyze the measured anomalies.

ection 3.4 gives details about the storage of the SOMs. The em-

loyed algorithm to compute the exponential function is explained

n Section 3.4 . Finally, Section 3.6 is devoted to compare the fixed

oint and floating point implementations of the proposed model.

.1. Frame subdivision

Most current approaches to motion detection either build a

olor model for each pixel (Bouwmans, 2014b). However, this is

ot feasible for microcontrollers due to their hardware limitations.

herefore we propose to use a subdivision of the input frame

nto non overlapping rectangular blocks, so that a color model is

earned for each region.

Let us assume that the input video frames have size N row

× N col

ixels, and that for each pixel a RGB color vector y h ∈ [0, 1] 3 is ob-

ained from the camera, where h ∈ { 1 , . . . , N row

} × { 1 , . . . , N col } are

he pixel coordinates. Then the input frame is divided into B row

×
 col non overlapping blocks each of size N row

B row
× N col

B col
pixels, where

 row

is an integer multiple of B row

and N col is an integer multiple

f B col .

For each block it is necessary to summarize the color informa-

ion provided by the pixel color data y h in a fast way. Here we

ropose to compute the average color of each block:

 r =

1

N block

∑

h ∈B r
y h (1)

here x r ∈ [0, 1] 3 , B r is the set of the pixels which belong to the

lock with coordinates r ∈ { 1 , . . . , B row

} × { 1 , . . . , B col } , and N block is

he number of pixels per block:

 block =

N row

N col

B row

B col

(2)

For each incoming video frame and block, the average block

olor x r is provided to the self-organizing map associated to the

lock as an input training sample, as seen next.

.2. Self-organizing map

Next we are going to describe Kohonen’s SOFM model which is

sed to learn a color model of a block of the input frame. Let M

e the number of neurons of the self-organizing map associated

o a certain block of the input frame. The neurons are arranged

n a lattice of size a × b , where M = ab. The topological distance

etween the neurons i and i ′ , located at positions (y 1 , y 2) ∈ N

2 and

y ′
1
, y ′

2

)
∈ N

2 in the lattice space, is given by:

(
i, i ′

)
=

√ (
y 1 − y ′

1

)2 +

(
y 2 − y ′

2

)2
(3)

Every neuron i has a prototype vector w i which represents a

luster of input samples. Please note that w i ∈ [0, 1] 3 , where we

onsider three-dimensional real valued vector inputs which codify

olors in the RGB color space. At time step n , a new sample x (n)

hich represents the average color for the block is presented to

he network, and a winner neuron is declared:

 inner (x (n)) = arg min

j∈ { 1 , ... ,M }
∥∥x (n) − w j (n)

∥∥ (4)

Then the prototypes of all the units are adjusted, for i ∈

1 , . . . , M } :
 (n + 1) =
i

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 479

w

w

t

n

η

�

e

�

s

w

w

F

m

a

q

m

2

m

M

3

c

m

j

e

r

q

w

t

w

i

B

w

b

f

3

e

i

a

t

t

9

m

m

m

t

w

c

e

N

w

a

w

t

i

t

s

3

u

s

t

c

b

t

d

m

l

s

&

t

l

o

i

t

t

q

9

i

s

o

p

l

t

t

 i (n) + η(n) �(i, W inner (x (n))) (x (n) − w i (n)) (5)

here η(n) is a decaying learning rate and the neighborhood func-

ion � varies with the time step n and depends on a decaying

eighborhood radius �(n):

(n + 1) ≤ η(n) (6)

(i, W inner (x (n))) =

xp

(

−
(

d (i, W inner (x (n)))

�(n)

)2
)

(7)

(n + 1) ≤ �(n) (8)

At initialization time n = 0 , each prototype w i is set to the ob-

erved sample x (0) for i ∈ { 1 , . . . , M } :
 i (0) = x (0) (9)

The receptive field of neuron i , i.e. the region of the input space

hich is represented by i , is defined as:

 i =

{
x ∈ R

D | i = W inner (x)
}

(10)

Vector quantization is one of the main goals of self-organizing

aps. We are interested in the quantization error q k associated to

n input x k :

 k = min

j∈ { 1 , ... ,M }
∥∥x k − w j

∥∥ (11)

The global performance of a map for this task is commonly

easured by the mean squared error (Beaton, Valova, & MacLean,

010; Dlugosz, Talaska, Pedrycz, & Wojtyna, 2010; Hsu & Halga-

uge, 2003; Yin, 2008):

SE =

1

K

K ∑

k =1

q 2 k (12)

.3. Anomaly analysis

As the self-organizing map associated to each block learns the

olor information corresponding to that block, it is possible to esti-

ate whether the block contains a substantial part of moving ob-

ects. This is done in a fast way by considering the quantization

rror q n , r at time step n of the current average block color x n , r , as

epresented by the self-organizing map associated to the block:

 n, r = min

j∈ { 1 , ... ,M }
∥∥x n, r − w j,n, r

∥∥ (13)

here w j, n , r ∈ [0, 1] 3 stands for the prototype at time step n of

he j -th neuron of the self-organizing map associated to the block

ith coordinates r . The block is declared to contain moving objects

f and only if q n , r is above a threshold T :

lock r contains moving objects ⇔ q n, r > T (14)

here T > 0 is a tunable parameter of the system. The rationale

ehind this is that moving objects usually have a color which dif-

ers significantly from the background color.
.4. SOM model storage

The number of bytes used for representing the SOM model in

ach pixel block depends on the data type representation. Employ-

ng fixed-point representation allows using 32 bits for each vari-

ble since they are stored in an “integer” variable. In this case as

he SOM model values range between 0 and 1, the precision of this

ype of variables is 2 −32 = 2 . 328 · 10 −10 .

Taking into account that the available SRAM memory amounts

6 KB to store all variables of the algorithm and that the SOM

odels are the most memory consuming variables, the SRAM

emory has been divided in two parts. One part stores the SOM

odels of all pixel blocks with 80 KB, and the other part comprises

he rest of the variables involved in the execution of the algorithm

ith 16 KB. Therefore, the maximum number of pixel blocks that

an be stored in the implemented system is given by the following

quation:

 blocks ≤
80 KB

M · 4 Byte
, (15)

here N blocks = B row

B col is the number of pixel blocks and M =
 × b is the number of neurons in the SOM of each pixel block,

hich has been set to M = 3 × 4 = 12 because it offers a good

radeoff between the ability of the SOMs to represent complex

nput color distributions and the computational load required to

rain the SOMs.

