Neural Processing Letters (2019) 50:121-147
https://doi.org/10.1007/5s11063-018-09974-4

@ CrossMark

Piecewise Polynomial Activation Functions for Feedforward
Neural Networks

Ezequiel Lépez-Rubio’® - Francisco Ortega-Zamorano' - Enrique Dominguez'® -
José Mufioz-Pérez'

Published online: 10 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Since the origins of artificial neural network research, many models of feedforward networks
have been proposed. This paper presents an algorithm which adapts the shape of the activation
function to the training data, so that it is learned along with the connection weights. The
activation function is interpreted as a piecewise polynomial approximation to the distribution
function of the argument of the activation function. An online learning procedure is given,
and it is formally proved that it makes the training error decrease or stay the same except for
extreme cases. Moreover, the model is computationally simpler than standard feedforward
networks, so that it is suitable for implementation on FPGAs and microcontrollers. However,
our present proposal is limited to two-layer, one-output-neuron architectures due to the lack
of differentiability of the learned activation functions with respect to the node locations.
Experimental results are provided, which show the performance of the proposal algorithm
for classification and regression applications.

Keywords Activation functions - Feedforward neural networks - Supervised learning -
Regression - Classification
1 Introduction

Nonlinear activation functions are required to introduce nonlinearity in neural networks.
The reason is that any composition of linear functions is also linear. The nonlinearity of a

B Ezequiel Lopez-Rubio
ezeqlr@lcc.uma.es

Francisco Ortega-Zamorano
fortega@Icc.uma.es

Enrique Dominguez
enriqued @lcc.uma.es
http://www.lcc.uma.es/~enriqued

José Mufioz-Pérez
munozp @lcc.uma.es

Department of Computer Languages and Computer Science, University of Mdlaga, Bulevar Louis
Pasteur, 35, 29071 Malaga, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-018-09974-4&domain=pdf
http://orcid.org/0000-0001-8231-5687
http://orcid.org/0000-0002-2232-4562

122 E. Lépez-Rubio et al.

neural network, i.e., its ability to represent nonlinear functions, is what makes them powerful.
The standard model of feedforward neural networks was established in [26]. These are the
multilayer perceptrons with learning by error backpropagation. They require differentiable
activation functions, such as the logistic function or the hyperbolic tangent. In most cases,
neural network models employ parametric models for the activation function. This assumes
that the shape of the function is perfectly known, except for some tunable parameter, as in
the cases of the logistic and hyperbolic tangent functions.

Sometimes the activation function is chosen to be bounded in order to bound the range of
the output of the processing unit (artificial neuron). For this reason, it is sometimes referred
to as the squashing function [17]. Generally speaking, the output range is either (0, 1) or
(—1, 1). Monotone non-decreasing activation functions are selected for this purpose. The
most popular choices are the logistic function [34], the hyperbolic tangent function and its
generalization [8] or sigmoid functions [2,8—10]. All of them have little flexibility, with at
most a shape parameter and a location parameter that can be adjusted during the training
process [8]. Other proposed adaptive functions are based on additive spline models [32],
Gaussian mixtures models [5,6] or linear regressions [11]. But these trainable activation
functions proposed in the literature assume a parametric model, i.e., no matter how big the
training set is, the number of trainable parameters of the activation function is fixed and small.

In this paper, a new feedforward artificial neural network model with one output neuron
and one hidden layer is proposed. We call it the piecewise polynomial activation function
neural network (PPAFNN). It features piecewise polynomial, monotone non-decreasing acti-
vation functions which approximate the distribution functions of the synaptic potentials. Their
shapes are adapted to the training data in a nonparametric fashion, so that a different acti-
vation function is learned for each neuron. Therefore, the number of trainable parameters
of each activation function can be enlarged for big training set sizes. Our proposal is based
on the estimation of some quantiles of the synaptic potential of each neuron, which are
associated with the nodes of the piecewise activation function. In this way, the activation
function is adapted to approximate the distribution function of the synaptic potential. In
doing so, each neuron captures the specificity of the distribution of the incoming synaptic
potentials in a more detailed way than the previously employed parametric activation func-
tions. For example, if most of the synaptic potentials fall into a flat region of a parametric
activation function, then the neuron outputs roughly the same value for most inputs, i.e.,
the neuron does not carry out any useful computation. Our approach tries to avoid this sit-
uation by adapting the nodes of the activation function to the distribution of the synaptic
potential, so that the neuron output values span the full range of the activation function.
However, our approach is limited to small architectures with two layers and one output neu-
ron. This is because the chain rule cannot be employed due to the lack of differentiability
of the piecewise polynomial activation functions that we employ, with respect to the node
locations, being this work a preliminary research of neural networks with this type of acti-
vation function. The main advantage of our approach, as compared to previous proposals of
learnable activation functions, is that our approach does not require the calculation of any
transcendental function. Therefore, it is particularly suitable for its implementation on micro-
controllers and other low-cost devices which do not implement transcendental functions on
hardware.

The structure of this paper is as follows: First, a review of related works is carried out
in Sect. 2. After that, the proposed method is presented in Sect. 3. Experimental results
are reported in Sect. 4. Finally, Sects. 5 and 6 are devoted to discussion and conclusions,
respectively.

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 123

2 Previous Works

Next, we review the literature on activation functions for feedforward neural networks. One
of the first proposals to adjust the activation function to the data is that of the generalized
hyperbolic tangent function [8]:

_a (1 —exp (—bu))

g = 1 + exp (—bu) M

where a and b represent the maximum value and the slope of g, respectively. This is a
parametric model for the activation function, i.e., only a limited set of parameters can be
adjusted (two in this case). Hence, the flexibility of the shape of g is small.
The amplitude of the activation function can be learned [30], so that the A parameter is
adjusted in:
g (W) = g () 2)

where g () does not depend on A. Even if the nonlinearity g (1) can be chosen at will, the
number of trainable parameters is even smaller, since only one parameter is adjusted, which
plays a role similar to that of @ in (1).

The p-recursive piecewise polynomial sigmoid activation functions [29] aim to approxi-
mate the hyperbolic tangent with a lower computational effort. Hence, they stick to the shape
of the hyperbolic tangent, with no adaptation to the data. The corresponding equation is:

g(u):l—max{O, (1—’%1|u|> } 3)

where p and n are parameters.

Artificial neural network groups [35] are employed to combine several standard neural
networks to yield approximators of piecewise continuous functions. The combined neural
networks have standard activation functions, while the combination operators produce dis-
continuous outputs. The specific goal of this model is to estimate discontinuous functions.
This is not our aim, since we intend to solve the same kind of problems as standard feedfor-
ward neural networks.

Piecewise linear activation functions have been considered in [1,19,20], but they have
important shortcomings. First of all, they are not constrained to be monotonic. This means
that their output might be similar for most of the input patterns, which would imply that the
neuron does not make any useful calculation. Moreover, the functions in [1] must behave like
the identity function for very large or very small inputs, so that their output is not bounded.
These facts imply that the classic result of [17] for monotonic, bounded activation functions
does not apply to them, so that their universality must be investigated. Nevertheless, it must
be noted that for specific non-monotonic activation functions, universality can be proved, as
seen in [7].

In fact, the idea of a monotonic piecewise polynomial activation function is not new.
The Vapnik—Chervonenkis (VC) dimension of such neural networks for binary classification
problems was studied in [3,27]. These theoretical works were aimed to estimate the com-
plexity of the classification problems that such networks could learn. Their motivation was
that it was easier to formally study the VC dimension of piecewise polynomial activation
functions than standard sigmoid functions. Hence, there was no intention to adapt piecewise
polynomial functions to the data, but to use them as approximations to the standard sigmoid
functions.

@ Springer

124 E. Lépez-Rubio et al.

Recent theoretical and empirical work in statistical machine learning has demonstrated
the importance of learning algorithms for deep architectures. Moreover, the design of acti-
vation functions that enable fast training of accurate deep neural networks is an active area
of research. Promising results of the influence of rectified linear units [13,23] have been pre-
sented in comparison with logistic sigmoid activations on image classification tasks. Also,
Goodfellow et al. [14] introduced the maxout activation function, which can approximate
any convex function of the input. Springenberg and Riedmiller [28] extended the previous
work by replacing the max function with a probabilistic max function, and Gulcehre et al.
[15] provided an activation function with an L, norm. In all these cases, the proposed acti-
vation functions have no tunable parameters, so these approaches are far from our ideas.
An approach which is much closer to our purposes is given in [7]. The activation function
is learned along with the likelihood of the unit being relevant to the current test pattern. In
their case, a mix of supervised and unsupervised learning is employed, while our approach
employs supervised learning only.

