
Implementación de un algoritmo de red neuronal constructivo en

un microcontrolador Arduino UNO.

Francisco Ortega-Zamorano

Universidad de Málaga, Departamento de L.C.C., ETSI Informática, España.
fortega@lcc.uma.es

Resumen Un algoritmo constructivo de redes neuronales receintemente introducido, C-Mantec, se
implementa en un dispositivo microcontrolador. El algoritmo C-Mantec genera arquitecturas de redes
neuronales muy compactas con muy buena capacidad de predicción; la combinación de ambas carac-
terísticas hacen de este algoritmo un buen candidato para realizar el aprendizaje de un conjunto de
datos sin necesidad de transmitir información a una unidad de control central. Se analizan los detalles
más complejos de la implementación de dicha aplicación y se realiza una prueba con un conjunto de
funciones de referencia utilizadas normalmente en el diseño de circuitos digitales para mostrar el correc-
to funcionamiento de la aplicación. Además se presentan tres casos de estudio con sus correspondientes
evaluaciones en cuanto a su funcionamiento.

Abstract A recently proposed constructive neural network algorithm, named C-Mantec, is fully imple-
mented in a Arduino board. The C-Mantec algorithm generates very compact size neural architectures
with good prediction abilities, and thus the board can be potentially used to learn on-site sensed data
without needing to transmit information to a central control unit. An analysis of the more di�cult steps
of the implementation is detailed, and a test is carried out on a set of benchmark functions normally
used in circuit design to show the correct functioning of the implementation. Also three case studies
are presented and their di�erent evaluations.

Keywords: Constructive Neural Networks, Microcontroller, Arduino

Tutores: Leonardo Franco y José Manuel Jerez Aragonés.

1. Introducción

Diferentes tecnologías como son las redes de sensores inalámbricas [1], los sistemas empotrados [2] y los
sistemas de tiempo real [3] son empleados hoy en día en todo tipo de aplicaciones industriales, en muchas
de las cuales pueden usarse dispositivos microcontroladores [4]. Los recientes avances en la potencia de
cálculo de este tipo de sistemas está empezando a permitir el uso de sistemas de aprendizaje, los cuales
permiten ajustar el funcionamiento a medida que se reciben los datos de entrada.
Las redes neuronales son una especie de sistemas de aprendizaje, �exibles y ampliamente utilizadas
que pueden ser empleadas para esta tarea. Sin embargo una desventaja de las mismas es que su fase de
entrenamiento necesita una potencia de cómputo intensiva, haciendo su uso prohibitivo incluso para los
sistemas modernos. En este sentido, el algoritmo de red neuronal constructiva C-Mantec recientemente
propuesto tiene la ventaja de ser muy rápido en su fase entrenamiento y construcción, en comparación
con los métodos estándares utilizados en redes neuronales de tipo �feed-forward��. Además el algoritmo
C-Mantec genera arquitecturas muy compactas, hecho que es útil dado que los recursos de memoria
son muy limitados en los microcontroladores.
En este trabajo se ha implementado el algoritmo C-Mantec [5] en un microcontrolador, incluyendo el
proceso de aprendizaje, ya que éste proceso se realiza en el propio dispositivo en lugar de realizarlo
de forma externa como se hace habitualmente. El dispositivo microcontrolador elegido ha sido la placa
Arduino UNO [6] , ya que es un dispositivo muy popular, económico y e�ciente, siendo además de
código abierto.
Los factores críticos en el momento de la ejecución del algoritmo C-Mantec son la escasez de recursos de
la memoria del microcontrolador utilizado (32 KB Flash, RAM de 2 KB y 1 KB de memoria EPROM)

y la velocidad de cómputo, por lo que la aplicación se ha realizado con aritmética de punto �jo para
todas aquellas variables en las que se ha podido.

El presente documento está estructurado de la siguiente manera: en primer lugar, describimos breve-
mente el estado del arte de las redes neuronales y los microcontroladores, para pasar a una descripción
del algoritmo C-Mantec y la placa Arduino, tras esto se detalla la implementación del algoritmo, dando
a continuación unos resultados intermedios de esta implementación. Posteriormente se presentan tres
casos de estudios, evaluando la e�ciencia de una posible implementación del sistema en dichos casos.
Finalizamos con las conclusiones.

2. Antecedentes

Las Redes Neuronales Arti�ciales (Arti�cial Neural Network (ANN)) [7] son modelos matemáticos
inspirados en el funcionamiento del cerebro, que puede ser utilizado en los problemas de agrupación
y clasi�cación, y que se han aplicado con éxito en varios campos, incluyendo el reconocimiento de
patrones, predicción del mercado de valores, tareas de control, diagnóstico y pronóstico médico, etc.

A pesar de años de investigación en el campo de la ANN, la selección de una arquitectura adecuada
para un problema dado sigue siendo una tarea compleja [8,9,10]. Entre las diversas estrategias para
resolver este problema, las Redes Neuronales Constructivas (Constructive Neural Networks (CoNN))
ofrecen la posibilidad de generar redes que crecen a medida que se analizan los datos de entrada, con lo
que se tiene una arquitectura conforme al conjunto de datos [11]. Por otra parte, el procedimiento de
formación de las CoNN, considerado un problema computacionalmente costoso en las redes neuronales
�feed-forward� estándar, se puede hacer �on-line� y relativamente rápido. C-Mantec es un algoritmo
de tipo CoNN recientemente propuesto [5] que implementa competencia entre neuronas, permitiendo
que todas las neuronas aprendan durante todo el proceso de construcción de la arquitectura, ya que
no congela los pesos sinápticos ya existentes, como lo hacen la mayoría de los algoritmos CoNN. C-
Mantec además incorpora un proceso de �ltrado de patrones para evitar problemas de sobreajuste.
Estas dos características permiten al algoritmo generar arquitecturas neuronales compactas con muy
buena capacidad de generalización, por lo que resulta un algoritmo adecuado para su aplicación en
dispositivos con recursos limitados como microcontroladores, sistemas integrados, redes de sensores y
FPGAs.

Un microcontrolador (abreviado µC, UC o MCU) es un circuito integrado programable, capaz de eje-
cutar las órdenes grabadas en su memoria. Está compuesto de varios bloques funcionales, los cuales
cumplen una tarea especí�ca. Un microcontrolador incluye en su interior las tres principales unidades
funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entra-
da/salida. Cada vez existen más aplicaciones que incorporan un microcontrolador con el �n de aumen-
tar sustancialmente sus prestaciones, reducir su tamaño y coste, mejorar su �abilidad y disminuir el
consumo. [12,13,14,15]. En la tabla 1 podemos observar los microcontroladores más usados ordenados
por familias y numero de bits de su arquitectura. En particular la placa Arduino que se utilizará en
este trabajo es un dispositivo de hardware libre que utiliza microcontroladores Atmel AVR , si bien
pueden utilizarse otros como el Atmega168, Atmega328, Atmega1280 o ATmega8. Estas palcas ofrecen
al usuario varios puertos de entrada/salida y un entorno de desarrollo fácil y amigable que permite
desarrollar proyectos de la más diversa naturaleza [16,17,18]. Al ser un placa de hardware libre muchas
de sus aplicaciones no son publicadas en artículos cientí�cos sino en internet [19].