Therefore the maximum number of pixel blocks that can be

tored is 1706 pixel blocks for variables with a size of 4 bytes.

.5. Computation of the exponential function

The computation of the exponential function can be carried out

sing the specific ALU (Arithmetic and Logic Unit) by means of the

pecific library “math.h” in order to evaluate the exponential func-

ions involved in the model. The computational time for this pro-

edure is equal to 58 . 9 μs in the used microcontroller.

An approximation to carry out the exponential function has

een implemented in order to reduce the computational time for

his function. This reduction in the computation time allows up-

ating more pixel blocks in a given time, thereby increasing the

aximum number of pixel blocks that can be processed.

The approximation has been performed by a table lookup fol-

owed by a linear interpolation. This method has been extensively

tudied in previous works (Ortega-Zamorano, Jerez, Juarez, Perez,

 Franco, 2014).

The look-up table contains the values of the exponential func-

ion for equispaced values of the independent variable. Neverthe-

ess, as high precision values are needed for the correct execution

f the algorithm, the computation of the function approximation

s further complemented by a linear interpolation procedure using

wo adjacent tabulated values (lower and larger) with respect to

he input value of the independent variable. In this case the re-

uired computation time is reduced to 1 . 437 μs, which means a

7.5% reduction in comparison to the specific library “math.h”.

Storing table values requires large amounts of memory depend-

ng on the accuracy of the approximation. Fig. 2 shows the neces-

ary memory size according to the accuracy of the approximation

f the optimized method based on a lookup table plus linear inter-

olation of adjacent values.

A maximum absolute error lower than 5 · 10 −5 has been se-

ected. Therefore the memory size necessary to store the lookup

able is equal to 4 KB.

Fig. 3 shows the absolute error involved in the computation of

he negative exponential function in the range from 0 to 16.

480 F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489

Fig. 2. Required memory size according to the accuracy of the approximation of

the optimized method based on a lookup table plus linear interpolation of adjacent

values.

Fig. 3. Absolute error committed in the approximation of the exponential function

(see text for more details).

Fig. 4. Computation time (left y-axis) in μs required to update the SOM model of

a pixel block with different implementations of variables (Integer and Float) and

the number of times (right y-axis) that “integer” variables are faster than “float”

variables as a function of the number of neurons of the model.

p

i

m

(

c

w

t

1

b

e

N

w

t

9

f

3

a

4

p

m

h

b

f

i

o

t

p

D

t

c

C

c

s

n

f

Q

v

C

v

t

t

w

t

t

t

s

i

d

t

b

b

a

S

a
3.6. Fixed point vs floating point representation comparison

Fig. 4 shows the computation time (left y-axis) in μs required

to update the SOM model of a single pixel block when it is imple-

mented with variables of “integer” and “float” type and the num-

ber of times (right y-axis) that the “integer” variables are faster

than “float” variables as a function of the number of neurons of

the SOM model.
The computation time for updating a pixel block places an up-

er bound on the number of pixels that the system can update

n real-time. Nowadays real-time operation for computer vision

eans that a single frame must be processed within 30–40 ms

 Pulli, Baksheev, Kornyakov, & Eruhimov, 2012). Since the video

amera used for the experiments acquires 30 frames per second,

hich is 33.33 ms per frame, it can be considered that for real

ime operation a full video frame must be processed in less than

/30 s. This way, the maximum number of pixel blocks that can

e processed in the implemented system is given by the following

quation:

 blocks ≤
0 . 03333(s)

T up
, (16)

here N blocks is the number of pixel blocks and T up is the compu-

ation time for updating the SOM model of a pixel block.

As the number of neurons (M) has been set to 12, T up is equal to

3 μs for “integer” variables and 969 μs for “float” variables. There-

ore the maximum number of pixel blocks that can be updated is

58 blocks for “integer” variables and 34 blocks for “float” vari-

bles.

. Application

Intrusion detection systems are widely used in all types of

remises from households to public buildings, so that there are

any contexts where this kind of system could be deployed. We

ave focused on making the system easy to replicate in order to

e able to have multiple motion detectors. In particular, we have

ocused on low cost and low power consumption.

The proposed system is composed of a camera to obtain the

mage of the scene and a microcontroller to decide the existence

f unusual movement in the scene. Both the microcontroller and

he camera have been selected to be devices of low cost and low

ower consumption. The selected microcontroller is the Arduino

UE (see Section 2.1) and the video camera used in the applica-

ion is the C429-RS232, a highly integrated, compact serial and en-

oded video camera module. The module uses an OmniVision

TM

MOS MT9V011 VGA color sensor, matched with a Vimicro VC0706

ontrol chip to provide a complete low cost, low power camera

ystem. It has an on-board RS232 serial interface for direct con-

ection to a microcontroller. Serial transfer rate is at 115.2 Kbps

or transferring color or monochrome images in VGA (640 × 480),

VGA (320 × 240), or QQVGA (160 × 120) resolution. Real-time

ideo output is provided at 30 fps as CVBS signal, NTSC or PAL.

429-RS232 needs only 80 mA from a 5 V power supply.

Fig. 5 illustrates the tasks that are carried out as an incoming

ideo frame is processed. The five pictures on the left side depict

he processing of a video frame with no intrusion detected, while

he five pictures on the right side correspond to a video frame

here an intrusion is detected.

The pictures on the first row show the RGB image that is cap-

ured by the video camera. These pictures are the starting point of

he intrusion detection process.

The pictures on the second row show the downsized images

hat are sent to the microcontroller to be processed. The maximum

ize of the downsized images is determined by Eq. 16 . However,

n this case the selected size is 12 × 16 = 192 blocks in order to

emonstrate that smaller sizes also can be used for this applica-

ion with no significant decrease of the efficiency. With this num-

er of blocks, real time operation is attained since the number of

locks is below the upper limit for real time which is 358 blocks,

s explained before.

The third row shows the SOM models for every pixel (see

ection 3.2). For each of the 12 × 16 blocks of the downsized im-

ges a mosaic is shown with 3 × 4 small rectangles, where each

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 481

Fig. 5. The steps carried out in the imaging processing of a frame for a detection of intrusion (the five pictures in the right side) and another scene without detection(the

five pictures in the left side). (see text for more details).

s

a

h

r

c

b

b

b

s

o

t
mall rectangle represents the prototype of a neuron of the SOM

ssociated to the block. This is because the used SOM networks

ave a rectangular topology with 3 × 4 = 12 neurons. The small

ectangles show the prototype of the associated neuron as a RGB

olor. It can be observed that the neurons associated to the same

lock are quite similar on the left side when the intrusion has not
een detected yet. On the other hand, the neurons of the same

lock are significantly different on the right side when the intru-

ion is being detected. This is because some neurons learn the col-

rs of the intruding object.

