Implementacién de un algoritmo de red neuronal constructivo en
un microcontrolador Arduino UNO.

Francisco Ortega-Zamorano

Universidad de Malaga, Departamento de L.C.C., ETSI Informatica, Espana.
fortega@lcc.uma.es

Resumen Un algoritmo constructivo de redes neuronales receintemente introducido, C-Mantec, se
implementa en un dispositivo microcontrolador. El algoritmo C-Mantec genera arquitecturas de redes
neuronales muy compactas con muy buena capacidad de predicciéon; la combinaciéon de ambas carac-
teristicas hacen de este algoritmo un buen candidato para realizar el aprendizaje de un conjunto de
datos sin necesidad de transmitir informacién a una unidad de control central. Se analizan los detalles
mas complejos de la implementacion de dicha aplicaciéon y se realiza una prueba con un conjunto de
funciones de referencia utilizadas normalmente en el disefio de circuitos digitales para mostrar el correc-
to funcionamiento de la aplicacién. Ademas se presentan tres casos de estudio con sus correspondientes
evaluaciones en cuanto a su funcionamiento.

Abstract A recently proposed constructive neural network algorithm, named C-Mantec, is fully imple-
mented in a Arduino board. The C-Mantec algorithm generates very compact size neural architectures
with good prediction abilities, and thus the board can be potentially used to learn on-site sensed data
without needing to transmit information to a central control unit. An analysis of the more difficult steps
of the implementation is detailed, and a test is carried out on a set of benchmark functions normally
used in circuit design to show the correct functioning of the implementation. Also three case studies
are presented and their different evaluations.

Keywords: Constructive Neural Networks, Microcontroller, Arduino

Tutores: Leonardo Franco y José Manuel Jerez Aragonés.

1. Introducciéon

Diferentes tecnologias como son las redes de sensores inalambricas [1], los sistemas empotrados [2] y los
sistemas de tiempo real [3] son empleados hoy en dia en todo tipo de aplicaciones industriales, en muchas
de las cuales pueden usarse dispositivos microcontroladores [4]. Los recientes avances en la potencia de
célculo de este tipo de sistemas estd empezando a permitir el uso de sistemas de aprendizaje, los cuales
permiten ajustar el funcionamiento a medida que se reciben los datos de entrada.

Las redes neuronales son una especie de sistemas de aprendizaje, flexibles y ampliamente utilizadas
que pueden ser empleadas para esta tarea. Sin embargo una desventaja de las mismas es que su fase de
entrenamiento necesita una potencia de computo intensiva, haciendo su uso prohibitivo incluso para los
sistemas modernos. En este sentido, el algoritmo de red neuronal constructiva C-Mantec recientemente
propuesto tiene la ventaja de ser muy rapido en su fase entrenamiento y construccién, en comparaciéon
con los métodos estandares utilizados en redes neuronales de tipo “feed-forward”“. Ademas el algoritmo
C-Mantec genera arquitecturas muy compactas, hecho que es 1itil dado que los recursos de memoria
son muy limitados en los microcontroladores.

En este trabajo se ha implementado el algoritmo C-Mantec [5] en un microcontrolador, incluyendo el
proceso de aprendizaje, ya que éste proceso se realiza en el propio dispositivo en lugar de realizarlo
de forma externa como se hace habitualmente. El dispositivo microcontrolador elegido ha sido la placa
Arduino UNO [6] , ya que es un dispositivo muy popular, econémico y eficiente, siendo ademas de
codigo abierto.

Los factores criticos en el momento de la ejecucién del algoritmo C-Mantec son la escasez de recursos de
la memoria del microcontrolador utilizado (32 KB Flash, RAM de 2 KB y 1 KB de memoria EPROM)

y la velocidad de cémputo, por lo que la aplicacién se ha realizado con aritmética de punto fijo para
todas aquellas variables en las que se ha podido.