Las limitaciones más importantes de este tipo de dispositivos son la memoria y la velocidad de cómputo,
por ello implementar redes neuronales ha sido una tarea compleja ya que estos algoritmos requieren
un gran cantidad de memoria para poder realizar el aprendizaje de un conjunto de patrones. Esta es
la razón por la cual un gran número de las aplicaciones que emplean redes neuronales en un micro-
controlador utilizan el aprendizaje �o�-line� es decir, se aprende la red neuronal en otro dispositivo
(normalmente un PC) y después el microcontrolador emplea la red aprendida [20,21,22]. En otros casos
el microcontrolador se emplea a modo de red distribuida, es decir, se genera una red de microcontro-
ladores donde cada nodo (microcontrolador) representa una neurona y la comunicación entre nodos
representa los pesos sinápticos [23,24]. La opción más compleja es implementar el proceso de apren-
dizaje �on-chip�, es decir en el propio microcontrolador. Existen algunas aplicaciones realizadas de esta
manera, pero en las cuales la arquitectura de red neuronal se ha elegido ad hoc para solucionar un
problema especí�co[25]. Sin embargo en la implementación propuesta en este trabajo no hace falta

2

Cuadro 1. Microcontroladores más utilizados en aplicaciones actuales

Empresa 8 bits 16 bits 32 bits

Atmel AVR,89Sxxxx
SAM7(ARM7TDMI),AVR32,

SAM3(ARM Cortex-M3

Freescale 68HC05, 68HC08, 68HC12, 68HCS12, 683xx, PowerPC,
(Motorola) 68HC11, HCS08 68HCSX12, 68HC16 ColdFire

Holtek HT8

Intel MCS-48,MCS51,8xC251 MCS96, MXS296

National Semic. COP8

Microchip
Familias 10f2xx 12Cxx PIC24F, PIC24H

PIC32
12Fxx, 16Cxx y 16Fxx y dsPIC30FXX

NXP Semiconduc.
80C51 XA

Cortex-M3, Cortex-M0,
(Philips) ARM7, ARM9

Renesas
78K, H8

H8S, 78K0R, R8C, RX, V850, SuperH,
(Mitsubishi) R32C/M32C/M16C SH-Mobile, H8SX

STMicroelectro. ST 62, ST 7 STM32 (ARM7)

Texas
TMS370 MSP430

C2000, Cortex-M3 (ARM),
Instruments TMS570 (ARM)

Zilog Z8, Z86E02

elegir la arquitectura de la red a priori, la cual se realiza de forma automática, por lo que serviría para
múltiples aplicaciones de diversa índole.

3. C-Mantec, algoritmo constructivo de red neuronal

C-Mantec (Competitive Majority Network Trained by Error Correction) es un nuevo algoritmo con-
structivo de redes neuronales que utiliza la competencia entre las neuronas y una regla modi�cada de
aprendizaje del perceptrón (thermal perceptron) para construir arquitecturas compactas con una buena
capacidad de predicción. La novedad de C-Mantec es que las neuronas compiten por el aprendizaje de
los datos entrantes, y este proceso permite la creación de arquitecturas neuronales muy compactas. Los
estado de activación (S) de las neuronas en la capa oculta depende de las N señales de entrada,ψi, y
de los valores de los N pesos sinápticos (ωi) de la siguiente forma:

S =

{
1(ON) if h ≥ 0
0(OFF) otherwise

(1)

Donde h es el potencial sináptico de la neurona y queda de�nido como:

h =
N∑
i=0

ωi·ψi (2)

En la regla del perceptrón termal, la modi�cación de los pesos sinápticos, ∆ωi, se realiza en línea
(después de la presentación de un único patrón de entrada) de acuerdo con la siguiente ecuación:

∆ωi = (t− S) ψi Tfac (3)

Donde t es el valor objetivo para un patrón de entrada determinada y ψ representa el valor de la
entrada i conectado a la salida mediante el peso ωi. La diferencia entre las regla de aprendizaje del
perceptrón estándar y la del perceptrón termal es que ésto último incorpora el factor Tfac. El cálculo
del valor de éste factor, se muestra en ecuación 4, dicho valor depende del potencial sináptico(h) y de
una temperatura introducida arti�cialmente (T) que disminuye a medida que el proceso de aprendizaje
avanza.

Tfac =
T

T0
e−

|ϕ|
T (4)

3

Dicha disminución se realiza conforme a la ecu. 5.

T = T0· (1−
I

Imax
), (5)

donde I es el contador de ciclos por neurona que cuanti�ca las iteraciones (�ciclo de aprendizaje�) del
algoritmo en esa neurona y Imax es el número máximo de estas iteraciones. Un ciclo de aprendizaje
del algoritmo es el proceso que se inicia cuando un patrón determinado se presenta a la red y acaba
después de la modi�cación de los pesos sinápticos por parte de la neurona seleccionada para reconocer
el patrón (ya sea una existente o una nueva neurona).
C-Mantec, como algoritmo CNN, tiene además la ventaja de generar la topología de la red on-line
mediante la adición de nuevas neuronas durante la fase de entrenamiento, lo que lleva a tiempos de
entrenamiento más rápido y arquitecturas más compactas. El algoritmo C-Mantec tiene 3 parámetros
que se establecen en el momento de iniciar el procedimiento de aprendizaje. Varios experimentos han
demostrado que el algoritmo es muy robusto frente a los cambios de los valores de los parámetros y por
lo tanto C-Mantec funciona bastante bien en una amplia gama de valores. Los tres parámetros son:

- Imax: número máximo de iteraciones permitidas para cada neurona en la capa oculta por ciclo de
aprendizaje.

- gfac: factor de crecimiento que determina cuándo detener un ciclo de aprendizaje e incluir una
nueva neuronas en la capa oculta.

- ϕ: determina si un patrón de entrada se considera ruidoso y se retira del conjunto de datos de
entrenamiento de acuerdo con la siguiente condición:

∀X ∈ {X1, X2, ..., XN}, delete(X) | NTL ≥ (µ+ ϕ·σ), (6)

donde N representa el número de patrones del conjunto de datos, NTL es el número de veces que el
patrón X ha sido aprendido por la red en el ciclo de aprendizaje actual, y el par {µ, σ } corresponde a
la media y la varianza de la distribución normal que representa el número de veces que cada patrón del
conjunto de datos se ha aprendido durante el ciclo de aprendizaje. Este procedimiento de aprendizaje
se basa esencialmente en la idea de que los patrones son aprendidos por las neuronas de la capa oculta
de la arquitectura, cuya salida di�ere del valor objetivo (clasi�cado erróneamente la entrada) y para
el cual su temperatura interna es mayor que el valor de ajuste gfac. En el caso en el que más de un
perceptrón termal de la capa oculta satisfaga dicha condición en una iteración dada, el perceptrón con
la temperatura más alta es el candidato seleccionado para reconocer el patrón entrante. Una nueva
neurona solo se añade a la red cuando no hay perceptron termales que cumpla con estas condiciones,
con lo que se inicia un nuevo ciclo de aprendizaje.
En la �gura 1 puede observarse el diagrama de �ujo del algoritmo descrito, mostrándose las funciones
más relevantes en los recuadros de la imagen, la toma de decisiones como los rombos y los estados más
importantes, inicio y �n como los óvalos.

3.1. Extensión a problemas multiclase

El algoritmo C-Mantec es un algoritmo de clasi�cación binario, por lo que para poder utilizarlo en
la clasi�cación de conjuntos de datos con salida multiclase se aplicaran tres esquemas muy conocidos
[26,27]:Uno-contra-todos, Uno-contra-Uno y P-contra-Q. Los tres métodos obtienen un clasi�cador de
K clases usando estrategias que combinan M clasi�cadores binarios y un modulo de decisión simple
que tiene como entrada la salida de los clasi�cadores. Los M clasi�cadores son entrenados independi-
entemente con diferentes conjuntos de entrada Cei que variarán en función de la estrategia elegida y
del conjunto de entrada original Ce.