The fourth row (second row from the bottom) shows the quan-

ization error of each input block of the captured pictures given by

482 F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489

Fig. 6. The histogram of the maximum quantization error of all blocks for a video

sequence which comprises 1750 frames. The threshold which separates the quanti-

zation errors for blocks with no movement (left) and blocks with movement (right)

is shown as a vertical dash-dot line.

t

n

y

w

c

t

y

w

A

g

y

l

t

e

T

g

a

c

o

a

c

w

w

b

(

a

d

d

m

a

v

w

m

w

o

T

t

c

f

n

j

p

d

R

S

F

1 https://github.com/andrewssobral/bgslibrary .
2 http://www.changedetection.net .
Eq. (13) . It can be observed that the maximum and the minimum

tones used in the colorbar are the same for both pictures, so that

the shown quantization errors can be compared. As seen, the video

frame without any intruding objects (left) yields smaller quantiza-

tion errors than the video frame with an intruding object (right).

The fifth and last row shows the decision whether each block

contains moving objects, as calculated from Eq. (14) . The decision

is made depending on the value of quantization error in every time

instant. If the error is higher than a determined “threshold” (T),

then the block is declared as foreground, i.e. a block with a de-

tected intrusion. In the pictures the blocks which exhibit a quanti-

zation error higher than the threshold are painted in white, while

the blocks with quantization errors lower than the threshold are

painted in black. A frame is declared to contain an intrusion in a

video scene whenever two or more blocks have a quantization er-

ror higher than the threshold.

In order to determine the value of the threshold we have ana-

lyzed a video sequence and we have obtained the histogram of the

maximum quantization errors for all the blocks of a frame. In Fig. 6

it can be observed that the histogram exhibits two modes. The left

mode corresponds to absence of intrusion, while the right mode is

associated to intrusions. As seen, the majority frames without in-

trusion detection have a quatization error in the range from 10 −4

to 10 −5 , while for the frames with intrusion detection the quanti-

zation error is around 10 −2 . For this reason we have selected the

value of the threshold (T) as 10 −3 .

5. Results

In this section, we have tested the implemented system for dif-

ferent well-known benchmark videos (Wang et al., 2014) in order

to demonstrate the utility of the proposed scheme. Each raw RGB

video comes with an associated “ground truth” black and white

video sequence which establishes which regions of each frame ac-

tually correspond to moving objects. The ground truth video is

only used to measure the detection performance of the competing

approaches; it is not provided to the detection systems in any way.

In order to obtain replicable results with known videos, we have

connected the Arduino microcontroller by the USB port with a se-

rial communication to the PC. Under this configuration the PC is

programmed to simulate a camera. That is, the PC sends the video

in the same way that the camera does, so that the microcontroller

does not notice the difference.

The traditional detector can be implemented in different ways

(Naghiyev, Gillott, & Wilson, 2014; Park et al., 2015), although the

most useful has frequently been passive infrared sensors (PIR). The
raditional detector looks for abrupt changes in the global illumi-

ance of the scene ȳ :

¯
 =

1

3 N row

N col

∑

h ∈B r

(
y 1 h + y 2 h + y 3 h

)
(17)

here y
j
h

is the value of the j th color channel at the pixel with

oordinates h .

In order to measure the changes in ȳ across time steps n , the

ime average of ȳ can be estimated at time n as follows:

ˆ
 (n + 1) =

ˆ y (n) + η(n)
(
ȳ (n) − ˆ y (n)

)
(18)

here η(n) stands for the learning rate already introduced in (5) .

t initialization time n = 0 the estimation is set to the observed

lobal illuminance:

ˆ
 (0) = ȳ (0) (19)

Motion is detected at time n whenever the current global il-

uminance ȳ (n) differs from the estimated average ˆ y (n) by more

han a threshold T :

 n =

∣∣ȳ (n) − ˆ y (n)
∣∣ (20)

he frame contains moving objects ⇔ e n > T (21)

Furthermore, we have selected some reference pixel-level fore-

round detection methods from previous literature which have

 public and reasonably well tested implementation, in order to

arry out comparisons with them. These methods have been run

n a standard PC with a 3 GHz CPU and 8 GB RAM, since they

re too computationally demanding to be executed on a micro-

ontroller. The first algorithm we have considered is the method

e note as WrenGA (Wren, Azarbayejani, Darrell, & Pentl, 1997),

hich is the oldest one and features a single Gaussian proba-

ilistic model. Other chosen Gaussian methods are GrimsonGMM

 Stauffer & Grimson, 1999), that uses two Mixture of Gaussians;

nd the ZivkovicGMM (Zivkovic, 2004; Zivkovic & van der Heij-

en, 2006) method, which has a non-fixed number of Gaussian

istributions. Additionally, an artificial neural networks approach

ethod noted MaddalenaSOBS (Maddalena & Petrosino, 2008b) is

lso considered. These tested methods are available on BGS library

ersion 1.3.0, which is accessible from its website 1 . In addition,

e have selected the MFBM (López-Rubio & López-Rubio, 2015)

ethod which is based on the stochastic approximation theory and

as recently published by our research group. The tuned values

f each method are selected from the authors’ recommendations.

hey are shown in Table 2 .

It must be pointed out that the motion detection problem that

he traditional and the proposed detectors aim to solve is a binary

lassification problem. The positive class is formed by those video

rames where there are moving objects. On the other hand, the

egative class comprises those video frames where no moving ob-

ects exist. Therefore we have considered the binary classification

erformance measures recommended in the CDnet 2014 2 motion

etection benchmark:

ecall =

T P

T P + F N

(22)

peci f icity =

T N

T N + F P
(23)

 P R =

F P

F P + T N

(24)

https://github.com/andrewssobral/bgslibrary
http://www.changedetection.net

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 483

Table 2

Considered parameter values for the competing methods, forming the set

of experimental configurations.