El presente documento esta estructurado de la siguiente manera: en primer lugar, describimos breve-
mente el estado del arte de las redes neuronales y los microcontroladores, para pasar a una descripciéon
del algoritmo C-Mantec y la placa Arduino, tras esto se detalla la implementacion del algoritmo, dando
a continuacion unos resultados intermedios de esta implementacion. Posteriormente se presentan tres
casos de estudios, evaluando la eficiencia de una posible implementacion del sistema en dichos casos.
Finalizamos con las conclusiones.

2. Antecedentes

Las Redes Neuronales Artificiales (Artificial Neural Network (ANN)) [7] son modelos matematicos
inspirados en el funcionamiento del cerebro, que puede ser utilizado en los problemas de agrupacién
y clasificacién, y que se han aplicado con éxito en varios campos, incluyendo el reconocimiento de
patrones, prediccion del mercado de valores, tareas de control, diagnostico y pronéstico médico, etc.
A pesar de afios de investigacion en el campo de la ANN] la seleccion de una arquitectura adecuada
para un problema dado sigue siendo una tarea compleja [8,9,10]. Entre las diversas estrategias para
resolver este problema, las Redes Neuronales Constructivas (Constructive Neural Networks (CoNN))
ofrecen la posibilidad de generar redes que crecen a medida que se analizan los datos de entrada, con lo
que se tiene una arquitectura conforme al conjunto de datos [11]. Por otra parte, el procedimiento de
formacion de las CoNN, considerado un problema computacionalmente costoso en las redes neuronales
“feed-forward” estandar, se puede hacer “on-line” y relativamente rapido. C-Mantec es un algoritmo
de tipo CoNN recientemente propuesto [5] que implementa competencia entre neuronas, permitiendo
que todas las neuronas aprendan durante todo el proceso de construccién de la arquitectura, ya que
no congela los pesos sinapticos ya existentes, como lo hacen la mayoria de los algoritmos CoNN. C-
Mantec ademaés incorpora un proceso de filtrado de patrones para evitar problemas de sobreajuste.
Estas dos caracteristicas permiten al algoritmo generar arquitecturas neuronales compactas con muy
buena capacidad de generalizacion, por lo que resulta un algoritmo adecuado para su aplicacién en
dispositivos con recursos limitados como microcontroladores, sistemas integrados, redes de sensores y
FPGAs.

Un microcontrolador (abreviado uC, UC o MCU) es un circuito integrado programable, capaz de eje-
cutar las 6rdenes grabadas en su memoria. Estd compuesto de varios bloques funcionales, los cuales
cumplen una tarea especifica. Un microcontrolador incluye en su interior las tres principales unidades
funcionales de una computadora: unidad central de procesamiento, memoria y periféricos de entra-
da/salida. Cada vez existen méas aplicaciones que incorporan un microcontrolador con el fin de aumen-
tar sustancialmente sus prestaciones, reducir su tamaifio y coste, mejorar su fiabilidad y disminuir el
consumo. [12,13,14,15]. En la tabla 1 podemos observar los microcontroladores mas usados ordenados
por familias y numero de bits de su arquitectura. En particular la placa Arduino que se utilizara en
este trabajo es un dispositivo de hardware libre que utiliza microcontroladores Atmel AVR | si bien
pueden utilizarse otros como el Atmegal68, Atmega328, Atmegal280 o ATmega8. Estas palcas ofrecen
al usuario varios puertos de entrada/salida y un entorno de desarrollo facil y amigable que permite
desarrollar proyectos de la mas diversa naturaleza [16,17,18]. Al ser un placa de hardware libre muchas
de sus aplicaciones no son publicadas en articulos cientificos sino en internet [19].