Ce = {(X, Ci) /X = (x1, ..., xN), Ci ∈ {C1, ..., Ck}} (7)

donde (X, Ci) es una tupla del conjunto de entrenamiento compuesta por un vector de entrada X de
tamaño N y una clase de salida Ci perteneciente al conjunto de clases posibles {C1, ..., Ck}.
El clasi�cador que se ha seleccionado para poder hacer un clasi�cador multiclase ha sido P-contra-Q.
Este esquema puede ser visto como el punto medio entre los otros dos esquemas, ya que en este caso
cada red CManteci, separará un conjunto clases Pi del resto Qi = K−Pi, siendo K el número de clases
del problema. Esta red separa dos grupos de clases entre ellas, pero no separa las clases que pertenecen

4

Figura 1. Diagrama de �ujo del algoritmo constructivo de redes neuronales C-Mantec.

al mismo grupo, por lo que serán necesarias más redes C-Mantec que nos permita discriminarlas. Por
lo tanto, en este esquema serán necesarias tantas redes como hagan falta hasta conseguir discriminar
todas las clases. El esquema OAA podría ser visto como un tipo de esquema PAQ donde cada Pi sólo
contiene una clase y Qi el resto de clases. El número de redes C-Mantec mínimo para poder clasi�car
K patrones es M = log (K) siguiendo una codi�cación binaria. Sin embargo, esta codi�cación mínima,
aunque es muy e�ciente en términos de redes a generar, no lo es tanto en términos de generalización
ya que no genera ninguna redundancia, por lo que es bene�cioso utilizar un número mayor de redes
CManteci.

Cei = {(X, Si (X, Ce, Cod)) /X = (x1, ..., xN)} (8)

Si(X,Ce) =

{
1 Si Ci ∈ Pi
−1 Si Ci ∈ Qi

(9)

Al igual que en el caso OAA, el modulo de decisión tendrá que decidir cuál será la clase de salida a
partir del resultado generado por cada una de las M redes C-Mantec. Cada una de las K clases espera
un vector de salida de tamaño M asociado a esa clase a la que nos referiremos como vector prototipo
de la clase k (Vk). Si el vector resultante de la salida de las M redes, V, no coincide con ninguno de
los K vectores prototipo, se escogerá como salida aquella clase k que tenga un vector Vk más cercano
a V en distancia Hamming, y en caso de empate, puede ser resuelto escogiendo la clase con mayor
probabilidad a priori o, en caso de que no pudiera ser resuelto, escogiendo una aleatoriamente. Se ha

5

añadido redundancia a este método usandoK+ log (K) redes, siguiendo lasK primeras una codi�cación
similar a la utilizada en el método OAA y una codi�cación binaria para las log (K) siguientes.

Redes C-Mantec
Clase

Red0 Red1 Red2 Red3 Red4 Red5

P0 Q1 Q2 Q3 Q4 Q5 C0

Q0 P1 Q2 Q3 Q4 P5 C1

Q0 Q1 P2 Q3 P4 Q5 C2

Q0 Q1 Q2 P3 P4 P5 C3

Cuadro 2. Ejemplo del esquema P-contra-Q (PAQ) en el cual un problema de 4 clases ha sido codi�cado por 6 redes
binarias.

La tabla 2 muestra un ejemplo de cómo es posible codi�car un problema multiclase de K = 4 usando el
esquema PAQ conM = K+ log (K) redes C-Mantec, en las cuales las 4 primeras (Red0...Red3) utilizan
una codi�cación de tipo OAA, mientras que las dos últimas (Red4 y Red5) utilizan una codi�cación de
tipo binaria. Con esta codi�cación el conjunto de entrenamiento Cei de una Redi debería corresponderse
con la columna i de la tabla y la �la j de la clase que se desea codi�car siguiendo la ecuación 8.

4. Placa Arduino UNO

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un
entorno de desarrollo, diseñada para facilitar el uso de la electrónica en proyectos multidisciplinares. El
Arduino Uno es una placa con microcontrolador basada en el chip ATmega328 [28]. Tiene 14 pines con
entradas/salidas digitales (6 de las cuales pueden ser usadas como salidas PWM), 6 entradas analógicas,
un cristal oscilador a 16Mhz, conexión USB, entrada de alimentación, una cabecera ISCP, y un botón
de reset. El ATmega328 tiene 32KB de memoria �ash para almacenar código (2KB son usados para el
arranque del sistema (bootloader)), dispone de 2 KB de memoria SRAM y 1KB de EEPROM.

El Arduino Uno dispone de un sistema de comunicación para su uso con un ordenador, otro Arduino,
u otros microcontroladores. El ATmega328 ofrece comunicación serie (UART), la cual está disponible
en los pines digitales 0 (Rx) y 1 (Tx), además dispone de comunicación I2C y SPI. Para todas estos
sistemas de comunicación la plataforma Arduino proporciona las librerías para su uso. Arduino es un
descendiente de la plataforma de código abierto Wiring por lo que se programa usando este lenguaje,
similar a C++ con algunas ligeras modi�caciones. Se emplea bajo el entorno de processing. En la Tabla
3 se puede observar las especi�caciones del microcontrolador Atmega328 correspondiente al Arduino
UNO.

Cuadro 3. Especi�caciones más relevantes del microcontrolador Atmega328 utilizado en la placa Arduino UNO

Atmega328

Voltaje operativo 5 V
Voltaje de entrada recomendado 7 - 12 V
Voltaje de entrada límite 6 - 20 V
Pines de entrada y salida digital 14 (6 proporcionan PWM)
Pines de entrada analógica 6
Intensidad de corriente 40 mA
Memoria Flash 32KB (2KB reservados para el bootloader)
SRAM 2 KB
EEPROM 1 KB
Frecuencia de reloj 16 MHz

6

Las placas Arduino se comercializan �nalizadas o pueden ser ensambladas por parte de los usuarios ya
que la información del diseño hardware está disponible de manera pública. Las características físicas son,
una longitud y un ancho de 6.8 and 5.3 cm respectivamente, más el conector USB y el de alimentación
que se extiende más allá de la dimensión anterior. Una imagen del Arduino UNO puede observarse en
la �gura 2.

Figura 2. Imagen de la placa Arduino UNO usada para la implementación del algoritmo C-Mantec.

5. Implementacion del algoritmo C-Mantec

El algoritmo C-Mantec implementado en el código wiring es transmitido por USB desde el programa
correspondiente en el ordenador hacia la placa. El proceso implementado en el microcontrolador consta
de dos fases, la fase de aprendizaje, donde se calcula la red neuronal a partir de los datos guardados
en el microcontrolador y la fase de ejecución donde se calcula las diferentes salidas de los patrones de
entrada en función de la red neuronal aprendida previamente. Los dos estados son seleccionados en el
microcontrolador mediante un pin E/S.
El estado de aprendizaje consta de dos acciones claramente diferenciadas, la carga de patrones y el
cálculo de la red neuronal propiamente dicha. Los patrones pueden ser cargados on-line mediante los
pines de E/S de la placa o mediante una comunicación serie por el puerto USB, pero en ambos casos
deben ser guardados en la memoria EEPROM. A continuación se explican las principales cuestiones
técnicas para la implementación del algoritmo de acuerdo con las dos fases antes mencionadas:

5.1. Carga de patrones

Es necesario almacenar los diferentes patrones en la memoria de la placa debido a que el proceso de
aprendizaje es cíclico (utiliza el conjunto de patrones de forma repetida). Para funciones booleanas
sólo es necesario almacenar las salidas, ya que las entradas corresponden a la tabla de verdad formada
por la posición que dichas entradas representan. Al tratarse de un clasi�cador binario sólo es necesario
almacenar un bit, por lo que las diferentes posiciones en la memoria para generar la tabla de verdad se
realizarán a nivel de bit y no de Byte.
Por ejemplo, para un caso con 8 entradas, el patrón de entrada podría ser �01101001� (105 en valor
decimal) con salida '1'. En este caso se debe almacenar un '1' en la posición de memoria 105 de la
EEPROM que corresponde al valor en decimal del patrón de entrada. La placa Arduino Uno tiene 1
KB de memoria EEPROM, es decir, 8192 bits (213); por lo que el número de entradas en las funciones
booleanas está limitada a 13.
En el caso de que se empleen tablas de verdades incompletas, ya sea por la eliminación de patrones
ruidosos o por la naturaleza de la función, la memoria se dividirá en dos partes; una para identi�car la
existencia de los patrones y otra para identi�car las salidas de dichos patrones. En este caso el número
máximo de entradas se reduce a 12.
Si la función es de patrones de valores reales es necesario saber de antemano el número de bits utilizado
para representar dicho valor. Se han utilizado 8 bits para representar los valores de las funciones,

7

teniendo en cuenta que deben estar normalizados entre 0 y 1. Las entradas se almacenan en las primeras
posiciones de memoria y las salidas en las últimas, para maximizar el número de patrones que se pueden
almacenar en una determinada memoria. A continuación se muestra la ecuación para poder calcular el
número máximo de patrones permitido en función del número de entradas que se disponga:

NP ·NI +NP /8 ≤ 1024 , (10)

donde NI es el número de entradas y NP es el número de patrones. NP depende del número de entradas
y el número de bits utilizados para cada entrada.

5.2. Aprendizaje de la red neuronal

C-Mantec es un algoritmo constructivo por lo que va agregando nuevas neuronas conforme se van
requiriendo; dicha acción no es de fácil implantación en un microcontrolador ya que el manejo de la
memoria se hace de forma estática por lo que hay que de�nir el número máximo de neuronas en el
sistema. Se ha establecido un tamaño máximo de memoria para almacenar las variables asociadas a
cada neurona, 1KB de memoria SRAM, por lo que se ha dejado disponible otro KB de memoria para
almacenar las diferentes variables del algoritmo.
Los microcontroladores son dispositivos cuya velocidad de procesamiento es limitada, por lo que para
contribuir a la mayor rapidez del aprendizaje de una red neuronal se ha cambiado la forma de almace-
namiento de las variables asociadas a las neuronas y se ha pasado de representación en punto �otante
(la utilizada en este tipo de algoritmo para representar los pesos sinápticos y las salidas de la red) a
una representación de punto �jo. Este cambio en el paradigma representativo de las variables provoca
cambios sustanciales en la forma de programar este algoritmo, aunque como contrapartida obtenemos
una mayor velocidad de aprendizaje y un tamaño menor de cada variable ya que se pasa de tipo �oat
a tipo integer en los pesos sinápticos.
Las variables asociadas a las neuronas y sus diferentes tamaños y representaciones son:
- Tfac: debe ser una variable tipo �oat y ocupa 4 bytes.
- Número de iteraciones: un valor entero con un rango entre 1.000 y 100.000 iteraciones, por lo que
debe ser de tipo long, 4 bytes.

- Pesos sinápticos: En casi todos los cálculos está involucrada ésta variable por lo que para acelerar
los cálculos se elige tipo enterosde 2 bytes de longitud.

- Potencial sináptico (h): Se calcula a raíz de un sumatorio de los pesos sinápticos, por lo que para
no saturar este valor se utiliza un tipo long de 4 bytes de longitud.

De acuerdo con las de�niciones anteriores, el número máximo de neuronas (NN) que pueden ser uti-
lizadas debe cumplir la siguiente premisa:

4 ·NN + 4 ·NN + 2 ·NN · (NI + 1) + 4 ·NN 6 1024, (11)

donde NI es el número de entradas. Para el cálculo más desfavorable en las funciones booleanas (cuando
se disponen de 13 entradas) el número de máximas neuronas permitidas en la implementación es 25.
Los pesos sinápticos y el potencial sináptico se han implementado con 10 bits de precisión para la parte
decimal, por lo que el valor de los pesos estará entre 32 y -32. Si se vieran como valores enteros sería
entre -32768 y 32767.
El cálculo de Tfac se hace usando un tipo punto �otante de datos, ya que requiere una operación
exponencial que sólo se puede hacer con este tipo, pero dicho cálculo también implica a otro tipo de
datos (enteros),por lo que se deben realizar diferentes conversiones.
La primera conversión se da en la Ecu. 3, en ella habrá que convertir el valor Tfac en un valor tipo
punto �jo, para ello se multiplica el Tfac por 1024 y se cambia su representación a número entero,
perdiéndose sólo 2−11 de la precisión del valor. La segunda conversión se realiza en la Ecu. 4 donde hay
que convertir el potencial sináptico (h) a punto �otante para que pueda ser calculada la exponencial del
Tfac. En este caso sólo habría que hacer un desplazamiento del potencial sináptico 10 bits a la derecha
y después convertirlo a representación punto �otante para que pueda ser operado dentro del cálculo del
Tfac. Este proceso tiene un inconveniente, la saturación de los pesos sinápticos, ya que cuando éstos
son más grandes que 32 y menores a -32 se produce un desbordamiento de la variable, pudiéndose
provocar errores graves de cálculo. Para evitarlo se ha realizado una función por la cual cuando los
pesos sinápticos alcancen un valor superior a 30 o inferior a -30 todos los pesos son divididos por 2, es
decir un desplazamiento a la derecha de 1 bit. Este cambio no afecta en absoluto al procedimiento de
la red ya que a las redes neuronales no les afecta este tipo de escalado.

8

6. Resultados de implementación

En la �gura 1 pueden observarse las diferentes funciones del algoritmo C-Mantec. En ella se puede
comprobar que dicho algoritmo consta de cinco funciones claramente diferenciadas de las cuales tres
de ellas (el cálculo del valor del potencial sináptico y consiguiente salida de la red, el cálculo del Tfac

y el cambio de los pesos sinápticos) di�eren su implementación dependiendo si se realizan con punto
�jo o con punto �otante. Mientras que las demás funciones (añadir neurona y el �ltrado) es similar en
ambas implementaciones.
Se han aislado las funciones en las que las implementaciones en punto �jo y punto �otante di�eren, y
se ha comprobado el tiempo medio que tardan dichas funciones, según se tenga una implementación u
otra. Se han ejecutado las funciones 50 veces y se ha calculado el tiempo medio que tarda cada función
en ser resuelta.
En la �gura 3 se puede observar el tiempo de cada función con las dos implementaciones (izquierda)
y el número de veces que es más rápida la implementación en punto �jo respecto a la implementación
en punto �otante. (derecha). En la �gura superior izquierda se puede observar el tiempo que tarda el
algoritmo en calcular el potencial sináptico y las salidas de la red, en función del número de neuronas.
Hay que tener en cuenta que esta función es dependiente del número de entradas. En la central vemos
el tiempo que tarda el algoritmo en modi�car los pesos de una neurona determina; dicha función es
dependiente del número de entradas. En la �gura inferior se calcula el valor Tfac de cada neurona.
Además se ha probado el correcto funcionamiento de la implementación del algoritmo C-Mantec en
la placa Arduino mediante la comparación de resultados, en términos de neuronas obtenidas, de la
implementación del microcontrolador y la de la aplicación utilizada en el PC. La prueba también se
llevó a cabo para analizar los efectos de una representación de punto �jo que disminuye la precisión de
los pesos sinápticos.
Un conjunto de 12 funciones booleanas de salida binaria del MCNC benchmark se ha utilizado para
probar la arquitectura de la red del algoritmo C-Mantec, más las funciones XOR de 2 y 3 entradas,
haciendo un total de 14 funciones booleanas a estudiar. El algoritmo C-Mantec se realizó con los
siguientes valores de parámetros: gfac = 0,05 y Imax = 1000 Tabla 4 muestra los resultados obtenidos
con el microcontrolador para el conjunto de las funciones de referencia. Las dos primeras columnas
indican el nombre de la función y el número de entradas. Las columnas tercera, cuarta y quinta muestran
el tamaño de la red neuronal de la implementación en el PC, de la implementación en punto �jo y de
la implementación en punto �otante respectivamente. Mientras que las dos últimas columnas muestras
el tiempo que tardan las diferentes implementaciones en el microcontrolador. Para realizar dicha tabla
se ha lanzado el algoritmo 50 veces por función con el �n de que los resultados sean estadísticamente
signi�cativos.