Method Parameters

MFBM Features, F = { 1 , 2 , 3 }
Step size, α = 0 . 01

GrimsonGMM Threshold, T = 12

Learning rate, α = 0 . 0025

Number of Gaussians in the mixture model, K = 3

MaddalenaSOBS Sensitivity, s 1 = 75

Training sensitivity, s 0 = 245

Learning rate, α1 = 75

Training step, N = 100

WrenGA Threshold, T = 12

Learning rate, α = 0 . 005

ZivkovicGMM Learning rate, α = 0 . 001

Number of Gaussians components, K = 3

Threshold, T = 30

F

P

P

F

t

p

f

e

i

T

e

e

m

i

d

p

r

t

c

m

f

s

p

m

d

s

t

i

b

o

f

i

F

h

o

b

T

c

t

f

l

f

o

t

e

a

c

T

(

f

v

w

h

a

t

a

b

o

t

d

o

T

t

s

a

t

c

a

(

a
 NR =

F N

T P + F N

(25)

 BC = 100

F N + F P

T P + F P + F N + T N

(26)

 recision =

T P

T P + F P
(27)

 − Measure = 2

Recall · P recision

Recall + P recision

(28)

It must be noted that, since the aim of our work is global mo-

ion detection, the above performance measures have been com-

uted at the frame level and not at the pixel level. To this end, a

rame is declared to contain movement when the fraction of pix-

ls which belong to foreground objects is higher than

2
192 , which

s the same criterion considered in Section 4 .

The quantitative performance results are reported as follows.

ables 3 and 4 present the frames per second and the number of

xecuted instructions per frame of each tested method over the

valuated videos, respectively. It can be seen that the pixel-level

ethods (last five columns) do not attain real time operation, even

f they are executed on a standard PC. On the other hand, the Ar-

uino based approaches can run in real time, including our pro-

osal. Each Arduino based approach has the same computational

equirements for all the videos, because these methods execute

he same instructions for a given frame size, independently of the

ontent of the video. Moreover, under Arduino there is no virtual

emory or any other source of variability in the running time.

The recall, the specificity, the false positive rate (FPR) and the

alse negative rate (FNR) of the competing methods over the tested

equences are reported in Tables 5–8 , respectively. Finally, the
Table 3

Maximum frames per second of the competing methods over the tes

FrameDiff run on the Arduino DUE in real time, while the rest of the

are highlighted in bold .

Video SOM Ilu FrameDiff MFBM Gr

Office 56 .0036 347 .2222 62 .7510 8 .7140 18

PETS2006 56 .0036 347 .2222 62 .7510 2 .0630 4

Highway 56 .0036 347 .2222 62 .7510 9 .4857 18

Pedestrians 56 .0036 347 .2222 62 .7510 9 .8522 20

Sofa 56 .0036 347 .2222 62 .7510 10 .5132 20

Canoe 56 .0036 347 .2222 62 .7510 9 .3113 20

Fountain02 56 .0036 347 .2222 62 .7510 6 .3019 12

Fall 56 .0036 347 .2222 62 .7510 2 .5021 4

Average 56 .0036 347 .2222 62 .7510 7 .3429 14
robability of bad classification (PBC), the precision and the F-

easure of the tested methods over the performed sequences are

etailed in Tables 9–11 , respectively. From all these selected mea-

ures, the F-measure can be regarded as a reliable overall evalua-

ion of a method, as it characterizes the performance of a classifier

n the precision-detection rate space (Bouwmans, 2014a). As it can

e observed our proposal obtains the best average result in terms

f F-measure. As seen in Tables 7 and 8 , Ilu attains a low rate of

alse positives, but it has a large rate of false negatives, and this

mbalance hampers its performance (Table 11). On the other hand,

rameDiff has a very low rate of false negatives, but it has a very

igh rate of false positives, and again this produces a rather bad

verall performance.

Another aspect to be pointed out is that the selected pixel

ased methods from the literature (the last five columns of

ables 3–11) obtain similar results in most cases. This happens be-

ause these methods are designed to detect foreground objects at

he pixel level, which is different from motion detection at the

rame level. Motion detection at the frame level is a simpler prob-

em, so pixel level accuracy is not necessary to attain a good per-

ormance. We must also mention that the inherent characteristics

f each tested video have a high impact in the outcomes.

In order to have a more accurate assessment of the quantita-

ive performance of the approaches, Fig. 7 shows the receiver op-

rating curves (ROC) for the proposed system (a), the traditional

nd frame difference detectors running on Arduino (b-c) and the

ompeting methods running on a standard PC (d–g) for all videos.

he plots represent the dependence between the true positive rate

TPR, higher is better), also known as recall or sensitivity, and the

alse positive rate (FPR, lower is better), also known as fall-out, at

arious threshold settings. Please note that a perfect classification

ould correspond to the upper left corner of the plots. Also, we

ave calculated the Area Under Curve (AUC, higher is better) as

 single measure of the quality of a binary classifier, since it is

he probability that a randomly selected positive case will receive

 higher score than a randomly selected negative case. Our SOM

ased approach consistently attains much better results than the

ther Arduino based detectors, while its performance is similar to

hose of the PC based detectors.

Finally, from a qualitative point of view, Figs. 8 and 9 depict the

etection decisions for each competing method in several frames

f a sequence for the “Pedestrians” and “Sofa” videos, respectively.

he first row shows five frames of the real sequence captured by

he video camera, and the second row shows the detection deci-

ion for each block in these five frames for the proposed system

ccording to Eq. (14) . The third and row show the decision for a

raditional sensor running on the Arduino board, taking into ac-

ount that a whole frame in black means no motion detected (neg-

tive class) and a whole frame in white means motion detected

positive class). The fourth row corresponds to the frame difference

lgorithm running on the Arduino board. The remaining rows rep-
ted sequences (higher is better). Please note that SOM, Ilu and

 methods run on a standard PC. Best results of each sequence

imsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

 .0037 12 .6464 19 .0158 32 .3135

 .1255 2 .7120 5 .9493 5 .9392

 .7410 14 .2416 20 .0945 20 .0905

 .4964 12 .6251 28 .9922 30 .7618

 .2561 15 .3184 25 .0976 25 .4189

 .1149 14 .3254 30 .5428 31 .4138

 .9921 8 .8917 14 .5588 22 .4193

 .4226 3 .7189 7 .2360 6 .7668

 .8940 10 .5599 18 .9359 21 .8905

484 F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489

Table 4

Number of executed instructions per frame of the competing methods over the tested sequences (in millions, lower is better). Please

note that SOM, Ilu and FrameDiff run on the Arduino DUE in real time, while the rest of the methods run on a standard PC. Best results

of each sequence are highlighted in bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 1 .0483 0 .0873 0 .8235 294 .1926 192 .4942 299 .4168 125 .5993 111 .4860