Some variable activation functions for extreme learning machines (ELM) have been pro-
posed, although they are parametric approaches since the number of tunable parameters is
only two or three: three parameters (shift, position and mapping factor) in [33], which uses
particle swarm optimization to adjust them, and two parameters for the fuzzy activation
function in [18], which features compatible performance with the classical sigmoid function,
while it can be implemented in a simple way in hardware devices with reduced computational
capabilities.

3 Methodology

In this section, our proposal is presented. First, we specify the architecture of the network
(Sect. 3.1). Then the learning procedures for the connection weights and the activation func-
tion are detailed in Sect. 3.2. The termination condition is specified in Sect. 3.3. After that, the
training process is summarized in Algorithm 1. Finally, its universal approximation property
is formally established (Sect. 3.4).

3.1 Architecture

The activation function of a neuron in a feedforward neural network is a nonlinear function g
of the synaptic potential # € R. The output of a neural network with N inputs and L hidden
units is given by:

L
Y=Y waigi (ui) “

i=1

N
uj = Zw],i,_/’xj S

j=1

where x; € Ris the jth input to the network, wy; ; € R is the connection weight which
connects the jth input to the ith hidden neuron, g; is the activation function of the ith
hidden neuron, u; is the argument of the activation function of the ith hidden neuron, and
wy,; € R is the connection weight which connects the ith hidden neuron to the output. The
bias parameters are integrated into the connection weight set by assuming that the last input

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 125

is held constant, i.e., xy = —1. Please note that here networks with a single real output
are considered, although functions with more outputs can be approximated by using several
independent networks.

In this work, we propose to use monotonic piecewise polynomial activation functions for
feedforward neural networks. Each member of this class of functions has an associated set
of nodes, i.e., the points of the function domain where it switches from one polynomial to
another. Let m be the number of nodes, which must be finite, so that the set of nodes is given
by:

Q=1{q1.92, .-, qm} (6

so that the nodes are sorted in increasing order, and there are no repeated nodes:

qL<q<-<qm @)

In what follows, the number of nodes m is assumed to be a constant to be fixed before
training and it will also be assumed that all neurons have the same number of nodes. The
nodes should concentrate on those regions of the real line where synaptic potentials occur.
This way, the nodes and their associated trainable parameters will not be wasted on regions of
the real line where nothing happens during the operation of the neural network. With this in
mind, we propose that the nodes aim to approximate the m-quantiles of the synaptic potential
values u:

k
Plu=q)~— ®)

where P stands for probability. Please note that (8) does not prescribe a equidistant distribu-
tion of the nodes on the real line. It means that the probability that a synaptic potential falls
into one of the intervals between consecutive nodes is approximately the same for all these
intervals, while the sizes of the intervals themselves could be largely different. This way,
the density of the nodes on the real line will approximately match the probability density
of the synaptic potentials. Hence, the nodes are placed where the synaptic potentials occur
during the operation of the neural network. Under these conditions, the activation function
approximates the cumulative distribution function of the synaptic potential:

g () ~ P (u < i))

Moreover, we aim to approximate the support of the distribution of u with the interval
[q1, gm], so that:
Pu¢lq1.gml) =0 (10)

Please note that (8) and (10) are compatible, provided that P (u = ¢) is approximately %,
since the interval [q1, g,] in (10) is closed. In any case, both equations are approximations.
With (8) and (9) in mind, we define:

k
g (qr) = — (11)
m

It must be noted that (11) does not cause loss of generality in the set of functions that
g can approximate, because the number of nodes m can be increased as required by the
steepness of the function to be approximated. In this work, piecewise polynomials are used
for g. Mixtures of logistics could also be employed, but we proposed piecewise polynomials
because they are faster to evaluate in FPGAs and microcontrollers, which are extremely
slow in computing transcendental functions. Thereby, our choice reduces the computational
complexity in both the training and test phases for these hardwares. Also, it is interesting to

@ Springer

126 E. Lépez-Rubio et al.

note that (11) does not prescribe that the nodes g are equally spaced, but that the probability
that the synaptic potential u falls between any inter-node interval [g1, g,] is approximately
the same. The rationale behind approximating the distribution function is that the distribution
of the neuron output becomes approximately uniform on the output range, so that the amount
of information carried by the neuron output is maximized.

The specific form of g depends on the order of the polynomials to be used. For zeroth-order
polynomials, a step function is considered:

0 ifu <q
gow =15 ifg <u<qn (12)
1 ifu> gy
where k € {1, ..., m — 1}. For first-order polynomials, a piecewise linear function is con-
sidered:
0 ifu <q
_)k U—gi :
st =yt nga-m ifqr <u < qrtl (13)
1 ifu>gqp
where againk € {1,...,m — 1}.

It is also possible to employ piecewise third-degree interpolating polynomials [12], so
that the resulting activation function is monotonic and continuous, and its first derivative is
also continuous. Piecewise quadratic polynomials are not considered because they are more
complex to find and evaluate than linear ones, and they have discontinuous first derivatives
unlike cubic ones, so they are not advantageous.

The expression for the third-degree case g3 (1) varies depending on the particular inter-
polating piecewise cubic polynomial which is chosen. In particular, if natural splines are
chosen, i.e., the second derivatives are null at u = ¢g; and u = ¢, then it reads as follows:

0 ifu <q
g) =118 ifg<u<qgrq (14)

1 ifu>qp

where
S = 5 = g + 2 (g —)
6hy 6hy
k+1 tes1hi k th
- - K - 15
+ <mhk 5)(u qr) + <mhk 5)(6]k+1 u) (15)
Rk = qr+1 — qk (16)
1

by = — 17
k . (17
v = 2 (hg—1 + hy) (18)
dr =6 (by — bx—1) (19)
i = g5 (qr) (20)
=ty =0 2D

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 127

Fig. 1 Example of activation 1
functions for different values of
the polynomial order y. The
number of nodes is m = 4 3/4
S
>
1/4 0
1
3
0
u
V1 /’l1 f d 1
hi v h A d
hy vy h3 A s
. = (22)
hp—n Im—2 dm—2
Im—1 dm—l

hm—2 Vm—1

where (22) is a tridiagonal linear system of equations with m — 1 unknowns and m — 1
equations.

In what follows, we note the order of the used polynomials as y, i.e., y = 0 for zeroth-
order polynomials, y = 1 for first-order polynomials, and y = 3 for third-order polynomials.
Figure 1 depicts an example for m = 4 of the activation functions corresponding to these
values of y. As seen, all functions exhibit an abrupt change at u = ¢;. This is because we aim
to approximate the support of the distribution function of the synaptic potential u# within the
interval [q1, g] (Eq. 10). Therefore, the distribution function is assumed to be approximately
zero for all u < g;. The jump is unavoidable, but it occurs at an extreme value of the synaptic
potential. Moreover, the activation function learning algorithm (Sect. 3.2) reduces ¢; until
the case u < ¢ is unlikely. For y = 3, we need to set g (q; — €) = 0 for some small € > 0.

In order to use the gradient method to learn the connection weights (Sect. 3.2), the deriva-
tive of the activation function is normally employed. For zeroth- and first-order polynomials,
this poses difficulties, so alternative solutions are required. In the case of first-order polyno-
mials, the derivative of g; is not defined at the nodes. We propose to use the right derivative
of g1, which is defined for all real numbers although it is not continuous:

0 ifu <q
gi () = m if gp <u < gr41 (23)
0 ifu > qm

In the case of zeroth-order polynomials the derivative of gg is always zero, which is not
usable for the gradient method. In order to overcome this difficulty, we propose to use the
same function as in the case of first-order polynomials:

8o () = g} () (24)

@ Springer

128 E. Lépez-Rubio et al.

The rationale behind (24) is that, since g is meant to approximate the distribution function
of the synaptic potential, its derivative should get closer to the probability density function
of the synaptic potential as the number of samples of the synaptic potential and m grow, no
matter the specific form of g. Therefore, g, is regarded as a quickly evaluable approximation
to the probability density function of the synaptic potential.