Cuadro 4. Numero de neuronas y tiempo de aprendizaje de la síntesis de un conjunto de funciones para las imple-
mentaciones en punto �jo (entero) y punto �otante, comparada además con lo dicho en el paper original.

Función No Entradas
No Neuronas Tiempo (s)

Teoría Entero Flotante Entero Flotante

XOR2 2 2, 0± 0, 0 2, 0± 0, 0 2, 0± 0, 0 0,36± 0,01 0,57± 0,03
XOR3 3 3, 0± 0, 0 3, 0± 0, 0 3, 0± 0, 0 1,4± 0,11 2,22± 0,26
cm82af 5 3, 0± 0, 0 3, 0± 0, 0 3, 0± 0, 0 1,84± 0,28 3,15± 0,64
cm82ag 5 3, 0± 0, 0 3, 64± 0, 63 3, 6± 0, 7 4,11± 1,88 8,1± 4,4
cm82ah 5 3, 0± 0, 0 3, 0± 0, 0 3, 0± 0, 0 1,85± 0,21 3,35± 0,63
z4ml24 7 1, 0± 0, 0 1, 0± 0, 0 1, 0± 0, 0 0,23± 0,05 0,47± 0,13
z4ml25 7 3, 1± 0, 0 3, 11± 0, 40 3, 11± 0, 40 3,36± 1,04 6,43± 2,05
z4ml26 7 3, 0± 0, 0 3, 0± 0, 0 3, 0± 0, 0 2,67± 0,45 5,39± 1,11
9symml 9 3, 0± 0, 0 3, 0± 0, 0 3, 0± 0, 0 4,43± 0,58 12,8± 2,061
alu2k 10 11, 2± 0, 0 12, 7± 0, 97 12, 3± 0, 71 220± 50,1 969± 260
alu2m 10 2, 0± 0, 0 2, 0± 0, 0 2, 0± 0, 0 3,94± 0,21 13,1± 0,88
alu2n 10 1, 0± 0, 0 1, 0± 0, 0 1, 0± 0, 0 0,41± 0,15 0,99± 0,41
alu2o 10 11, 2± 0, 0 13, 0± 0, 75 12, 4± 0, 78 312± 59,6 1444± 824
alu2p 10 3, 0± 0, 0 3, 0± 0, 0 3, 0± 0, 0 20,8± 43,7 84,1± 17,2

9

0 5 10 15 20
0

1000

2000

3000

4000

Nº neuronas

T
ie

m
po

 (
µs

)

Tiempo en el calculo de salida de la red

15 entradas

10 entradas

5 entradas

2 entradas 15 entradas
10 entradas
5 entradas
2 entradas

Entero
Punto flotante

0 5 10 15 20
2.5

3

3.5

4

4.5

5

5.5

Nº neuronas

N
º

ve
ce

s

2 entradas
5 entradas
10 entradas
15 entradas

0 5 10 15
0

50

100

150

200

250

300

350

Nº entradas

T
ie

m
po

 (
µs

)

Tiempo en modificar una neurona

Entero
Punto flotante

0 5 10 15
1.5

2

2.5

3

3.5

4

4.5

Nº entradas

N
º

ve
ce

s

Nº veces

0 5 10 15 20
0

1000

2000

3000

4000

5000

Nº neuronas

T
ie

m
po

 (
µs

)

Tiempo de calculo de max(T
fac

(i))

Entero
Punto flotante

0 5 10 15 20
0.9

1

1.1

1.2

1.3

1.4

1.5

Nº neuronas

N
º

ve
ce

s

Nº veces

Figura 3. Tiempo de cálculo de las diferentes funciones del algoritmo C-Mantec con las dos implementaciones posibles
(grá�cas izquierdas) y el número de veces que es más rápida la representación de punto �jo que la de punto �otante
(grá�cas derechas).

En la �gura 4 puede observarse, en la grá�ca superior, los diferentes tiempos de aprendizaje de todas las
funciones del conjunto seleccionado y, en la grá�ca inferior, una función del número de veces que es más
rápido la representación en punto �jo que la de punto �otante . La grá�ca superior se ha representado
en escala logarítmica para el eje y (tiempo de aprendizaje) para que pueda ser visualizada mejor. Para
la obtención de dichos datos se ha lanzado cada implementación 50 veces y se han calculados los valores
medios que son los representados en la �gura.

10

10
−1

10
0

10
1

10
2

10
3

10
4

z4ml24
XOR2

Alu2n
XOR3

cm82af

cm82ah

z4ml26
z4ml25

Alu2m
cm82ag

9symml

Alu2p
Alu2k

Alu2o

Tiempo de aprendizaje

T
ie

m
po

 (
s)

punto fijo
punto flotante

0

1

2

3

4

5

6

z4ml24
XOR2

Alu2n
XOR3

cm82af

cm82ah

z4ml26
z4ml25

Alu2m
cm82ag

9symml

Alu2p
Alu2k

Alu2o

N
º

ve
ce

s

Nº veces más rápido punto fijo que flotante

Nº veces

Figura 4. Tiempo de aprendizaje para cada función del conjunto de prueba (grá�ca superior) y número de veces que
es más rápida la representación de punto �jo que la de punto �otante (grá�ca inferior)

En la Fig. 5 se puede observar la evolución temporal de una función determinada. Se ha escogido
la Alu2k por ser una función que precisa de un mayor número de neuronas en la capa oculta para
ser aprendida y se ha comprobado el tiempo que tarda en llegar a una neurona determina. Por lo
que la grá�ca superior muestra el tiempo que tarda en llegar a una neurona determinada para ambas
implementaciones y en la grá�ca inferior el número de veces que es más rápida la implementación en
punto �jo que en punto �otante.

11

0 2 4 6 8 10 12 14
0

200

400

600

800

Nº Neurona

tie
m

po
 (

s)

Tiempo para una neurona determinada

punto fijo
punto flotante

0 2 4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5

Nº de Neuronas

N
º

de
 v

ec
es

Comparativa de velocidad

Nº veces

Figura 5. Evolución temporal de la función Alu2K según el tiempo que tarda la aplicación en obtener un tamaño de
red determinado (grá�ca superior) y el número de veces que es más rápida la representación en punto �jo que la de
punto �otante en dicha evolución.

7. Casos de estudios

Con el �n de comprobar la e�ciencia de la utilización de redes neuronales en aplicaciones donde sean
necesarios el uso de microcontroladores para sensar y/o actuar sobre el entorno, se han considerado
3 casos de estudios de naturaleza dispar, que requieren diferentes tipos de soluciones. El primer caso
es la detección de incendios mediante una alarma, para ello se dispone de patrones booleanos que
conforman una tabla de verdad completa; el segundo caso es la activación de una válvula de riego según
unas variables determinadas ambientales, las cuales se han discretizado para poder ser estudiadas
conformando una tabla de verdad, siendo lo más probable que no esté completa; y por último el
problema de detección de caídas de personas, este caso formado por patrones reales de los cuales sólo
podrán ser aprendidos un número determinado de ellos.