PETS2006 1 .0483 0 .0873 0 .8235 1 ,341.5196 1 ,023.0307 1 ,478.7173 600 .2945 540 .3325

Highway 1 .0483 0 .0873 0 .8235 263 .7813 199 .5114 266 .5234 112 .5730 103 .7825

Pedestrians 1 .0483 0 .0873 0 .8235 296 .0330 187 .0545 307 .9948 125 .8543 112 .0348

Sofa 1 .0483 0 .0873 0 .8235 263 .0099 185 .8824 269 .5781 111 .4275 100 .1956

Canoe 1 .0483 0 .0873 0 .8235 265 .6015 190 .8002 260 .7247 113 .1358 106 .8618

Fountain02 1 .0483 0 .0873 0 .8235 419 .9596 305 .8514 439 .8973 179 .6190 159 .1311

Fall 1 .0483 0 .0873 0 .8235 1 ,158.3201 975 .5466 1 ,102.7957 492 .2767 468 .2882

Average 1 .0483 0 .0873 0 .8235 537 .8022 407 .5214 553 .2060 232 .5975 212 .7641

Table 5

Recall of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted in

bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 0 .8544 0 .2088 0 .9905 0 .9905 0 .9845 0 .9928 0 .9940 0 .9606

PETS2006 0 .4715 0 .0976 0 .9009 0 .7293 0 .7955 0 .7789 0 .4060 0 .4632

Highway 0 .9304 0 .4485 0 .9982 0 .8670 0 .9789 1 .0 0 0 0 0 .9700 0 .9665

Pedestrians 0 .9540 0 .1206 0 .9889 0 .9222 0 .9587 0 .9683 0 .9206 0 .9413

Sofa 0 .9150 0 .4511 0 .9985 0 .9872 0 .9737 0 .9962 0 .9714 0 .9714

Canoe 0 .9637 0 .3387 1 .0 0 0 0 0 .9032 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Fountain02 0 .7192 0 .0 0 0 0 0 .9557 0 .5616 0 .8177 1 .0 0 0 0 0 .6305 0 .5123

Fall 0 .6371 0 .5747 0 .9966 0 .7323 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Average 0 .8057 0 .2800 0 .9787 0 .8367 0 .9386 0 .9670 0 .8616 0 .8519

Table 6

Specificity of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted

in bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 0 .5810 0 .9866 0 .0126 0 .0140 0 .1326 0 .0140 0 .0140 0 .1732

PETS2006 0 .9944 0 .9983 0 .3952 0 .9915 0 .9786 0 .9957 1 .0 0 0 0 1 .0 0 0 0

Highway 0 .9753 1 .0 0 0 0 0 .0229 1 .0 0 0 0 0 .9681 0 .3617 0 .9787 0 .9787

Pedestrians 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Sofa 0 .8309 0 .8138 0 .0024 0 .4707 0 .6772 0 .1511 0 .6413 0 .6402

Canoe 1 .0 0 0 0 0 .9266 0 .0 0 0 0 1 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Fountain02 0 .9500 0 .9951 0 .0206 1 .0 0 0 0 0 .9384 0 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Fall 0 .5834 0 .4162 0 .0022 0 .8870 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Average 0 .8644 0 .8921 0 .1827 0 .7954 0 .5869 0 .3153 0 .5793 0 .5990

Table 7

False positive rate (FPR) of the competing methods over the tested sequences (lower is better). Best results of each sequence are

highlighted in bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 0 .4190 0 .0134 0 .9874 0 .9860 0 .8674 0 .9860 0 .9860 0 .8268

PETS2006 0 .0056 0 .0016 0 .6048 0 .0085 0 .0214 0 .0043 0 .0 0 0 0 0 .0 0 0 0

Highway 0 .0247 0 .0 0 0 0 0 .9770 0 .0 0 0 0 0 .0319 0 .6383 0 .0213 0 .0213

Pedestrians 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Sofa 0 .1691 0 .1862 0 .9976 0 .5293 0 .3228 0 .8489 0 .3587 0 .3598

Canoe 0 .0 0 0 0 0 .0734 1 .0 0 0 0 0 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Fountain02 0 .0500 0 .0049 0 .9794 0 .0 0 0 0 0 .0616 1 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Fall 0 .4166 0 .5838 0 .9978 0 .1130 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Average 0 .1356 0 .1079 0 .8180 0 .2046 0 .4131 0 .6847 0 .4207 0 .4010

Table 8

False negative rate (FNR) of the competing methods over the tested sequences (lower is better). Best results of each sequence

are highlighted in bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 0 .1456 0 .7912 0 .0095 0 .0095 0 .0155 0 .0072 0 .0060 0 .0394

PETS2006 0 .5285 0 .9024 0 .0991 0 .2707 0 .2045 0 .2211 0 .5940 0 .5368

Highway 0 .0696 0 .5515 0 .0018 0 .1330 0 .0211 0 .0 0 0 0 0 .0300 0 .0335

Pedestrians 0 .0460 0 .8794 0 .0111 0 .0778 0 .0413 0 .0317 0 .0794 0 .0587

Sofa 0 .0849 0 .5489 0 .0015 0 .0128 0 .0263 0 .0038 0 .0286 0 .0286

Canoe 0 .0362 0 .6613 0 .0 0 0 0 0 .0968 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Fountain02 0 .2808 1 .0 0 0 0 0 .0443 0 .4384 0 .1823 0 .0 0 0 0 0 .3695 0 .4877

Fall 0 .3629 0 .4253 0 .0033 0 .2677 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0 0 .0 0 0 0

Average 0 .1944 0 .7198 0 .0213 0 .1633 0 .0614 0 .0330 0 .1384 0 .1481

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 485

Fig. 7. ROC curves corresponding to the eight analyzed benchmark videos for the different tested methods. First row show the proposed system (a) and the traditional

detector (b). FrameDiff (c) and MFBM (d) are in the second row. Third row exhibits the ROC curves for the GrimsonGMM (e) and MaddalenaSOBS (f) methods. Finally the

fourth and last row presents the WrenGA (g) and ZivkovicGMM (h). Their corresponding Areas Under Curve (AUC, higher is better) are shown in the legends inside the plots.