Las limitaciones més importantes de este tipo de dispositivos son la memoria y la velocidad de computo,
por ello implementar redes neuronales ha sido una tarea compleja ya que estos algoritmos requieren
un gran cantidad de memoria para poder realizar el aprendizaje de un conjunto de patrones. Esta es
la razén por la cual un gran nimero de las aplicaciones que emplean redes neuronales en un micro-
controlador utilizan el aprendizaje “off-line” es decir, se aprende la red neuronal en otro dispositivo
(normalmente un PC) y después el microcontrolador emplea la red aprendida [20,21,22]. En otros casos
el microcontrolador se emplea a modo de red distribuida, es decir, se genera una red de microcontro-
ladores donde cada nodo (microcontrolador) representa una neurona y la comunicacién entre nodos
representa los pesos sinapticos [23,24]. La opcién mas compleja es implementar el proceso de apren-
dizaje “on-chip”, es decir en el propio microcontrolador. Existen algunas aplicaciones realizadas de esta
manera, pero en las cuales la arquitectura de red neuronal se ha elegido ad hoc para solucionar un
problema especifico[25]. Sin embargo en la implementacion propuesta en este trabajo no hace falta

Cuadro 1. Microcontroladores més utilizados en aplicaciones actuales

lEmpresa [8 bits [16 bits [32 bits ‘
SAMT7(ARM7TDMI),AVR32,

Atmel AVR,89Sxxxx SAI\(/I3(ARM Cort)eX—M3

Freescale 68HCO05, 68HCO8, 68HC12, 68HCS12, 683xx, PowerPC,

(Motorola) 68HC11, HCS08 68HCSX12, 68HC16 ColdFire

Holtek HTS

Intel M(CS-48,M(CS51,8xC251| MCS96, MXS296

National Semic. COP8

Familias 10f2xx 12Cxx | PIC24F, PIC24H

Microchip 12Fxx, 16Cxx y 16Fxx | y dsPIC30FXX PIC32

NXP Semiconduc. Cortex-M3, Cortex-MO0,
(Philips) 80C51 XA ARM?7, ARMY
Renesas I HSS, 78K0R, R8C, RX, V850, SuperH,
(Mitsubishi) ’ R32C/M32C/M16C SH-Mobile, H8SX
STMicroelectro. ST 62, ST 7 STM32 (ARMT)
Texas C2000, Cortex-M3 (ARM),
Instruments TMS370 MSP430 TMS570 (ARM)
Zilog 78, Z86E02

elegir la arquitectura de la red a priori, la cual se realiza de forma automatica, por lo que serviria para
multiples aplicaciones de diversa indole.

3. C-Mantec, algoritmo constructivo de red neuronal

C-Mantec (Competitive Majority Network Trained by Error Correction) es un nuevo algoritmo con-
structivo de redes neuronales que utiliza la competencia entre las neuronas y una regla modificada de
aprendizaje del perceptron (thermal perceptron) para construir arquitecturas compactas con una buena
capacidad de predicciéon. La novedad de C-Mantec es que las neuronas compiten por el aprendizaje de
los datos entrantes, y este proceso permite la creaciéon de arquitecturas neuronales muy compactas. Los
estado de activacion (S) de las neuronas en la capa oculta depende de las N sefiales de entrada,;, y
de los valores de los N pesos sinapticos (w;) de la siguiente forma:

_ [1(ON) ifh>0
5= {O(OFF) otherwise (1)

Donde h es el potencial sinaptico de la neurona y queda definido como:

N
=0

En la regla del perceptron termal, la modificacion de los pesos sinapticos, Aw;, se realiza en linea
(después de la presentacion de un tnico patréon de entrada) de acuerdo con la siguiente ecuacion:

Awi = (t - S) 1/]7, Tfac (3)

Donde t es el valor objetivo para un patrén de entrada determinada y i representa el valor de la
entrada ¢ conectado a la salida mediante el peso w;. La diferencia entre las regla de aprendizaje del
perceptron estandar y la del perceptron termal es que ésto ultimo incorpora el factor Trqc. El calculo
del valor de éste factor, se muestra en ecuacion 4, dicho valor depende del potencial sinaptico(h) y de
una temperatura introducida artificialmente (1") que disminuye a medida que el proceso de aprendizaje
avanza.