For third (and higher)-order polynomials, the derivative does not pose any difficulty since
it is continuous in R, so we use it as gé. It reads as follows:

0 ifu<q
) =18 () ifqgr<u< g (25)
1 ifu>gq;
S) = 5 = g0 = 2 (gt — 0%+ b — ™ (e — 1) 26)
2hi 2hy 6

3.2 Learning Procedure
The learning rules for the connection weights and the activation function are derived next.

First, the connection weight learning is considered. Let us consider the following training
set with M training patterns:

T={xX1,21) .- Xn, 2m)} 27

where x, € R¥ is the rth input and z, € R is the rth desired output. For batch learning, the
goal is to minimize the mean squared error (MSE):

| M
MSE = > E (28)
r=1
L N 2
Er=0r—z) = [[D waigi | D wiijmrj | | -2z (29)
i=1 j=1

where y, € Ris the rth actual output of the network. We use the stochastic gradient method in
order to obtain an online learning rule. This involves the computation of the partial derivatives
of the squared error E, associated with the current training pattern (X,, z,), with respect to
the synaptic weights. Consequently, the online learning rules for the connection weights are:

0E
Wii,j = Wiij — N1 - (30)
] Ry awl i\
3Ly
_ 0E
Wai = w2 — N 31
owa;

where 171 and 1, are the learning rates for the hidden layer and the output neuron, respectively,
and the bars indicate the updated weights. Please note that two different learning rates 1 and
no are defined because the structure of the hidden layer is different from that of the output
layer, since polynomial activation functions are used in the hidden layer, while the output
layer uses a pure linear activation function.

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 129

For the output neuron, the computation of the partial derivatives is as follows:

N

=20y —2) 8 | D wii X, (32)
j=1

OE,
owa;

On the other hand, for the hidden layer the equation varies depending on the order of the
polynomials and the intervals of the activation function. From (23) and (24), we have:

AE, yr —zr) w2,i Xy, j

=2 cify €0, 1} Auri € [gik. gik+1) (33)
owy,; | m (qi k+1 — i k)
0E, ,)
=2y —2r) w2ig&y; (uri) xrj, ify =3 (34)
owy ;i j

where u, ; stands for the synaptic potential at the ith neuron for the rth training pattern and
qi x stands for the kth node of the ith neuron. Please note that gévi (u) is given by (25).

Next, the adaptation of the activation function to the training data is described. Two
learning parameters A, 8 € (0, 1] are considered. Let i be the index of the hidden neuron
whose activation function g; is to be updated, with g; noting the updated version. As done
in Sect. 3.2, an online learning procedure is considered, and the current training pattern is
noted (X, 2).

The overall goal of the learning procedure for the nodes is that, for each incoming training
pattern (X, z,) and all neurons i, one node of each neuron is slightly displaced toward the
current value of the synaptic potential u, ;. This way, as more patterns are presented to the
network, nodes are placed in the regions of the real line where more synaptic potential values
occur. The A parameter controls how often the nodes of the activation function are updated:
The larger the A, the more often they are updated. On the other hand, the B parameter controls
the relative importance of the current argument of the activation function u, ; in the node
update: The larger the 8, the more the importance whichis giventou, ;. Ifu, ; € [q,-,k, qi k+1)

with k € {1, ..., m — 1}, then the nodes of the ith hidden neuron are updated as follows:
- Ifwy; (y —z) > 0and 21:)# < Alyr — zr|, then the node update is:
Gik = Puri + (1 = B) qi x+1 (35)

< Alyr — zr|, then the node update is:

- Ifwy; () —zr) <0Oand ‘2’;}%

Gik+1 = Buri + 1 —B)gik (36)

2wy ;
m

- Ifwy;) —z-) =0o0r > X |y — zr|, then no node update is performed.

Please note that (35) and (36) preserve the order of the nodes because u, ; € [q,-, ks qi, k+1)
and 8 € (0, 1].

The B parameter plays the role of a learning rate for the nodes of the activation function.
Therefore, its interpretation and management is similar to that of the learning rates for the
weight vectors 11 and 7;. In other words, 8 might be fixed along with 1; and 7. They must
not be set too high so that the decrease in the training error is steady, and they must not be too
low so that the decay of the training error is fast enough. The A parameter controls how much
training error a training sample must exhibit in order to trigger the node learning procedure.
Therefore, it decouples the learning of the weights, which is done for all training patterns,
from the learning of the nodes, which is done at a slower rate. It must be adjusted in a similar

@ Springer

130 E. Lépez-Rubio et al.

way to the learning rates, i.e., it must be high enough that the decrease in the training error
is not too slow, but it must be small enough to allow a steady decrease in the error.

We still have to manage extreme values of the argument of the activation function, i.e.,
Ur; < gi,1 Or Uy ; > qi m. According to (10), all observed values of u, ; should lie in the
interval [q1, g¢;»]. This is readily accomplished by these additional update rules:

— Ifu, ; < gi,1, then the node update is as follows:

Gin =ur; —kK (37
— Ifu, ; > qi m, then the node update is as follows:

Gim = uri+K (38)

where k¥ > 0 is a small constant.

These additional update rules overcome the problem of the “vanishing gradient” which
is common to many saturated activation functions such as the rectified linear units (ReLLU,
[21]). When the argument of the activation function u, ; of a neuron i is higher than the
largest node ¢; , then g; ,, is increased. Conversely, when u, ; is smaller than the lowest
node ¢; 1 then g; 1 is decreased. That is, the non-saturated range of the activation function is
enlarged as necessary. That way, the argument of the activation function u, ; is kept within
the non-saturated range [gq1, ¢,] of the activation function.

It must be highlighted that this procedure for extreme values of u,; is not guaranteed
to decrease the error, i.e., it is not covered by Theorem 1 (see Sect. 3.4). Nevertheless, this
procedure will only be activated when u,; ¢ [q,-,l, q,-ym], i.e., when the current value of
the synaptic potential is outside the range of previously observed synaptic potential values.
Therefore, the probability that the procedure is activated will decrease as learning progresses,
since [q,-, 1, qi,m] can only grow.

For each hidden neuron m values are drawn independently from the uniform distribution on
the interval [— ¢, c] and then sorted in increasing order to yield the initial values of the nodes
q1, - -, qm, where c is a parameter of the algorithm. This way, it is ensured that (7) holds at
the beginning of the learning process. It is worth noting that all the node update procedures
described in Sect. 3.2 preserve the relative order of the nodes. Therefore, condition (7) holds
at all times.

3.3 The Termination Criterion

Overfitting is a well-known problem of predictive algorithms. It is caused by an over special-
ization of the training procedure on the training set of patterns [16]. As usual in feedforward
neural networks, a straightforward alternative is to split the data set in training, validation
and test sets, in order to use the validation set to control the overfitting effects through a
termination criterion based on the performance on the validation set.

The trend of the mean squared error (MSE) is difficult to estimate since it fluctuates in
each epoch. In order to alleviate this effect, window functions have been designed to be used
as filters for the MSE values. There are several window functions that could be applied. Two
of the most used ones are as follows:

1. Rectangular window
wn) =1 (39)

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 131

2. Hamming window

< 27n)
w(n) = 0.54 — 0.46 - cos (40)
N -1
where N represents the width, in samples, of a discrete-time, geometric window function
w(n),0 <n < N —1. The window is divided by the energy of the function in order to reduce
the total energy to 1.

We have selected the Hamming window with N = 15 to use as the filter for the validation
MSE. The termination criterion is to halt the learning process as the Hamming window
smoothed function ascending for a number of epochs equal to the selected N.

Algorithm 1 PPAFNN Training algorithm

1: Initialization of hidden neurons and connection weights

2: repeat

3: Shuffle the training samples in random order.

4: for all Training patterns do

5 Fetch a new training pattern (X, z,-).

6: Compute the gradient of the error by (32), (33) and (34)
7

8

9

Update the connection weights with (30) and (31)
Update the hidden neurons according to (35), (36), (37) and (38)
end for
10: until termination criterion described in section 3.3

3.4 Theoretical Properties

At this point, it is important to ensure that the neural network model defined in Sect. 3.1 has
the capability to approximate any Borel measurable function with any degree of accuracy.
Following [17], it is said that g is a squashing function if it is non-decreasing, it has at most
countably many discontinuities, and the two following conditions hold:

lim g (u) = 1 41)
Lifjloo gu)=0 (42)

The definitions in Sect. 3.1 imply that all the activation functions g, considered in this
paper are squashing functions. Then from [17] it follows that our proposed PPAFNN model
has the universal approximation property, i.e., PPAFNN networks can approximate any con-
tinuous function uniformly on any compact set and any measurable function arbitrarily well.

The proposed update procedure is justified by the following formal results.

Proposition 1 The application of Eq. (35) under the condition:

w2,

(w2,i r —zr) > 0) A < Alyr —zrl 43)

ensures that the squared error E, decreases or remains the same.