486 F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489

Table 9

Probability of bad classification (PBC) of the competing methods over the tested sequences (lower is better). Best results of each

sequence are highlighted in bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 20 .04 44 .5 43 .11 43 .2725 38 .4719 43 .1373 43 .0696 38 .0663

PETS2006 34 .71 47 .48 20 .05 20 .2447 15 .6841 16 .4627 43 .9377 39 .7108

Highway 6 .66 35 .55 7 .12 12 .2864 2 .1969 4 .8820 2 .9292 3 .2547

Pedestrians 4 .401 46 .79 1 .099 6 .1404 3 .2581 2 .5063 6 .2657 4 .6366

Sofa 9 .28 40 .28 38 .05 22 .4100 14 .7621 34 .9489 16 .3628 16 .4073

Canoe 3 .502 41 .65 31 .49 6 .1856 36 .0825 36 .0825 36 .0825 36 .0825

Fountain02 22 .81 50 .12 68 .23 8 .9178 8 .6172 79 .6593 7 .5150 9 .9198

Fall 38 .35 50 .54 60 .54 17 .4116 60 .5070 60 .5070 60 .5070 60 .5070

Average 17 .8062 44 .6138 33 .7111 17 .1086 22 .4475 34 .7732 27 .0837 26 .0731

Table 10

Precision of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted in

bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 0 .8905 0 .9511 0 .5697 0 .5677 0 .5974 0 .5683 0 .5686 0 .6030

PETS2006 0 .9937 0 .9848 0 .8559 0 .9959 0 .9906 0 .9981 1 .0 0 0 0 1 .0 0 0 0

Highway 0 .9981 1 .0 0 0 0 0 .930 1 .0 0 0 0 0 .9973 0 .9498 0 .9982 0 .9982

Pedestrians 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0

Sofa 0 .9815 0 .7823 0 .6197 0 .7293 0 .8133 0 .6290 0 .7964 0 .7959

Canoe 1 .0 0 0 0 0 .866 0 .6851 1 .0 0 0 0 0 .6392 0 .6392 0 .6392 0 .6392

Fountain02 0 .9799 0 .0 0 0 0 0 .3124 1 .0 0 0 0 0 .7721 0 .2034 1 .0 0 0 0 1 .0 0 0 0

Fall 0 .7109 0 .4906 0 .3943 0 .8088 0 .3949 0 .3949 0 .3949 0 .3949

Average 0 .9443 0 .7593 0 .6709 0 .8877 0 .7756 0 .6728 0 .7997 0 .8039

Table 11

F-measure of the competing methods over the tested sequences (higher is better). Best results of each sequence are highlighted

in bold .

Video SOM Ilu FrameDiff MFBM GrimsonGMM MaddalenaSOBS WrenGA ZivkovicGMM

Office 0 .8721 0 .3425 0 .7233 0 .7217 0 .7436 0 .7228 0 .7234 0 .7409

PETS2006 0 .6395 0 .1776 0 .8778 0 .8420 0 .8824 0 .8750 0 .5775 0 .6331

Highway 0 .9631 0 .6192 0 .9630 0 .9287 0 .9880 0 .9742 0 .9839 0 .9821

Pedestrians 0 .9764 0 .2153 0 .9944 0 .9595 0 .9789 0 .9839 0 .9587 0 .9697

Sofa 0 .9471 0 .5722 0 .7648 0 .8389 0 .8863 0 .7711 0 .8753 0 .8750

Canoe 0 .9815 0 .487 0 .8131 0 .9492 0 .7799 0 .7799 0 .7799 0 .7799

Fountain02 0 .8295 0 .0 0 0 0 0 .4709 0 .7192 0 .7943 0 .3381 0 .7734 0 .6775

Fall 0 .672 0 .5293 0 .5651 0 .7686 0 .5662 0 .5662 0 .5662 0 .5662

Average 0 .8601 0 .3679 0 .7716 0 .8410 0 .8274 0 .7514 0 .7798 0 .7781

a

c

t

i

l

d

t

d

c

t

h

r

d

t

a

d

s

t

f
resent the output of the pixel level algorithms running on a stan-

dard PC. As seen, our method outperforms the methods running on

the Arduino board, while it is still competitive with respect to the

PC based ones. This confirms the previously reported quantitative

results.

6. Conclusions

The SOM algorithm has been successfully implemented in a mi-

crocontroller DUE board. The SOM has been adapted to overcome

the limitations imposed by the limited resources of memory and

computing speed of the hardware device. The correct implementa-

tion of the algorithm has been verified, and it has been found that

as the precision is increased to avoid rounding effects, the micro-

controller needs more memory size. Furthermore, a detailed study

of the differences of using floating point or fixed precision rep-

resentations has been carried out, concluding that better results

can be obtained with an 32-bit precision fixed point representation

leading to computation times up 10 times faster in the largest neu-

ral architecture (more neurons) than using the standard floating

point representation. Also, the change in the data type representa-

tion paradigm allows using SOM architectures with more neurons
nd processing images with more resolution, obtaining a more pre-

ise block based motion detection in the proposed system.

The implemented SOM algorithm has been employed as a mo-

ion detector obtaining a cheap and versatile system with which

t is possible to carry out efficient video surveillance. The whole

earning process has been implemented in the chip, whereby the

ecision-making procedure of the detector is adapted in real time

o the observed changes in the scene. This way decision errors pro-

uced by the evolution in the captured environment are signifi-

antly reduced.

The efficiency of the proposed system is significantly higher

han that of the traditional motion detection method. It has a

igher success rate with less false positives. False positives can be

educed almost to 0 by tuning the threshold, due to the favorable

ependency between the true and false positive rates reported by

he ROC curves.

As an overall conclusion, we have shown the suitability of SOM

lgorithm for its application in a motion detection using an Ar-

uino DUE microcontroller. Therefore the present study demon-

trates the potential of the proposed methodology for its applica-

ion to inexpensive systems in real scenarios. The detection per-

ormance can be further enhanced by employing more powerful

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 487

Fig. 8. Motion detection examples for the Pedestrians video. First row: raw RGB video captured by the video camera. Remaining rows: detection decision by the proposed

system (SOM), the traditional detector (Ilu), FrameDiff, MFBM, GrimsonGMM, MaddalenaSOBS, WrenGA and ZivkovicGMM, respectively.

c

b

A

a

T

o

t

T

S

T

t

r

a

s

c

omputing resources and ad hoc devices than the microcontroller

oard considered here.

cknowledgments

This work is partially supported by the Ministry of Economy

nd Competitiveness of Spain under grants TIN2010-16556 and

IN2014-53465-R, project name Video surveillance by active search

f anomalous events. It is also partially supported by the Au-
onomous Government of Andalusia (Spain) under projects P10-

IC-5770, P08-TIC-04026, TIC-6213, project name Development of

elf-Organizing Neural Networks for Information Technologies, and

IC-657, project name Self-organizing systems and robust estima-

ors for video surveillance. All of them include funds from the Eu-

opean Regional Development Fund (ERDF). The authors thankfully

cknowledge the computer resources, technical expertise and as-

istance provided by the SCBI (Supercomputing and Bioinformatics)

enter of the University of Málaga.