?|

Toe = e 1 (4)

T

w

Dicha disminucién se realiza conforme a la ecu. 5.

1

max

T="To(1-), (5)
donde I es el contador de ciclos por neurona que cuantifica las iteraciones (“ciclo de aprendizaje”) del
algoritmo en esa neurona y Imaz €s el nimero maximo de estas iteraciones. Un ciclo de aprendizaje
del algoritmo es el proceso que se inicia cuando un patrén determinado se presenta a la red y acaba
después de la modificacion de los pesos sinapticos por parte de la neurona seleccionada para reconocer
el patron (ya sea una existente o una nueva neurona).

C-Mantec, como algoritmo CNN, tiene ademéas la ventaja de generar la topologia de la red on-line
mediante la adiciéon de nuevas neuronas durante la fase de entrenamiento, lo que lleva a tiempos de
entrenamiento mas rapido y arquitecturas mas compactas. El algoritmo C-Mantec tiene 3 parametros
que se establecen en el momento de iniciar el procedimiento de aprendizaje. Varios experimentos han
demostrado que el algoritmo es muy robusto frente a los cambios de los valores de los parametros y por
lo tanto C-Mantec funciona bastante bien en una amplia gama de valores. Los tres pardmetros son:

- Lnaz: nimero méaximo de iteraciones permitidas para cada neurona en la capa oculta por ciclo de
aprendizaje.

- gfac: factor de crecimiento que determina cuando detener un ciclo de aprendizaje e incluir una
nueva neuronas en la capa oculta.

- ¢: determina si un patréon de entrada se considera ruidoso y se retira del conjunto de datos de
entrenamiento de acuerdo con la siguiente condicion:

VX € {X1, Xa,..., Xn},delete(X) | NTL > (p+ ¢-0), (6)

donde N representa el nimero de patrones del conjunto de datos, NT'L es el nimero de veces que el
patron X ha sido aprendido por la red en el ciclo de aprendizaje actual, y el par {u, o } corresponde a
la media y la varianza de la distribucién normal que representa el nimero de veces que cada patron del
conjunto de datos se ha aprendido durante el ciclo de aprendizaje. Este procedimiento de aprendizaje
se basa esencialmente en la idea de que los patrones son aprendidos por las neuronas de la capa oculta
de la arquitectura, cuya salida difiere del valor objetivo (clasificado erroneamente la entrada) y para
el cual su temperatura interna es mayor que el valor de ajuste gsqc. En el caso en el que mas de un
perceptron termal de la capa oculta satisfaga dicha condicion en una iteracion dada, el perceptron con
la temperatura mas alta es el candidato seleccionado para reconocer el patrén entrante. Una nueva
neurona solo se aflade a la red cuando no hay perceptron termales que cumpla con estas condiciones,
con lo que se inicia un nuevo ciclo de aprendizaje.

En la figura 1 puede observarse el diagrama de flujo del algoritmo descrito, mostrandose las funciones
mas relevantes en los recuadros de la imagen, la toma de decisiones como los rombos y los estados més
importantes, inicio y fin como los 6valos.

3.1. Extension a problemas multiclase

El algoritmo C-Mantec es un algoritmo de clasificaciéon binario, por lo que para poder utilizarlo en
la clasificacion de conjuntos de datos con salida multiclase se aplicaran tres esquemas muy conocidos
[26,27]: Uno-contra-todos, Uno-contra-Uno y P-contra-Q. Los tres métodos obtienen un clasificador de
K clases usando estrategias que combinan M clasificadores binarios y un modulo de decisién simple
que tiene como entrada la salida de los clasificadores. Los M clasificadores son entrenados independi-
entemente con diferentes conjuntos de entrada Ce; que variaran en funcion de la estrategia elegida y
del conjunto de entrada original Ce.