Proof From the update procedure, we know that u, ; € [qi, k> i k+ 1). Therefore,

k+ 8ix (ur.i)

m

i (uri) = (44)

@ Springer

132 E. Lépez-Rubio et al.

where 8; j (ur;) € [0, 1]. The exact form of § (1, ;) depends on the order of the polynomials
y.

2wy,

If wy,; (yy —2z,) > 0and | =21

< Alyr — z,|, then the update Eq. (35) implies that:

Uri =< qik < qik+1 (45)

Therefore, ~
k=148 k1 (uri)
m

gi (uri) = (46)

where the bars correspond to the values obtained after executing the update. Moreover, from

“):

Yr—Yr

L L
Z w2 s8s (ur,s) - Z w2.xgx (ur,s)
s=1

s=1
= w,ig (ur.i) — w2,igi (ur,i) 47)
Then from (44), (46) and (47):

(k + 8k (uri) k=148 41 (ur,i))
w2, -

Yr—Yr
m m

— Sik (ur,i) — S’:ik—l (uri) +1 48)

Since wy ; (v — zr) > 0, there are two possible cases: (a) (wzy,‘ > 0) AQr—2zr > 0);
) (wai <0) Ay —2, <0) .
For case (a), since 8 k (ur.i) , 8ik—1 (ur,i) € [0, 1], from (48) we obtain:

0=y — 5, < 222 (49)
m
On the other hand, since y, —z, > 0, wp; > 0,2 € (0, 1] and ’% < Myr — zr| we
have: et

=<y (50)

From (49) and (50):
O=yr=Vr =y —z (51)
¥ <~ <2 (52)
=V =y (53)
E, < E, (54)

That is, the new squared error E, is lower than or equal to the old squared error E,, as
required. B
For case (b), since §; x (u,,i) L 80 k—1 (u,,,-) € [0, 1], from (48) we obtain:

2wy

<y =3 <0 (55)
m

On the other hand, since y, —z, <0, wy; < 0,2 € (0, 1] and ’%

< Alyr —zr| we

have:
2wy ;

(56)

yr—2r =
m

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 133

From (55) and (56):
Yr—zr <yr—y =<0 (57
—Zr < =% < =¥ (58)
v = yr <z (59)
E, <E, (60)

And again the new squared error E, is lower than or equal to the old squared error E,, as
required. O

Proposition 2 The application of Eq. (36) under the condition:

2wy i

(w2,i r —2) <0) A < klyr —zrl (61)

ensures that the squared error E, decreases or remains the same.
Proof See “Appendix.” O

Theorem 1 Ifu, ; € [q1, gm] then the above-described activation function update procedure
ensures that the squared error E, decreases or remains the same.

Proof The result can be inferred from Propositions 1 and 2. O

The formal results proved in this subsection ensure that our proposal is able to approximate
any Borel measurable function with any degree of accuracy, so that its scope of application
matches that of multilayer perceptrons with standard activation functions. Furthermore, it has
also been proved that the training error decreases whenever the activation function update is
usedforu, ; € [q1, gm]. This means that the activation function update effectively contributes
to the adaptation of the neural network to the training set. The computational load with respect
to standard multilayer perceptrons depends on two factors. The most important one is the
degree of the piecewise polynomials y. For y = 0 or y = 1 the computational complexity of
the activation function is small, since the expressions that must be evaluated (12) or (13) are
pretty simple. However, for y > 1 the complexity rises significantly (14). Therefore, if the
flexibility of the activation function must be increased, it is likely that increasing the number
of nodes m with y = 0 or y = 1 yields better results than setting y = 3.

4 Experimental Results

In this section, the computational experiments are described and their results are reported.

Several test cases were analyzed to verify the presented models, comparing their results
with the most used supervised learning algorithm to train feedforward neural models, namely
the backpropagation algorithm [25] with different activation functions. The activation func-
tion used to compare the proposed algorithms are as follows: the sigmoid function (Sig) [25],
the trainable amplitude of the sigmoid function (Amp) [30], the leaky rectified linear unit
(ReLU) [21] and the function shape autotuning (Shape) [8].

The tests have been carried out with small architectures in order to prove the proposed
activation functions with non-complex neural models. In this way, the capacity of the proposed
functions in this type of architecture has been checked and we will be able to face more
complex systems in future works.

@ Springer

134 E. Lépez-Rubio et al.

These tests were carried out using a tenfold cross-validation for the training and general-
ization sets, respectively, including a validation set to decide the termination criterion (20%
of the training set). All data sets have been normalized between 0 and 1 in order to carry out
a correct implementation of the method, where the normalized values (V;or) are calculated
with the next equation: Vyor = (Value — Vinin)/(Vimax — Viin), being Value the value of the
data set, Vpnin the minimum value of the data set, and Vi, the maximum value of the data
set.

The configuration data set for the proposed models is as follows: initial quantile coefficient
parameter ¢ = 1, number of nodes m = 20, connection weight learning rates n; = 1, = 0.01,
activation function learning parameters § = 0.7, A = 1, and ¥ = 0.001. For the competing
backpropagation algorithm the learning rate (n) value was fixed to 0.2. These values have
been determined manually, and then they have been found to work correctly for a wide range
of data sets, as we will see. Please see Sect. 3.2 for explanations of the effects of the values
of each parameter on the learning process.

Figure 2 shows the mean squared error (MSE) evolution (left side axis) for the training,
validation and Hamming window processes and the accuracy evolution (right side axis)
according to the number of epochs of a random tenfold cross-validation execution for the
proposed models: Constant model (a), Linear model (b), Cubic model (c), while Fig. 3 shows
the same for the traditional models: sigmoid activation function (a), the trainable amplitude of
the sigmoid function (b), the leaky rectified linear unit (c) and the function shape autotuning
(d) using data from the well-known Diabetes set. The employed neural architecture contained
five neurons in a single hidden layer.

In all seven graphs, the vertical line indicates the average epoch when each algorithm
fulfills its termination criterion. Furthermore, the graphs show the accuracy value at these
epochs. Also, the horizontal line indicates the maximum value of the accuracy for each
algorithm (higher is better).

Also, Table 1 shows the accuracy of generalization ability in terms of mean and standard
deviation obtained from the cases shown in Figs. 2 and 3. In the first column, the analyzed
algorithms are shown, while the second column shows the mean and standard deviation with
the notation mean =+ standard deviation. From these data, it can be said that our approaches
attain a better accuracy than their competitors for this experiment.

Figure 4 shows the average of the accuracy (a) and the termination criterion (b) of 100
runs, changing in each new run the initial values of the connection weights of the networks,
of the tenfold cross-validation as a function of the number of neurons present in the hidden
layer of the neural architecture for the proposed algorithms (Constant, Linear and Cubic) and
the backpropagation algorithm with the different activation functions (Sig, Amp, ReLU and
Shape). The Diabetes data set has been used for this purpose.

We have analyzed the performance of the proposed algorithms to test the generalization
ability on a set of 11 real-world classification data sets obtained from the UCI machine learn-
ing repository [31], a set of 10 single-output Boolean functions from the MCNC benchmark
[22] and a set of 12 real-world regression data sets obtained from the UCI machine learning
repository [31].

The tests have been carried out with different neural architecture sizes (two, five and
ten neurons in a single hidden layer) in order to check the performance of the proposed
algorithms. Also, the tests have been performed by 100 runs of tenfold cross-validation in
order to compute the mean and the standard deviation over the runs.

Table 2 shows the average of the classification performance calculated from Table 6,
in which the generalization ability for eleven real data sets are reported according to the
size of the neural architecture. Table 3 shows the average of the classification performance

@ Springer

Piecewise Polynomial Activation Functions for Feedforward...