488 F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489

Fig. 9. Motion detection examples for the Sofa video. First row: raw RGB video captured by the video camera. Remaining rows: detection decision by the proposed system

(SOM), the traditional detector (Ilu), FrameDiff, MFBM, GrimsonGMM, MaddalenaSOBS, WrenGA and ZivkovicGMM, respectively.

C

C

D

D

D

D
References

Adnan, L. , Yussoff, Y. , Johar, H. , & Baki, S. (2015). Energy-saving street lighting sys-

tem based on the waspmote mote. Jurnal Teknologi, 76 (4), 55–58 .
Aleksendri ́c, D. , Jakovljevi ́c, I. , & Irovi ́c, V. (2012). Intelligent control of braking pro-

cess. Expert Systems with Applications, 39 (14) .
Atmel, DataSheet Atmel SAM3X8E ARM Cortex-M3 CPU. http://www.atmel.com/

Images/doc11057.pdf .
Beaton, D. , Valova, I. , & MacLean, D. (2010). CQoCO: A measure for comparative

quality of coverage and organization for self-organizing maps. Neurocomputing,

73 (10–12), 2147–2159 .
Bermejo, S. , & Cabestany, J. (2002). The effect of finite sample size on on-line

k-means. Neurocomputing, 48 (1), 511–539 .
Bhandarkar, S. , Koh, J. , & Suk, M. (1997). Multiscale image segmentation using a

hierarchical self-organizing map. Neurocomputing, 14 (3), 241–272 .
Bouwmans, T. (2014a). Background modeling and foreground detection for video

surveillance (pp. 1–54). Chapman and Hall/CRC .

Bouwmans, T. (2014b). Traditional and recent approaches in background model-
ing for foreground detection: An overview. Computer Science Review, 11–12 , 31–
66 .
asanova, C. , Franco, A. , Lumini, A. , & Maio, D. (2013). SmartVisionApp: A frame-

work for computer vision applications on mobile devices. Expert Systems with
Applications, 40 (15), 5884–5894 .

ela, A. , Yebes, J. J. , Arroyo, R. , Bergasa, L. M. , Barea, R. , & López, E. (2013). Com-
plete low-cost implementation of a teleoperated control system for a humanoid

robot. Sensors, 13 (2), 1385–1401 .

Chang, C.-H. , Pengfei, X. , Xiao, R. , & Srikanthan, T. (2005). New adaptive color quan-
tization method based on self-organizing maps. IEEE Transactions on Neural Net-

works, 16 (1), 237–249 .
ekker, A. (1994). Kohonen neural networks for optimal color quantization. Network,

5 , 351–367 .
lugosz, R. , Talaska, T. , Pedrycz, W. , & Wojtyna, R. (2010). Realization of the con-

science mechanism in CMOS implementation of winner-takes-all self-organizing

neural networks. IEEE Transactions on Neural Networks, 21 (6), 961–971 .
obrzynski, M. , Pericet-Camara, R. , & Floreano, D. (2012). Vision tape-a flexible com-

pound vision sensor for motion detection and proximity estimation. IEEE Sensors
Journal, 12 (5), 1131–1139 .

ong, G. , & Xie, M. (2005). Color clustering and learning for image segmentation
based on neural networks. IEEE Transactions on Neural Networks, 16 (4), 925–

936 .

http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0002
http://www.atmel.com/Images/doc11057.pdf
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0014

F. Ortega-Zamorano et al. / Expert Systems With Applications 64 (2016) 476–489 489

F

G

G

H

K

K

K

K

K

L

L

L

L

M

M

M

M

M

N

O

O

O

O

O

P

P

P

P

P

S

S

W

W

W

X

Y

Y

Z

Z

ung, V. , Bosch, J. , Roberts, S. , & Kleissl, J. (2014). Cloud shadow speed sensor. At-
mospheric Measurement Techniques, 7 (6), 1693–1700 .

arcía, F. , García, J. , Ponz, A. , de la Escalera, A. , & Armingol, J. M. (2014). Context
aided pedestrian detection for danger estimation based on laser scanner and

computer vision. Expert Systems with Applications, 41 (15), 6646–6661 .
ómez, M. J. , García, F. , Martín, D. , de la Escalera, A. , & Armingol, J. M. (2015). In-

telligent surveillance of indoor environments based on computer vision and 3D
point cloud fusion. Expert Systems with Applications, 42 (21), 8156–8171 .

su, A. , & Halgamuge, S. (2003). Enhancement of topology preservation and hierar-

chical dynamic self-organising maps for data visualisation. International Journal
of Approximate Reasoning, 32 (2–3), 259–279 .

aski, S. , Kangas, J. , & Kohonen, T. (1998). Bibliography of self-organizing map (SOM)
papers: 1981–1997. Neural Computing Surveys, 1 , 102–350 .

ohonen, T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43 (1), 59–69 .

ohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37 ,

52–65 .
opetz, H. (1997). Real-time systems: Design principles for distributed embedded appli-

cations (1st). Norwell, MA, USA: Kluwer Academic Publishers .
ornuta, J. A. , Nipper, M. E. , & Brandon Dixon, J. (2012). Low-cost microcontroller

platform for studying lymphatic biomechanics in vitro. Journal of Biomechanics,
46 (1), 183–186 .

acerda, E. B. , & Mello, C. A. (2013). Segmentation of connected handwritten dig-

its using self-organizing maps. Expert Systems with Applications, 40 (15), 5867–
5877 .

ian, K.-Y. , Hsiao, S.-J. , & Sung, W.-T. (2013). Intelligent multi-sensor control system
based on innovative technology integration via ZigBee and Wi-Fi networks. Jour-

nal of Network and Computer Applications, 36 (2), 756–767 .
ópez-Rubio, E. , Luque-Baena, R. M. , & Domínguez, E. (2011). Foreground detection

in video sequences with probabilistic self-organizing maps. International Journal

of Neural Systems, 21 (3), 225–246 .
ópez-Rubio, F. J. , & López-Rubio, E. (2015). Features for stochastic approxima-

tion based foreground detection. Computer Vision and Image Understanding, 133 ,
30–50 .