Ce = {(X, C»L) /X = (xl, ...,l’N), C; e {Cl, ,Ck}} (7)

donde (X, C;) es una tupla del conjunto de entrenamiento compuesta por un vector de entrada X de
tamafio N y una clase de salida C; perteneciente al conjunto de clases posibles {C1, ..., Cx }.

El clasificador que se ha seleccionado para poder hacer un clasificador multiclase ha sido P-contra-Q.
Este esquema puede ser visto como el punto medio entre los otros dos esquemas, ya que en este caso
cada red C'Mantec;, separard un conjunto clases P; del resto QQ; = K — P;, siendo K el nimero de clases
del problema. Esta red separa dos grupos de clases entre ellas, pero no separa las clases que pertenecen

Inicio

P

{Estan todos

los patrones S—l) An
clasificados?

+ No
Seleccionar un patron
aleatorlamente

v

!Sallda Deseada Sl
= Salida Red?

J'No

Selecciona neurona equivocada
con un mayor valor de Tfac.

v

No Aol
Anadir nueva
77—
&Tact>Gfac? ——

¢ '

Entrenar neurona seleccionada | g Eliminar ejemplos
con la regla del Perceptrén Termal ruidosos

Figura 1. Diagrama de flujo del algoritmo constructivo de redes neuronales C-Mantec.

al mismo grupo, por lo que seran necesarias mas redes C-Mantec que nos permita discriminarlas. Por
lo tanto, en este esquema seran necesarias tantas redes como hagan falta hasta conseguir discriminar
todas las clases. El esquema OAA podria ser visto como un tipo de esquema PAQ donde cada P; sélo
contiene una clase y @Q; el resto de clases. El nimero de redes C-Mantec minimo para poder clasificar
K patrones es M = log (K) siguiendo una codificaciéon binaria. Sin embargo, esta codificacién minima,
aunque es muy eficiente en términos de redes a generar, no lo es tanto en términos de generalizacion
ya que no genera ninguna redundancia, por lo que es beneficioso utilizar un nimero mayor de redes
C'Mantec;.

Ce; ={(X,S; (X,Ce,Cod)) /X = (21,...,xN) } (8)
simon {1, 56 ¢ .

Al igual que en el caso OAA, el modulo de decision tendra que decidir cual sera la clase de salida a
partir del resultado generado por cada una de las M redes C-Mantec. Cada una de las K clases espera
un vector de salida de tamano M asociado a esa clase a la que nos referiremos como vector prototipo
de la clase k (Vi). Si el vector resultante de la salida de las M redes, V, no coincide con ninguno de
los K vectores prototipo, se escogera como salida aquella clase k que tenga un vector Vi méas cercano
a V en distancia Hamming, y en caso de empate, puede ser resuelto escogiendo la clase con mayor
probabilidad a priori o, en caso de que no pudiera ser resuelto, escogiendo una aleatoriamente. Se ha

anadido redundancia a este método usando K+ log (K) redes, siguiendo las K primeras una codificacion
similar a la utilizada en el método OAA y una codificacion binaria para las log (K) siguientes.

Redes C-Mantec
Redo [Redl [Redz [Redg [R€d4 [R€d5

Po | Q1| Q2| Qs | Qs Qs | Co
Qo | PL | Q| Q3| Qa| Ps || Ch
Qo | Q1| P | Q3| Py | Qs | Co
Qo | Q1 | Q| P3| Py | P5s || Cs

Clase

Cuadro 2. Ejemplo del esquema P-contra-Q (PAQ) en el cual un problema de 4 clases ha sido codificado por 6 redes
binarias.