7.1. Alarma de incendios

Existen muchos casos en los que los microcontroladores se usan como sensores/actuadores para controlar
una serie de variables y proceder en consecuencia. Un caso muy común es la utilización de este tipo de
sistemas en la fabricación de alarmas, como por ejemplo las de detección de incendios.

El sistema capta las diferentes variables encargadas de la detección de incendios (temperatura, humo
y gas), se de�nen ciertos umbrales para los cuales los niveles de dichas variables son peligrosos y el
sistema toma una decisión conforme a dichas variables. (Ver Fig. 6).

12

Figura 6. Representación esquemática de una habitación en la cual se ha instalado una alarma de incendios.

Sería lógico suponer que esta acción podría llevarse a cabo mediante la utilización de programación
tradicional con el empleo de sentencias �if�. El problema surge cuando la decisión tomada de antemano
no es la adecuada, ya sea por un mal estudio inicial o por la utilización de dicho sistema en entornos
diferentes a los previstos. Por ejemplo si se desarrolla un sistema para la detección de incendio en una
habitación y el sistema se coloca en estancias con altas concentraciones de humo, como podría ser la
cocina, en este caso el sistema activará la alarma en muchas situaciones en las que no debería.
Siguiendo el método de programación tradicional sería necesario desconectar el sistema, rehacer el
estudio previo para adaptarlo a las nuevas condiciones, cargar el nuevo código y restaurar el sistema.
En cambio si utilizamos una red neuronal para este escenario lo único que tendríamos que hacer es
que el sistema aprenda el estudio previo y si éste es equivocado, por cualquier motivo, simplemente
tendríamos que indicarle su error y el sistema modi�cará sus patrones, reaprendiendo su nuevo estado
sin ningún tipo de interacción o estudio sobre el nuevo escenario; y en particular sin necesidad de
interrumpir el sistema.

7.2. Predicción meteorológica

A lo largo de la historia siempre se han intentado hacer predicciones meteorológicas para conocer los
cambios climáticos y poder tomar decisiones correctas sobre los cultivos (ya sean tiempo de recolección,
momento de riego o tipo de cultivo). Automatizar esta predicción ha sido un problema ampliamente
abordado por las redes neuronales.
El sistema captará las diferentes variables ambientales (velocidad (VV) y dirección (DV) del viento,
temperatura (t), humedad (H) y radiación solar (R)) y se discretizarán sus valores en diferentes escalas
dependiendo de qué variable sea. Y la decisión a tomar puede ser la necesidad o no de regar un tipo de
cultivo.(ver Fig.7).

Figura 7. Fotografía de un sistema de sensores encargado de captar las diferentes variables ambientales y actuar en
consecuencia.

13

A priori no se conoce la función de predicción meteorológica para cualquier situación geográ�ca y
además habrá que tener en cuenta sobre qué tipo de cultivo se va a realizar la predicción. Esto hace
que un estudio a priori del escenario sea prácticamente imposible.

Con una red neuronal sólo tenemos que ver la evolución de los diferentes cultivos e ir modi�cando la red
neuronal conforme al histórico de datos. Aunque se disponga de una red inicial de partida gracias a un
estudio general sobre condiciones climáticas para todo tipo de cultivo, esta red evolucionará conforme
a las condiciones microclimáticas del lugar y las necesidades de lo cultivado. Este hecho puede hacer
que no dispongamos de todos los datos necesarios para generar de forma completa la tabla de verdad
de los patrones del sistema.

7.3. Detección de caídas

Existe una necesidad de hacer un seguimiento a ciertas personas que viven solas, ya sean personas
mayores u otras con algún tipo de minusvalía, ya que dichas personas son dependientes y no pueden
valerse por ellas mismas. La necesidad principal de seguimiento surge cuando estas personas sufren una
caída o un periodo prolongado de inactividad. Hay diferentes formas de abordar este problema, como
por ejemplo con cámaras de videovigilancia, aunque este tipo de sistemas tienen un gran inconveniente,
la sensibilidad a los cambios de luz producidos en una estancias.

Una forma más e�ciente es captar las caídas de una persona utilizando un sensor. Primero colocamos a
una persona un acelerómetro de 3 ejes para controlar el ángulo de inclinación y el movimiento (ver Fig.
8). Esta con�guración detecta cualquier movimiento anómalo en el individuo que la usa, tales como un
fuerte movimiento hacia abajo o de hecho cualquier movimiento brusco o violento.

Figura 8. Implementación de un sistema para supervisar las caídas.

Extraer la lógica que describe el comportamiento de las caídas es una tarea ardua y requiere demasiado
tiempo. Sin embargo con las redes neuronales esta tarea se simpli�ca, ya que para extraer una regla de
decisión que de�na si una persona se ha caído o no, sólo se precisa de unos patrones de entrenamiento
y que la red neuronal aprenda a partir de esos patrones de referencia.

C-Mantec necesita datos reales para ser entrenado por lo que para construir la red neuronal que luego
prodiga las caídas, se precisa de una recolección de datos previa para poder tener un conjunto de
patrones con los que poder entrenar, por lo que el desarrollador no tiene que saber la relación entre los
datos recogidos con el �n de detectar la caída.

Después de generar la estructura del modelo de red neuronal, se probó utilizando otros patrones para
comprobar la �abilidad de los resultados de la clasi�cación. Si la arquitectura es correcta, el modelo
de red neuronal interpretará correctamente los datos proporcionados por los sensores y decidirá si ésta
información corresponde a una caída o no.

14

8. Evaluación

Con el �n de comprobar la e�ciencia de la solución empleada para los diferentes casos de estudio
planteados, se ha realizado un evaluación de cada uno de ellos, comprobando el tiempo de re-aprendizaje,
y el consumo del Arduino para poder realizado, y así conocer si es más rentable realizar el reaprendizaje
de nuevos escenarios en el propio microcontrolador en lugar de realizarlos por otros métodos.

8.1. Alarma de incendios

La realización de este caso de estudio requiere acoplar diferentes sensores (temperatura, humo y gas)
al Arduino, estos sensores se activarán ('1') cuando los niveles medidos superen un determinado um-
bral, que puede ser modi�cado y dependerá de cada sensor. Por ejemplo el sensor de temperatura se
activará ('1') cuando el valor medido sea superior a 40o C, mientras que para temperaturas inferiores
consideraremos que se encuentra desactivado ('0').
Con la activación de los sensores se conforma una tabla de verdad que el sistema deberá aprender
para poder decidir en qué estado de alarma se encuentra. Hemos especi�cado ocho estados de alarma
diferentes, ya que éste es el caso más desfavorable, puesto que cada entrada de la tabla de verdad
dispone de un estado diferente, dicho caso será el estado inicial del sistema. Los estados de alarma
se especi�can del 8 menos peligroso al 1 el más peligroso. En la tabla 5 puede observarse la tabla de
verdad generada para satisfacer el estado inicial. Donde la columna �alarma� indica el grado de peligro,
y la columna �representación� indica la representación binaría que tendrá cada alarma. Cabe destacar
que la representación binaria se realiza ya que el algoritmo C-Mantec es un clasi�cador binario y de
esta forma se puede realizar una clasi�cación multiclase.

Cuadro 5. Tabla de verdad del estado inicial del sistema para la detección incendio.