addalena, L. , & Petrosino, A. (2008a). A self-organizing approach to background
subtraction for visual surveillance applications. IEEE Transactions on Image Pro-

cessing, 17 (7), 1168–1177 .

addalena, L. , & Petrosino, A. (2008b). A self-organizing approach to background
subtraction for visual surveillance applications. IEEE Transactions on Image Pro-

cessing, 17 (7), 1168–1177 .
ahmoud, S. , Lotfi, A. , & Langensiepen, C. (2013). Behavioural pattern identifica-

tion and prediction in intelligent environments. Applied Soft Computing, 13 (4),
1813–1822 .

amdoohi, G. , Fauzi Abas, A. , Samsudin, K. , Ibrahim, N. H. , Hidayat, A. , &

Mahdi, M. A. (2012). Implementation of genetic algorithm in an embedded mi-
crocontroller-based polarization control system. Engineering Application of Artifi-

cial Intelligence, 25 (4), 869–873 .
arwedel, P. (2006). Embedded system design . Secaucus, NJ, USA: Springer-Verlag

New York, Inc. .
aghiyev, E. , Gillott, M. , & Wilson, R. (2014). Three unobtrusive domestic occupancy

measurement technologies under qualitative review. Energy and Buildings, 69 ,
507–514 .

ja, M. , Kaski, S. , & Kohonen, T. (2003). Bibliography of self-organizing map (SOM)

papers: 1998–2001 addendum. Neural Computing Surveys, 3 (1), 1–156 .
rtega-Zamorano, F. , Jerez, J. , Juarez, G. , Perez, J. , & Franco, L. (2014). High preci-
sion FPGA implementation of neural network activation functions. In 2014 IEEE

symposium on intelligent embedded systems (IES) (pp. 55–60) .
rtega-Zamorano, F. , Jerez, J. , Urda Munoz, D. , Luque-Baena, R. , & Franco, L. (2015).

Efficient implementation of the backpropagation algorithm in FPGAs and micro-
controllers. IEEE Transactions on Neural Networks and Learning Systems, PP (99) .

1–1
rtega-Zamorano, F. , Jerez, J. M. , Subirats, J. L. , Molina, I. , & Franco, L. (2014). Smart

sensor/actuator node reprogramming in changing environments using a neural

network model. Engineering Applications of Artificial Intelligence, 30 (0), 179–188 .
xer, J. , & Blemings, H. (2009). Practical arduino: Cool projects for open source hard-

ware . Berkely, CA, USA: Apress .
alomo, E. J. , & Domínguez, E. (2014). Hierarchical color quantization based on self-

-organization. Journal of Mathematical Imaging and Vision, 49 (1), 1–19 .
apadimitriou, K. , Dollas, A. , & Sotiropoulos, S. (2006). Low-cost real-time 2-D mo-

tion detection based on reconfigurable computing. IEEE Transactions on Instru-

mentation and Measurement, 55 (6), 2234–2243 .
apamarkos, N. (1999). Color reduction using local features and a SOFM neural net-

work. Journal of Imaging Systems and Technology, 10 (5), 404–409 .
ark, H. , Park, J. , Kim, H. , Jun, J. , Son, S. H. , & Park, T. (2015). ReLiSCE: Utilizing

resource-limited sensors for office activity context extraction. IEEE Transactions
on Systems, Man, and Cybernetics, 45 (8), 1151–1164 .

ulli, K. , Baksheev, A. , Kornyakov, K. , & Eruhimov, V. (2012). Real-time computer

vision with OpenCV. Communications of the ACM, 55 (6), 61–69 .
engupta, S. , Das, S. , Nasir, M. , & Panigrahi, B. K. (2013). Multi-objective node de-

ployment in WSNs: In search of an optimal trade-off among coverage, lifetime,
energy consumption, and connectivity.. Engineering Applications of Artificial In-

telligence, 26 (1), 405–416 .
tauffer, C. , & Grimson, W. (1999). Adaptive background mixture models for real–

time tracking. In Proceedings of theIEEE international conference on computer vi-

sion and pattern recognition (pp. 246–252) .
ang, J. , Xu, W. , & Gong, Y. (2010). Real-time driving danger-level prediction. Engi-

neering Applications of Artificial Intelligence, 23 (8), 1247–1254 .
ang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., & Ishwar, P. (2014). CDnet

2014: An expanded change detection benchmark dataset. In Computer vision and
pattern recognition workshops (cvprw), 2014 ieee conference on (pp. 393–400).

doi: 10.1109/CVPRW.2014.126 .

ren, C. , Azarbayejani, A. , Darrell, T. , & Pentl, A. (1997). Pfinder: Real-time track-
ing of the human body. IEEE Trans. on Pattern Analysis and Machine Intelligence,

19 (7), 780–785 .
iao, Y. , Leung, C.-S. , Lam, P.-M. , & Ho, T.-Y. (2012). Self-organizing map-based color

palette for high-dynamic range texture compression. Neural Computing and Ap-
plications, 21 (4), 639–647 .

ick, J. , Mukherjee, B. , & Ghosal, D. (2008). Wireless sensor network survey. Com-

puter Networks, 52 (12), 2292–2330 .
in, H. (2008). The self-organizing maps: Background, theories, extensions and ap-

plications. Studies in Computational Intelligence, 115 , 715–762 .
ivkovic, Z. (2004). Improved adaptive gaussian mixture model for background sub-

traction. In Proceedings of the pattern recognition, 17th international conference on
(icpr’04) volume 2 - volume 02 . In ICPR ’04 (pp. 28–31). Washington, DC, USA:

IEEE Computer Society .
ivkovic, Z. , & van der Heijden, F. (2006). Efficient adaptive density estimation per

image pixel for the task of background subtraction. Pattern Recognition Letters,

27 (7), 773–780 .

http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0038
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0044
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0046
http://dx.doi.org/10.1109/CVPRW.2014.126
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0048
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0049
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0050
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0051
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0052
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053
http://refhub.elsevier.com/S0957-4174(16)30403-1/sbref0053

	Smart motion detection sensor based on video processing using self-organizing maps
	1 Introduction
	2 Microcontroller (µC) system description
	2.1 The Arduino board
	2.2 Initialization and execution phases of the algorithm
	2.3 Data type representation

	3 Motion detection model
	3.1 Frame subdivision
	3.2 Self-organizing map
	3.3 Anomaly analysis
	3.4 SOM model storage
	3.5 Computation of the exponential function
	3.6 Fixed point vs floating point representation comparison

	4 Application
	5 Results
	6 Conclusions
	 Acknowledgments
	 References