135

Mean Square Error

Mean Square Error

Mean Square Error

0.4

0.3

0.2

0.1

0.4

0.3

0.2

0.1

0.3

0.2

0.1

Number of epochs

(¢) Cubic

0.8
0.776

)
i
i
i MSE Training 07
i MSE Validation oy
T . MSE Hamming g
[Termination criterion 3
i Accuracy 2
R U Max Accuracy 0.6
i .
i
i
i
L #43.2 w ‘ ; -
0 40 80 120 160 200
Number of epochs
(a) Constant
. 0.8
I
__________ R Py
L MSE Training 0.7
MSE Validation)
————— MSE Hamming g
77777 Termination criterion 3
Accuracy 2
————— Max Accuracy 0.6
i
i
7.2 w : ‘ -
0 40 80 120 160 200
Number of epochs
(b) Linear
0.8
0.782
i
i
i
i —— MSE Training 07
| ——— MSE Validation 3
i —-—-MSE Hamming g
i —-—- Termination criterion §
! Accuracy <
! —-—- Max Accuracy 0.6
i
i
27.2, ‘ : : 3°
o 40 80 120 160 200

Fig.2 Mean squared error (MSE) evolution for the training, validation and Hamming window processes and
the accuracy evolution according to the number of epochs for the proposed models

@ Springer

136

E. Lépez-Rubio et al.

Fig.3 Mean squared error (MSE)
evolution for the training,
validation and Hamming window
processes and the accuracy
evolution according to the
number of epochs for the
traditional models

@ Springer

Mean Square Error Mean Square Error Mean Square Error

Mean Square Error

0.4 T T T T 0.8
T Y e SO T BT P oY T SR 0.775
03 MSE Training 0.7 Fy
MSE Validation ©
----- MSE Hamming =1
-~ Termination criterion 3
Accuracy <
02K |z Max Accuracy 4106
|
i
0.1 165.3 | L L 0.5
0 80 120 160 200
Number of epochs
(a) Sig
0.4 T T T T 0.8
T YN TPy T v 0.774
|
1
I
0.3 i MSE Training 0.7 oy
i MSE Validation ©
L MSE Hamming =
1 — -~ = Termination criterion 8
i Accuracy <
0.2 : ----- Max Accuracy 0.6
|
|
i
0.1 64.4 | L L 0.5
0 80 120 160 200
Number of epochs
(b) Amp
04 T T T 0.8
- - - 0.743
i Ay
03 MSE Training 107 3
0.717 MSE Validation ©
EE MSE Hamming S
~ =~ Termination criterion 8
Accuracy <
0.2 FWeA A i an e A A he T Max Accuracy 106
v -
0.1 . . . 0.5
0 80 120 160 200
Number of epochs
(c) ReLU
04 T T T 0.8
LU e e S S 7S >
o
S
Q
: - Qo
: MSE Training <
0.2 W’v’*’*ﬂ"ﬁ* MSE Validation 0.6
=== MSE Hamming
—— = Termination criterion
Accuracy
----- Max Accuracy
0.1 . . . 0.5
0 80 120 160 200
Number of epochs
(d) Shape

Piecewise Polynomial Activation Functions for Feedforward... 137

Table 1 Generalization ability of

Activation functi Al
the proposed (Constant and clivahion Tunction couracy
Linear) and the compared (Sig, Constant 75.88% + 1.05
Amp, ReLU and Shape) methods .
in terms of mean and standard Linear 75.34% + 146
deviation computed from Figs. 2 Cubic 75.92% + 1.22
and 3 Sig 75.29% + 2.10
Amp 74.60% =+ 2.25
ReLU 70.95% + 1.51
Shape 66.90% =+ 1.63

calculated for the Boolean functions from Table 7. Finally, Table 8 shows the regression
ability for twelve real data sets according to the size of the neural architecture, and Table 4
reports the average of the regression performance calculated from Table 8.

As seen in the reported results, our approaches (Constant, Linear and Cubic) yield con-
sistently better results in the vast majority of the cases, for both classification and regression
applications.

We have analyzed the evolution of generalization ability of the eleven data sets according
to the number of neurons in the hidden layer. Figure 5 shows the average of the accuracy of
the eleven data sets of the tenfold cross-validation as a function of the number of neurons
present in the hidden layer of the neural architecture for the proposed algorithms (Constant,
Linear and Cubic) and the backpropagation algorithm with the different activation functions
(Sig, Amp, ReL.U and Shape).

A statistical test has been carried out, the Welch’s ¢ test, in order to determine if there is a
difference between the traditional and proposed methods. Welch’s # test, or unequal variances
t test, is a two-sample location test which is used to test the hypothesis that two populations
have equal means in which the two samples can have unequal variances and unequal sample
sizes. Welch’s ¢ test defines the statistic ¢ by the following formula:

X1 —X

PR (62)
s 52
it

where X1, Sl2 and N are the first sample mean, sample variance and sample size, respectively.
In the case where it is not assumed that the two data samples are from populations with
equal variances, the test statistic under the null hypothesis has an approximate Student’s ¢
distribution with a number of degrees of freedom given by Satterthwaite’s approximation.
As Welch’s ¢ test performs a comparison between two samples, we have compared the Cubic
methods and the Sig methods, since they are the best methods among the proposed and
traditional ones, respectively.

Table 5 shows the p values for the null hypothesis that the data of the proposed (Cubic)
and traditional (Sig) models come from independent random samples from normal distribu-
tions with equal means and unequal variances, depending on the number of neurons in the
architecture for the real classification data sets. As seen, the p values are quite small, which
means that the performance differences between the traditional and proposed methods are
statistically significant.

In general terms, it can be said that our approaches quickly attain their best performance
on the validation set, which is better than the best performance of the traditional approaches

@ Springer

138 E. Lépez-Rubio et al.

0.8

0_757H*gg**ga*grgggéﬁﬁ*é,
K

>
[&]
S 0.7
3 N b
3] V-V Vv
2 vV v —@— Constant | V—y—V- v v
v O— Linear v vV
—4— Cubic
0.65rA A Sig E
J— Amp
—%— RelU
V— Shape
06 Il
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Neurons
(a) Accuracy
200 T T T T T
—@— Constant
00— Linear
—4— Cubic
150 F A sig 1
@ *— Amp
g A —%—RelLU
I A V— Sha
I pe
“E 100 W 1
[}
Ke)
[S
>
z
L L Y Y Y Y Y Y Y VYYy

VIV Vv VvV vy
| S IS S S —
3 45 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Neurons
(b) Termination criterion

Fig. 4 Average of the accuracy (a) and the number of epochs until the termination criterion is met (b) of
100 runs of the proposed (Constant, Linear and Cubic) and the backpropagation algorithms with the different
activation functions (Sig, Amp, ReLU and Shape) as a function of the number of neurons present in the hidden
layer of the neural architecture

(Table 1). Moreover, the performance differences have been found to be of strong statistical
significance (Table 5).

5 Discussion

Flexibility is one of the main advantages of our approach, when compared to standard acti-
vation functions. The learning of the activation function of each neuron from the training

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 139

Table 2 Generalization ability in terms of accuracy (Acc) and termination criterion (Ter) obtained with the
proposed algorithms (Linear, Constant and Cubic) and with four different activation functions (Sig, Amp,
ReLU and Shape), on a set of real-world problems from the UCI data set (see Table 6)

Transfer function # Neurons

5 10

Acc Ter. Acc Ter.
Constant 84.524+1.47 46.0+10.3 85.33+1.54 45.1+£9.8
Linear 84.72+1.48 46.4+11.5 84.99+1.34 46.9+10.1
Cubic 84.55+1.25 43.7+£10.0 85.12+1.17 48.0+11.5
Sig 83.82+1.25 66.6+20.4 84.11+1.38 54.6+154
Amp 82.73+1.19 40.8+11.7 83.66+1.33 35.7+£10.2
ReLU 81.594+1.88 523+13.4 79.46+2.43 42.0+12.6
Shape 81.344+1.95 20.2+6.5 79.77+2.18 16.6 £5.6

Best results are shown in bold. See the main text for more details

Table 3 Generalization ability in terms of accuracy (Acc) and termination criterion (Ter) obtained with the
proposed algorithms (Linear, Constant and Cubic) and with four different activation functions (Sig, Amp,
ReLU and Shape), on a set of Boolean functions from the MCNC benchmark (see Table 7)

Transfer function # Neurons

5 10

Acc Ter. Acc Ter.
Constant 76.63+2.85 65.8+13.1 81.914+3.35 77.0+15.4
Linear 75.72+2.49 65.9+14.1 81.05+3.38 75.0+12.5
Cubic 79.20£2.51 74.3+14.8 82.96£3.11 84.0+12.9
Sig 73.29+3.14 106.8£18.5 79.91+£3.77 128.6+21.3
Amp 71.50+3.51 79.5+13.5 72.98+2.49 83.8+13.2
ReLU 74.67+3.18 65.7+12.9 78.60+£2.85 71.0+11.9
Shape 69.98+2.72 35.1+11.6 69.87+3.93 29.6 £11.5

Best results are shown in bold. See the main text for more details

Table4 Regression ability in terms of mean squared error (MSE) and termination criterion (Ter) obtained with
the proposed algorithms (Linea, Constant and Cubic)) and with other four algorithms with different activation
functions (Sig, Amp, ReLU and Shape), on a set of real-world problems from the UCI data set (see Table 8)