Gas Humo Temperatura Alarma Representación

0 0 0 8 0 0 0
0 0 1 7 0 0 1
0 1 0 6 0 1 0
0 1 1 5 0 1 1
1 0 0 4 1 0 0
1 0 1 3 1 0 1
1 1 0 2 1 1 0
1 1 1 1 1 1 1

En primera instancia se ha comprobado el tiempo que tarda el sistema en aprender el estado inicial,
con cuántas neuronas ha sido capaz de resolverlo y la potencia consumida en hacerlo. En la tabla 6
pueden observarse los datos mencionados.

Cuadro 6. Valores de tiempo, consumo y número de neuronas del proceso de aprendizaje del estado inicial.

No Neuronas Tiempo (ms) Consumo(nAh)

3,0± 0,0 8,228± 4,88 73,13± 43,4

Después se ha comprobado el tiempo que tarda el sistema en re-aprender un cambio en el estado de una
alarma de una entrada concreta de la tabla, con el �n de evaluar la e�ciencia de esta implementación en
comparación con una programación tradicional en la que se necesitaría recargar el código programado.
En la Fig. 9 puede observarse el tiempo que tarda y su correspondiente consumo en el proceso de
re-aprendizaje de un cambio en el estado de una alarma, en función del estado inicial de dicha alarma
(eje abscisa); además se puede observar el tiempo y consumo medios producidos por el proceso de
re-aprendizaje.

15

1 2 3 4 5 6 7 8

5

10

15

20

Tiempo y consumo de re−aprendizaje de un nuevo estado de alarma

T
ie

m
po

 (
m

s)

Estado previo de la alarma 0

44.44

88.88

133.3

177.7

C
onsum

o (nA
h)

10.97 ms 97.5 nAh

Aumentar Alarma
Disminuir Alarma
Media

Figura 9. Tiempo y consumo del proceso de re-aprendizaje de cambiar un estado de una determinada alarma ya sea
aumentar o disminuir, en el eje de abscisa se representa la gravedad de la alarma.

8.2. Predicción climática

Con el �n de evaluar la implementación de la predicción climática para la apertura de una válvula de
riego en un cultivo determinado, se deben discretizar las diferentes variables. Se dispone solamente de
12 bits para realizar la representación, ya que lo normal es que no se dispongan de toda la información
para completar la tabla de verdad. Se han escogido 2 bits para la dirección del viento(norte, sur, este,
oeste), 2 bits para la velocidad del viento (≤ 1,5 m/s, (1,5 − 3] m/s, (3 − 5] m/s, ≥ 7,5 m/s), 2 bits
para la humedad (≤ 20%, (20 − 50]%, (50 − 80]%, ≥ 80%),2 bits para la radiación (≤ 150 W/m2,
(150− 400]W/m2, (400− 800]W/m2, ≥ 800W/m2)y 4 bits para la temperatura(−5 : 2,5 : 35 oC).

Gracias a la discretización realizada a las variables, se pueden realizar instancias que corresponden a
una entrada de la tabla de verdad, por lo que se considera un patrón de la función a aprender. Las
instancias son del tipo:

Si 15 ≤ t ≤ 17,5 AND V v ≤ 1,5 m/s AND Dv = (N) AND 50% ≤ H ≤ 80% AND R ≥ 800W/m2

->�abierta�.

Esta instancia corresponde con la entrada de la tabla de verdad �0100 00 00 10 11� que tiene como
salida '1'. La tabla de verdad del sistema tiene por lo tanto 4096 entradas diferentes, el caso peor es el
que se desconocen todas las instancias del sistema y no se tiene ninguna entrada de la tabla a rellenar.
Dichas entradas se irán rellenando conforme el sistema vaya recopilando información del entorno, ésta
se puede extraer de forma automática, aunque la opción más viable es mediante un �experto� (persona
encargada del cultivo�) que indique al sistema que salidas deben tener los diferentes estado conforme
el sistema vaya pasando por ellos.

Para poder realizar un estudio más completo hemos completado la tabla de verdad, después se ha
comprobado el tiempo que tarda el sistema en aprender cada uno de las entradas y la precisión que
tiene la red neuronal resultante comparada con la tabla completa. Las entradas se han ido aprendiendo
de manera aleatoria para considerar el caso peor. En la Fig. 10 se puede comprobar el tiempo que
tarda el sistema en aprender todas las entradas y el correspondiente consumo por parte del Arduino en
realizarlo (superior), Además se puede observar la precisión conforme más instancias son aprendidas
(inferior).

16

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80
Tiempo y consumo de aprendizaje de una nueva instacia

T
ie

m
po

 (
s)

Nº de instancias aprendidas

0

177.7

355.5

533.3

711.1

C
onsum

o (µA
h)

1.22 s 10.8 µAh

Tiempo,Consumo
Media

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1
Precisión según las instancias aprendidas

P
re

ci
si

ón

Nº de intancias

Precisión

Figura 10.

Con el �n de evitar el aprendizaje de los patrones iniciales, se podría hacer un estudio precio y empezar
el sistema con un número de entradas ya aprendidas, esto supondría un ahorro de tiempo y consumo
para el sistema. Además se podría especi�car instancias que abarquen más de una entrada de verdad
de nuestra tabla para tener menos pasos que aprender. Por ejemplo la instancia:

Si 15 ≤ t ≤ 25 AND V v ≤ 1,5 m/s AND Dv = (N,W) AND 50% ≤ H ≤ 80% AND R ≥
800W/m2 ->�abierta�

corresponde a 8 entradas de la tabla de verdad ya que abarca un rango mayor de temperaturas (4
franjas) y mayor rango en cuanto a la dirección del viento (2 direcciones diferentes) hacen que esta
instancia corresponda con 8 entradas diferentes de la tabla de verdad. De esta forma se podría conseguir
un avance signi�cativo en la e�ciencia de la aplicación.

8.3. Predicción de caídas

La evaluación de este caso ha requerido de diferentes actuaciones, ya que es necesario la utilización
de la placa Arduino junto a un sensor acelerómetro que captura la posición del dispositivo en los ejes
(x,y,z). La posición captada es muestreada por el microcontrolador que normaliza los datos para que
éstos tengan un rango entre 0 y 255, con el �n de almacenarlos en una variable tipo �byte� y así ser
almacenados en menos espacio.
Se considerará una caída cuando en un breve periodo de tiempo (2 segundos) la posición del dispositivo
pasa de un estado inicial vertical a un estado �nal horizontal. Por lo tanto el microcontrolador deberá

17

almacenar 2 posiciones (estado inicial y �nal), cada una de las cuales tiene 3 variables (x,y,z) por lo
que el sistema pasa a ser una función con 6 variables.

El número de patrones que pueden ser almacenados en el sistema debe cumplir la ecu. 10, por lo cual el
número máximo de patrones, en este caso, es de 167 patrones de 6 variables. Debido a esto por mucho
que se dispongan más patrones para ser aprendidos, si queremos aprender un nuevo patrón debemos
desaprender otros, esto hará que el sistema pierda cierta precisión en la toma de decisiones.

Conseguir patrones de test es el primer paso para comprobar la e�ciencia de nuestra implementación.
Primero se ha colocado el microcontrolador junto con el acelerómetro en una persona y se realiza la
acción de caída reiterativamente para poder guardar esos patrones. Se han obtenido 4400 patrones de
test o referencia.

Después comprobamos como evolucionaría el sistema si partimos de 0 con el microcontrolador y poco
a poco se van captando diferentes patrones. En la �gura 11 �superior� puede observarse la evolución de
la precisión de la red neuronal que se va calculando conforme se obtienen los diferentes patrones, y en
la �inferior� puede observarse el tiempo que tarda en aprender cada patrón y el consumo de la placa
Arduino en realizarlo. Hay que tener en cuenta que a partir del patrón 167 es cuando para añadir un
patrón se ha de eliminar otro.