Transfer function # Neurons

5 10

Acc Ter. Acc Ter.
Constant 0.0098 £0.0010 71.4+10.6 0.0093 £0.0009 77.5+10.5
Linear 0.0093 £0.0009 71.9+12.2 0.0090 £ 0.0009 72.4+10.6
Cubic 0.0093 £ 0.0009 80.0£11.5 0.0088 £ 0.0009 72.4+£10.6
Sig 0.0097 £0.0007 127.3+£19.0 0.0097 £0.0014 110.2£20.0
Amp 0.0131£0.0025 70.5+13.9 0.0114£0.0015 62.0+15.2
ReLU 0.0141£0.0009 52.6+12.3 0.0131£0.0011 57.34+10.0
Shape 0.0122+£0.0014 41.94+9.0 0.0126 £0.0020 38.0+8.6

Best results are shown in bold. See the main text for more details

@ Springer

140 E. Lépez-Rubio et al.

09 T T T T T T T T
0.85 FFP‘M%
v X X A A
> 08 \/0\;\ 4
9
o
=}
5]
2 0.75 F +Qonstant
—&— Linear
—4— Cubic
A sig
0.7 [|—%*—Amp 1
—%— RelU
‘V— Shape
065 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50

Number of Neurons

Fig.5 Average of the accuracy of the eleven data sets of the tenfold cross-validation as a function of the number
of neurons present in the hidden layer of the neural architecture for the proposed algorithms (Constant, Linear
and Cubic) and the backpropagation algorithm with different activation functions (Sig, Amp, ReLU and Shape)

Table 5 p values for the null

hypothesis that the data of the Data sets # Neurons

proposed and traditional models 2 5 10

come from independent random p values p values p values

samples from normal

distributions with equal means Blood 1.39 x 1076 7.80 x 10710 7.80 x 10710

and unequal variances, depending Cancer 7.76 x 1079 1.54 x 10714 3.26 x 1079

on the number of neurons in the 4 _7 9

architecture for the real Card 6.81 x 10 4.98 x 10 1.55 % 10

classification data sets Climate 4.99 x 1070 6.29 x 1077 3.97 x 1076
Diabetes 7.05 x 1077 4.80 x 1073 9.29 x 1076
Fertility 533 x 1077 0.0034 0.6533
Heart 0.0083 0.0367 2.03 x 1074
Tonosphere 7.24 x 1077 0.1682 0.2625
Sonar 0.0070 0.1548 0.5612
Statlog 0.0123 0.2253 0.0138
Vertebral 0.0061 0.0023 0.5118

data ensures that our proposal has a greater adaptation capability than models with activation
functions which are fixed or only allow for one or two tunable parameters (see Sect. 2). The
model enjoys the universal approximation property (Sect. 3.4). Furthermore, its range of
application includes regression and classification applications, as seen in Sect. 4. Flexibility
must be controlled in order to avoid overfitting. For example, the number of nodes m in (11)
must not be set too high. This can be managed by fixing m as a constant, or alternatively
choosing it by cross-validation techniques. As mentioned before, our proposed learnable
activation function is nonparametric in that the number of nodes m can be enlarged for big-
ger data set sizes. However, it is also interesting to note that it is not required that there is a
node g for each training sample, so that each node can summarize a significant amount of

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 141

training samples. This way, a balance between overfitting and underfitting can be attained,
as demonstrated in the experiments.

The node update procedure for arguments of the activation function which lie in the range
of previously observed values [qiyl, qi,m] ensures that the error decreases, as proved by
Theorem 1. For the rare cases such that extreme values outside of the previously observed
range of values [qi,l, q,-,m] are found, a backup procedure is detailed in Sect. 3.2 which
expands the size of [q,-, 1, 4i, m] in order to prevent subsequent occurrences of extreme values.
It must be pointed out that the probability of activating such backup procedure decreases as
learning progresses, since the interval [¢1, ¢,,] can only grow.

The simplicity of zeroth- and first-order piecewise polynomial activation functions
(Egs. 12 and 13) suggest that our model might be implemented with smaller computational
cost on FPGAs, microcontrollers and other hardware with limited resources than standard
activation functions because no transcendent functions are evaluated at any time, which
ensures a low requirement of hardware resources [24].

The reported experimental results indicate that overfitting can be adequately controlled
in our proposal. The average of the generalization ability obtained for the real classification
problems with the proposed algorithms is very close to the value obtained with backpropa-
gation for the least advantageous size of neural architecture for our proposals (five neurons
in the hidden layer). Moreover, the performance of our models is significantly better in all
data sets for the most advantageous size (two neurons). Finally, for the highest analyzed
architecture size (ten neurons) the generalization ability of our proposals is better for the
majority of the data sets (see Tables 6, 7).

For the Boolean problems the most advantageous architecture size for each algorithm
depends dramatically on the data set. Hence, the generalization ability exhibits a large vari-
ability, being more stable and higher in terms of average performance for the proposed
algorithms (see Tables 2, 3).

The average of the regression error calculated in terms of MSE is lower (better) for our
proposals as it can be seen in Table 4. Also, for the majority of data sets and architecture
configurations the regression error is lower for the proposed algorithms (Linear, Constant
and Cubic), as seen in Table 8.

The performance of the networks for the proposed algorithms (Constant, Linear and Cubic)
in terms of the accuracy at the time that the termination criterion is fulfilled is more stable
(lower standard deviation) than that of the backpropagation algorithm with the different
activation functions, as observed in Figs. 2 and 3. Moreover, the number of neurons of the
neural architecture is also more stable for our proposals, as it can be observed in Fig. 4a. This
indicates that our algorithms are more robust against overfitting.

The favorable results obtained by our nonparametric activation function approach, as
compared to parametric activation functions, may be caused by a better usage of the neurons
of the network. It must be taken into account that, by approximating the distribution function
of the argument of the activation function by the activation function, the distribution of the
output values of the neurons gets closer to a uniform distribution on the output range of
the neurons. In this way, the amount of information carried by the output of each neuron is
maximized. On the other hand, a parametric activation function might lead to similar output
values, which would mean that the information content of the output is smaller.

The results of the generalization ability for the two data sets (Vertebral Column and Blood
Transfusion) have also been analyzed by Castelli [7] who uses adaptive activation functions.
Castelli’s results show that they have got a significantly better generalization ability for these
data sets although with larger standard deviations. This possibly due to a non-exhaustive
search of the hyper-parameters. Moreover, our approach is more amenable to implementation

@ Springer

142 E. Lépez-Rubio et al.

Table 6 Generalization ability in terms of accuracy (Acc) obtained with the proposed algorithms (Linear,
Constant and Cubic) and with four different activation functions (Sig, Amp, ReLU and Shape), on a set of
real-world problems from the UCI data set

Function #A # #N Constant Linear Cubic Sig Amp ReLU Shape
Blood transfusion 5 748 5 79.70 80.84 79.54 7784 78.11 76.62 76.43
10 81.84 78.86 78.12 7892 7824 7649 77.03
Cancer 9 286 5 9732 9734 9776 95.85 9569 96.03 96.52
10 9744 97.53 97.33 9556 9575 95779 96.93
Card 51 690 5 8590 86.12 86.609 8439 83.71 8515 82.54
10 86.96 86.90 86.14 84.10 84.25 80.29 78.46
Climate 18 540 5 9259 92.65 93.01 91.70 9046 90.13 9248
10 93.00 93.00 9311 91.65 9046 90.65 9237
Diabetes 8 768 5 76.59 7696 76.54 75778 7534 70.99 69.41
10 77.09 77.01 7624 7525 75.09 71.66 68.16
Fertility 10 100 5 87.10 87.00 88.52 8590 87.00 87.00 88.00
10 86.20 85.30 8832 8590 86.90 87.50 87.80
Heart 35 303 5 80.83 80.60 81.62 79.57 7933 81.13 7820
10 81.20 81.67 8098 79.70 77.80 78.70 74.33
Ionosphere 34 351 5 8746 87.57 8538 87.51 8471 7451 77.66
10 88.83 87.57 89.78 89.23 89.66 784 75.97
Sonar 60 208 5 70.85 73.35 69.74 72.85 6840 68.15 66.85
10 75.50 73.95 7226 7555 7290 6640 @ 66.45
Statlog heart 35 270 5 82.00 80.85 81.71 80.78 79.93 81.26 80.37
10 81.70 8196 81.96 80.04 80.11 80.00 77.44
Vertebral column 6 310 5 79.70 81.03 86.76 85.77 75778 78.06 82.90
10 81.84 84.55 81.33 85.16 77.74 80.01 72.58

Best results are shown in bold. See the main text for more details

on microcontrollers than Castelli’s model due to the computational simplicity of our approach.
This compensates for the relative lack of performance of our proposal.

In order to quantitatively assess the advantage of our approach, as compared to other
learnable activation function approaches, we may compare the number of nodes m of our
piecewise polynomial functions with the number of intervals required to approximate a
sigmoid function (such as [7] employs) by means of piecewise Taylor approximation. A state-
of-the-art Taylor approximation of this kind is proposed in [4], where up to 102 intervals are
required to yield a good accuracy. In contrast to this, in Sect. 4 it is reported that our approach
only needs m = 20 nodes in order to attain adequate performance. Hence, our approach
requires about 5 times less memory space, since the memory requirements are proportional
to the number of nodes/intervals. Moreover, our approach is also faster, since the table lookup
for the relevant node/interval requires a computation time which is proportional to the base 2
logarithm of the number of nodes/intervals, if binary search is employed for maximum table
lookup speed.

The number of epochs to fulfill the termination criterion is notably lower for the proposed
algorithms than the Sig and Amp activation functions for any network size, quite similar to
the ReLU activation function and significantly higher than the Shape activation function and
for the majority of the functions (see Table 6).

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 143

Table 7 Generalization ability in terms of accuracy (Acc) obtained with the proposed algorithms (Linear,
Constant and Cubic) and with four different activation functions (Sig, Amp, ReLU and Shape), on a set of
Boolean functions from the MCNC benchmark

Function #A #I #N Constant Linear Cubic Sig Amp ReLU Shape
alu2k 10 1024 5 58.05 58.25 62.04 6409 5756 60.37 56.73
10 58.50 58.47 6190 8145 61.75 6650 57.34
alu2l 10 1024 5 59.12 57.21 61.28 6452 56.89 62.08 56.29
10 59.24 58.94 61.24 7096 6125 6622 56.58
alu2m 10 1024 5 98.97 98.91 98.98 9854 9692 90.33 94.13
10 99.68 99.65 99.54 9896 98.86 96.46 89.94
alu2n 10 1024 5 100.0 100.0 100.0 99.00 9899 99.64 95.92
10 100.0 100.0 100.0 99.00 99.00 99.99 9493
alu2o 10 1024 5 82.85 83.07 86.02 84.14 8199 83.31 78.25
10 82.81 83.59 86.62 86.54 8512 84.07 76.53
alu2p 10 1024 5 94.05 91.96 92.15 9795 9571 9593 95.01
10 98.13 98.13 98.26 98.52 9855 97.44 86.23
z4ml24T 7 128 5 93.50 89.83 9324 80.08 77.58 83.25 76.50
10 93.83 92.58 9403 8025 77.92 8200 77.25
z4ml25T 7 128 5 53.75 53.83 55.69 4342 4675 51.83 45.92
10 64.08 65.17 64.99 5242 4633 5142 50.00
z4ml26T 7 128 5 62.75 59.17 60.38 4592 4950 57.83 48.17
10 75.08 72.58 74.89 59.08 4875 64.83 49.25
z4ml27T 7 128 5 63.25 65.00 62.26 5525 53.08 62.08 52.97
10 87.73 81.33 88.10 7192 5225 77.08 60.67

Best results are shown in bold. See the main text for more details

Finally, some limitations of our approach must be pointed out. Our proposal is restricted
to one-output neuron networks. Functions with more than one output can be implemented by
using the appropriate number of networks of the proposed kind. This implies that the resulting
system would have a higher computational complexity, compared to a single network with
several outputs. Moreover, important correlations among the outputs cannot be exploited by
weight sharing in a multi-output network. Besides that, weight sharing might help to alleviate
overfitting whenever the data are scarce. For these reasons, one of our future research lines
is the development of an extension to our proposal with multiple outputs. At the current state
of our research, another limitation is that only one hidden layer is considered. Future work
includes the extension to multiple hidden layers.

6 Conclusions

A new feedforward neural network model has been proposed. The considered activation
functions are piecewise polynomial. The model features a mechanism to learn the activation
function of each hidden neuron independently, whose error reduction properties have been
formally proved. This way, our proposal exhibits a greater flexibility to adapt the network
to the training data. Experiments have been carried out for regression and classification
applications. The results demonstrate that our approach is a valid alternative for supervised

@ Springer

144 E. Lépez-Rubio et al.

Table 8 Regression ability in terms of mean squared error (MSE) obtained with the proposed algorithms
(Linear, Constant and Cubic) and with four different activation functions (Sig, Amp, ReLU and Shape), on a
set of real-world problems from the UCI data set

Function #A #] #N Constant Linear Cubic Sig Amp ReLU Shape
Airfoil 5 1503 5 0.0150 0.0150 0.0136 0.0138 0.0154 0.0549 0.0287

10 0.0137 0.0136 0.0131 0.0135 0.0144 0.0471 0.0294
C_Power 4 956 5 0.0030 0.0029 0.0030 0.0042 0.0054 0.0137 0.0048
Plant 10 0.0028 0.0027 0.0028 0.0042 0.0059 0.0123 0.0070
Concrete 8 1030 5 0.0112 0.0104 0.0136 0.0100 0.0120 0.0115 0.0108
Com_Str 10 0.0095 0.0098 0.0116 0.0122 0.0105 0.0097 0.0109
Concrete 10 103 5 0.0180 0.0158 0.0106 0.0106 0.0284 0.0068 0.0103
Slump 10 0.0145 0.0132 0.0095 0.0110 0.0128 0.0097 0.0097
Energy 8 768 5 0.0057 0.0054 0.0058 0.0066 0.0105 0.0068 0.0063
EfficientA 10 0.0054 0.0056 0.0058 0.0064 0.0107 0.0058 0.0072
Energy 8 768 5 0.0080 0.0082 0.0081 0.0083 0.0101 0.0081 0.0080
EfficientB 10 0.0073 0.0079 0.0081 0.0083 0.0098 0.0077 0.0089
Forest 12 517 5 0.0030 0.0030 0.0032 0.0045 0.0044 0.0036 0.0034
Fire 10 0.0033 0.0037 0.0036 0.0045 0.0044 0.0042 0.0034
Housing 13 506 5 0.0116 0.0111 0.0107 0.0110 0.0163 0.0116 0.0139

10 0.0116 0.0116 0.0110 0.0107 0.0147 0.0109 0.0161
Parkinson 21 5875 5 0.0033 0.0032 0.0048 0.0046 0.0050 0.0044 0.0037

Telemonit 10 0.0032 0.0031 0.0041 0.0046 0.0053 0.0040 0.0038
Wine quality 11 1599 5 0.0184 0.0178 0.0179 0.0182 0.0193 0.0213 0.0187
Red 10 0.0177 0.0176 0.0172 0.0182 0.0195 0.0211 0.0189
Wine quality 11 4898 5 0.0167 0.0165 0.0171 0.0168 0.0172 0.0180 0.0170
White 10 0.0160 0.0158 0.0169 0.0167 0.0171 0.0176 0.0172
Yacht 6 308 5 0.0033 0.0017 0.0016 0.0079 0.0131 0.0081 0.0207
Hydrody 10 0.0059 0.0038 0.0026 0.0065 0.0122 0.0072 0.0186

Best results are shown in bold. See the main text for more details

learning tasks. This paper is a preliminary work; future works include the extension of this
approach to neural networks with more than one output neuron and more than one hidden
layer. This might be accomplished by employing functions which are differentiable with
respect to the node locations and fast to evaluate, so that the chain rule can be applied to
multiple neural layers and multiple outputs.

Acknowledgements This work is partially supported by the Ministry of Economy and Competitiveness of
Spain under Grants TIN2014-53465-R, project name Video surveillance by active search of anomalous events,
and TIN2014-57341-R, project name Metaheuristics, holistic intelligence and smart mobility. Itis also partially
supported by the Autonomous Government of Andalusia (Spain) under project P12-TIC-657, project name
Self-organizing systems and robust estimators for video surveillance. All of them include funds from the
European Regional Development Fund (ERDF). The authors thankfully acknowledge the computer resources,
technical expertise and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the
University of Mdlaga. They also gratefully acknowledge the support of NVIDIA Corporation with the donation
of two Titan X GPUs used for this research.