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1
Precisión según los patrones captados

P
re

ci
si

ón

Nº de patrones captados

0.99470.9947

Precisión

0 50 100 150 200
0

10

20

30
Tiempo y consumo de aprendizaje de un nuevo patrón

T
ie

m
po

 (
m

s)

Nº de patrones captados

0

88.8

177.7

266.6

C
onsum

o (nA
h)

9.74 ms 86.5 nAh

Tiempo,Consumo
Media

Figura 11. Precisión de la red neuronal obtenida en función del número de patrones que se hayan aprendido(supeior)
y tiempo de aprendizaje y consumo en realizarlo (inferior).

18

9. Conclusiones

Se ha aplicado en este trabajo el algoritmo de red neuronal constructivo C-Mantec a una placa Arduino,
solucionando los principales problemas que surgen a la hora de programar el mismo, los cuales vienen
dado por las limitaciones de la placa en cuanto a tamaño de memoria y velocidad de cómputo. En
este sentido se han propuesto diversas modi�caciones de la implementación para suplir dichas caren-
cias. Se ha analizado también, el número máximo de patrones que pueden ser almacenados, ya sean
estos representado por valores reales o booleanos, observándose como las modi�caciones propuestas
maximizan el número de patrones que se pueden almacenar. Para el caso de patrones booleanos, se ha
llevado a cabo una comparación entre una programación en representación de punto �otante, utilizada
tradicionalmente en estos algoritmos, y la modi�cación en punto �jo que se ha propuesto, quedando
demostrado que la implementación propuesta para el aprendizaje en todos los casos analizados, siempre
es más rápida que la programación tradicional.
También se ha comprobado la correcta implementación del algoritmo, y para ello se han comparado los
resultados obtenidos con los datos del artículo original [5], observándose que a medida que el número
de entradas de las funciones aumentan, la aplicación Arduino necesita sólo una pequeña cantidad
adicional de neuronas en el aprendizaje. Este efecto puede estar relacionado con la limitación inherente
a la representación en punto �jo que se utiliza para los pesos sinápticos. Los efectos de redondeo no
deberían, en principio, degradar el funcionamiento del algoritmo, pero si es verdad que afecta en cuanto
al número de iteraciones necesarias para lograr la convergencia.
Para �nalizar, se ha analizado la posibilidad de adaptar el sistema a diferentes escenarios, elegidos
de naturaleza dispar para que se deban resolver con enfoques diversos, con el �n de demostrar su
polivalencia. Se ha comprobado que el tiempo empleado en cada caso es signi�cativamente más bajo,
con lo que el consumo en su realización también lo será. Puede concluirse que el método propuesto parece
una muy buena solución para diferentes aplicaciones, ya que compite claramente en tiempo y consumo
con los métodos tradicionales, en particular en el proceso de adaptación a escenarios cambiantes.

Agradecimientos

El autor agradece el apoyo de la Junta de Andalucía a través del proyecto P10-TIC-5770.

Referencias

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12)
(August 2008) 2292�2330

2. Marwedel, P.: Embedded System Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA
(2006)

3. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications. 1st
edn. Kluwer Academic Publishers, Norwell, MA, USA (1997)

4. Andersson, A.: An Extensible Microcontroller and Programming Environment. Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science (2003)

5. Subirats, J., Franco, L., Jerez, J.: C-mantec: A novel constructive neural network algorithm incor-
porating competition between neurons. Neural Networks 26 (2012) 130�140

6. Oxer, J., Blemings, H.: Practical Arduino: Cool Projects for Open Source Hardware. Apress,
Berkely, CA, USA (2009)

7. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1994)
8. Gómez, I., Franco, L., Jerez, J.: Neural network architecture selection: Can function complexity

help? Neural Processing Letters 30 (2009) 71�87
9. Hunter, D., Hao, Y., Pukish, M., Kolbusz, J., Wilamowski, B.: Selection of proper neural network

sizes and architectures � a comparative study. IEEE Transactions on Industrial Applications 8
(2012) 228�240

10. Lakshmi, K., Subadra, M.: A survey on fpga based mlp realization for on-chip learning. In:
International Journal of Scienti�c & Engineering Research. Volume 4. (2013)

11. Franco, L., Elizondo, D., Jerez, J.: Constructive Neural Networks. Springer-Verlag, Berlin (2009)

19

12. Salewski, F., Taylor, A.: Fault handling in fpgas and microcontrollers in safety-critical embedded
applications: A comparative survey. In: Proceedings of the 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools, IEEE Computer Society (2007) 124�131

13. Buccella, C., Cecati, C., Latafat, H.: Digital control of power converters - a survey. IEEE Trans.
Industrial Informatics 8(3) (2012) 437�447

14. Malinowski, A., Yu, H.: Comparison of embedded system design for industrial applications. IEEE
Trans. Industrial Informatics 7(2) (2011) 244�254

15. Vieira, M.A.M., Coelho, Silva, D., da Mata, J.M.: Survey on wireless sensor network devices. In:
Proc. IEEE Conf. Emerging Technologies and Factory Automation ETFA '03. Volume 1. (2003)
537�544

16. Cela, A., Yebes, J.J., Arroyo, R., Bergasa, L.M., Barea, R., López, E.: Complete low-cost imple-
mentation of a teleoperated control system for a humanoid robot. Sensors 13(2) (2013) 1385�1401

17. Kornuta, J.A., Nipper, M.E., Brandon Dixon, J.: Low-cost microcontroller platform for studying
lymphatic biomechanics in vitro. Journal of Biomechanics (November 2012)

18. Zachariadou, K., Yiasemides, K., Trougkakos, N.: A low-cost computer-controlled arduino-based
educational laboratory system for teaching the fundamentals of photovoltaic cells. European Jour-
nal of Physics 33(6) (2012)

19. alt1040: 10 usos creativos que podemos darle a arduino. http://alt1040.com/2013/04/usos-
creativos-de-arduino

20. Urda, D., Canete, E., Subirats, J.L., Franco, L., Llopis, L., Jerez, J.M.: Energy-e�cient reprogram-
ming in wsn using constructive neural networks. International Journal of Innovative, Computing,
Information and Control 8 (2012) 7561�7578

21. E. Canete, E., Chen, J., R.Luque, Rubio, B.: Neuralsens: A neural network based framework
to allow dynamic adaptation in wireless sensor and actor networks. J. Network and Computer
Applications 35(1) (2012) 382�393

22. Farooq, U., Amar, M., ul Haq, E., Asad, M.U., Atiq, H.M.: Microcontroller based neural network
controlled low cost autonomous vehicle. In: Proceedings of the 2010 Second International Confer-
ence on Machine Learning and Computing. ICMLC '10, Washington, DC, USA, IEEE Computer
Society (2010) 96�100

23. S.Kumaravel, P.Neelamegam, R.Vasumathi: Article:distributed chloride prediction system using
neural network and pic18f452 microcontrollers in water analysis. International Journal of Computer
Applications 8(14) (October 2010) 15�20

24. Susnea, I.: Distributed neural networks microcontroller implementation and applications. Studies
in informatics and control 21(2) (2012) 165�172

25. Aleksendri¢, D., Jakovljevi¢, I., Irovi¢, V.: Intelligent control of braking process. Expert Syst. Appl.
39(14) (October 2012)

26. Ou, G., Murphey, Y.L.: Multi-class pattern classi�cation using neural networks. Pattern Recogn.
40(1) (January 2007) 4�18

27. Subirats, J.L., Jerez, J.M., Gómez, I., Franco, L.: Multiclass pattern recognition extension for the
new c-mantec constructive neural network algorithm. Cognitive Computation 2(4) (2010) 285�290

28. Atmel: Datasheet 328. http://www.atmel.com/Images/doc8161.pdf

20