@ Springer

Piecewise Polynomial Activation Functions for Feedforward... 145

Appendix

Proof of Proposition 2 Let us assume that u, ; € [qi, ks q,-,k+1). Therefore,

k4 6k (ur,i)

m

8i (ur,i) = (63)

where §; (u ,,i) € [0, 1]. The exact form of § (u ,,i) depends on the order of the polynomials

Y-
2wy

If wo; (yr —zr) <0Oand ‘ | < Alyr — zr|, then the update Eq. (36) implies that:

ik < qik+1 < Upj (64)

Therefore, ~
k+1+8 51 (uri)
m

i (uri) = (65)

where the bars correspond to the values obtained after executing the update. Moreover, from

“:

L L
Yr—Yr = Zwlsgs (”r s ZWZ s8s ”r s
= =1

= W28 (ur,l) — w3, lg () (66)
Then from (63), (65) and (66):

Sy — 5 = wa (k + 8ik (ur.i) k1 + 8i k41 (ur,i))

m m

_— Sik (ur,i) — S;'r,lk+1 (uri) —1 67

Since wa,; (yr — z) < 0, there are two possible cases: (a) (w2,; > 0) A (yr — 2, < 0);
(®) (w2,i <O) A (yr =2, >0).
For case (a), since 8 x (ur,i) , 8 k+1 (ur.i) € [0, 1], from (67) we obtain:

2wy ;

P =y —y»=0 (68)
On the other hand, since y, — z, < 0, wp; > 0,1 € (0, 1] and ’ W2l Ay — z0| we
have:)
R (69)
From (68) and (69):
=z <y —y =0 (70)
~2r < —Fr <~ (71)
Yr < Vr < zr (72)
E, <E, (73)

That is, the new squared error E, is lower than or equal to the old squared error E,, as
required.

@ Springer

146 E. Lépez-Rubio et al.

For case (b), since & x (ur.i) , 8i k-1 (ur.i) € [0, 1], from (67) we obtain:

- 2wy,
O<y =y <—— (74)
m
On the other hand, since y, — z, > 0, wi2 < 0,A € (0,1] and ‘21:;%‘ < Ayr — 2| we
have:
2w2,,-
- —= =<y -2 (75)
m
From (74) and (75):
O0<y =¥ =<y —2zr (76)
=y =< _}_’r < —Zr (77)
<V =<y (78)
E, <E, (79)
And again the new squared error E, is lower than or equal to the old squared error E,, as
required. O
References

1. Agostinelli F, Hoffman M, Sadowski PJ, Baldi P (2014) Learning activation functions to improve deep
neural networks. CoRR arXiv:1412.6830, URL http://arxiv.org/abs/1412.6830
2. Barron AR (1993) Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Trans Inf Theor 39(3):930-945
3. Bartlett PL, Maiorov V, Meir R (1998) Almost linear VC-dimension bounds for piecewise polynomial
networks. Neural Comput 10(8):2159-2173
4. Campo ID, Finker R, Echanobe J, Basterretxea K (2013) Controlled accuracy approximation of sigmoid
function for efficient FPGA-based implementation of artificial neurons. Electron Lett 49(25):1598-1600
5. Castelli I, Trentin E (2012a) Semi-unsupervised weighted maximum-likelihood estimation of joint den-
sities for the co-training of adaptive activation functions. In: Schwenker F, Trentin E (eds) Partially
supervised learning: first IAPR TC3 workshop, PSL 2011, Ulm, 15-16 Sept 2011. Revised selected
papers, Springer, Berlin, Heidelberg, pp 62-71
6. Castelli I, Trentin E (2012b) Supervised and unsupervised co-training of adaptive activation functions in
neural nets. In: Schwenker F, Trentin E (eds) Partially supervised learning: first IAPR TC3 workshop,
PSL 2011, Ulm, 15-16 Sept 2011. Revised selected papers, Springer, Berlin, Heidelberg, pp 52-61
7. Castellil, Trentin E (2014) Combination of supervised and unsupervised learning for training the activation
functions of neural networks. Pattern Recognit Lett 37(Supplement C):178-191
8. Chen CT, Chang WD (1996) A feedforward neural network with function shape autotuning. Neural Netw
9(4):627-641
9. Costarelli D, Vinti G (2016) Max-product neural network and quasi-interpolation operators activated by
sigmoidal functions. J Approx Theory 209:1-22
10. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst
2(4):303-314
11. Ertugrul OF (2018) A novel type of activation function in artificial neural networks: trained activation
function. Neural Netw 99:148-157
12. Fritsch FN, Carlson RE (1980) Monotone piecewise cubic interpolation. STAM J Numer Anal 17:238-246
13. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the
fourteenth international conference on artificial intelligence and statistics (AISTATS 2011)
14. Goodfellow 1J, Warde-Farley D, Mirza M, Courville AC, Bengio Y (2013) Maxout networks. In: Proceed-
ings of the 30th international conference on machine learning, ICML 2013, Atlanta, 16-21 June 2013,
pp 1319-1327
15. Gulcehre C, Cho K, Pascanu R, Bengio Y (2014) Learned-norm pooling for deep neural networks. Lect
Notes Comput Sci 8724:530-546
16. Hawkins DM (2004) The problem of overfitting.] Chem Inf Comput Sci 44(1):1-12

@ Springer

http://arxiv.org/abs/1412.6830
http://arxiv.org/abs/1412.6830

Piecewise Polynomial Activation Functions for Feedforward... 147

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators.
Neural Netw 2(5):359-366

Huynh HT, Won Y (2009) Extreme learning machine with fuzzy activation function. In: 2009 Fifth
international joint conference on INC, IMS and IDC. https://doi.org/10.1109/NCM.2009.206

Kang M, Palmer-Brown D (2005) An adaptive function neural network (ADFUNN) for phrase recognition.
In: IEEE international joint conference on neural networks, 2005. IICNN 2005, vol 1, pp 593-597
Kang M, Palmer-Brown D (2007) A multi-layer adaptive function neural network (MADFUNN) for
letter image recognition. In: International joint conference on neural networks, 2007. IJCNN 2007, pp
2817-2822

Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models.
In: 30 th International conference on machine learning, vol 28

Microelectronics Center of North Carolina (2016) MCNC benchmarks. http://www.cbl.ncsu.edu: 16080/
benchmarks/. Accessed 15 Oct 2016

Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings
of the 27th international conference on machine learning (ICML-10), pp 807-814

Ortega-Zamorano F, Jerez J, Juarez G, Perez J, Franco L (2014) High precision fpga implementation of
neural network activation functions. In: IEEE symposium on intelligent embedded systems (IES), 2014,
pp 55-60. https://doi.org/10.1109/INTELES.2014.7008986

Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors. Nature
323(6088):533-536

Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. In:
Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT Press, Cambridge, pp
696-699

Sakurai A (1998) Tight bounds for the VC-dimension of piecewise polynomial networks. In: Advances
in neural information processing systems, vol 11, pp 323-329

Springenberg J, Riedmiller M (2013) Improving deep neural networks with probabilistic maxout units,
pp 1-10. arXiv:1312.6116

Sunat K, Lursinsap C, Chu CHH (2007) The p-recursive piecewise polynomial sigmoid generators and
first-order algorithms for multilayer tanh-like neurons. Neural Comput Appl 16(1):33-47

Trentin E (2001) Networks with trainable amplitude of activation functions. Neural Netw 14(4-5):471—
493

University of California Irvine (2016) Machine learning repository. http://archive.ics.uci.edu/ml/.
Accessed 17 Oct 2016

Vecci L, Piazza F, Uncini A (1998) Learning and approximation capabilities of adaptive spline activation
function neural networks. Neural Netw 11(2):259-270

Wang GT, Li P, Cao JT (2012) Variable activation function extreme learning machine based on residual
prediction compensation. Soft Comput 16(9):1477—-1484. https://doi.org/10.1007/s00500-012-0817-5
Werbos PJ (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences.
PhD thesis, Harvard University

Zhang M, Fulcher J, Scofield RA (1997) Rainfall estimation using artificial neural network group. Neu-
rocomputing 16(2):97-115

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/NCM.2009.206
http://www.cbl.ncsu.edu:16080/benchmarks/
http://www.cbl.ncsu.edu:16080/benchmarks/
https://doi.org/10.1109/INTELES.2014.7008986
http://arxiv.org/abs/1312.6116
http://archive.ics.uci.edu/ml/
https://doi.org/10.1007/s00500-012-0817-5

	Piecewise Polynomial Activation Functions for Feedforward Neural Networks
	Abstract
	1 Introduction
	2 Previous Works
	3 Methodology
	3.1 Architecture
	3.2 Learning Procedure
	3.3 The Termination Criterion
	3.4 Theoretical Properties

	4 Experimental Results
	5 Discussion
	6 Conclusions
	Acknowledgements
	Appendix
	References