La tabla 2 muestra un ejemplo de cémo es posible codificar un problema multiclase de K = 4 usando el
esquema PAQ con M = K + log (K) redes C-Mantec, en las cuales las 4 primeras (Redo... Reds) utilizan
una codificacion de tipo OAA, mientras que las dos tltimas (Reds y Reds) utilizan una codificacion de
tipo binaria. Con esta codificacion el conjunto de entrenamiento Ce; de una Red; deberia corresponderse
con la columna 7 de la tabla y la fila j de la clase que se desea codificar siguiendo la ecuacién 8.

4. Placa Arduino UNO

Arduino es una plataforma de hardware libre, basada en una placa con un microcontrolador y un
entorno de desarrollo, disefiada para facilitar el uso de la electrénica en proyectos multidisciplinares. El
Arduino Uno es una placa con microcontrolador basada en el chip ATmega328 [28]. Tiene 14 pines con
entradas/salidas digitales (6 de las cuales pueden ser usadas como salidas PWM), 6 entradas analogicas,
un cristal oscilador a 16Mhz, conexiéon USB, entrada de alimentacién, una cabecera ISCP, y un boton
de reset. El ATmega328 tiene 32KB de memoria flash para almacenar codigo (2KB son usados para el
arranque del sistema (bootloader)), dispone de 2 KB de memoria SRAM y 1KB de EEPROM.

El Arduino Uno dispone de un sistema de comunicaciéon para su uso con un ordenador, otro Arduino,
u otros microcontroladores. El ATmega328 ofrece comunicacion serie (UART), la cual esta disponible
en los pines digitales 0 (Rx) y 1 (Tx), ademéas dispone de comunicaciéon 12C y SPI. Para todas estos
sistemas de comunicacion la plataforma Arduino proporciona las librerias para su uso. Arduino es un
descendiente de la plataforma de codigo abierto Wiring por lo que se programa usando este lenguaje,
similar a C++ con algunas ligeras modificaciones. Se emplea bajo el entorno de processing. En la Tabla
3 se puede observar las especificaciones del microcontrolador Atmega328 correspondiente al Arduino
UNO.

Cuadro 3. Especificaciones mas relevantes del microcontrolador Atmega328 utilizado en la placa Arduino UNO

Atmega328
Voltaje operativo 5V
Voltaje de entrada recomendado 7-12V
Voltaje de entrada limite 6-20V
Pines de entrada y salida digital 14 (6 proporcionan PWM)
Pines de entrada analégica 6
Intensidad de corriente 40 mA
Memoria Flash 32KB (2KB reservados para el bootloader)
SRAM 2 KB
EEPROM 1 KB
Frecuencia de reloj 16 MHz

Las placas Arduino se comercializan finalizadas o pueden ser ensambladas por parte de los usuarios ya
que la informacion del disefio hardware esta disponible de manera publica. Las caracteristicas fisicas son,
una longitud y un ancho de 6.8 and 5.3 cm respectivamente, mas el conector USB y el de alimentacion
que se extiende mas alla de la dimensiéon anterior. Una imagen del Arduino UNO puede observarse en
la figura 2.

Figura 2. Imagen de la placa Arduino UNO usada para la implementacion del algoritmo C-Mantec.

5. Implementacion del algoritmo C-Mantec

El algoritmo C-Mantec implementado en el cédigo wiring es transmitido por USB desde el programa
correspondiente en el ordenador hacia la placa. El proceso implementado en el microcontrolador consta
de dos fases, la fase de aprendizaje, donde se calcula la red neuronal a partir de los datos guardados
en el microcontrolador y la fase de ejecuciéon donde se calcula las diferentes salidas de los patrones de
entrada en funcién de la red neuronal aprendida previamente. Los dos estados son seleccionados en el
microcontrolador mediante un pin E/S.

El estado de aprendizaje consta de dos acciones claramente diferenciadas, la carga de patrones y el
célculo de la red neuronal propiamente dicha. Los patrones pueden ser cargados on-line mediante los
pines de E/S de la placa o mediante una comunicacion serie por el puerto USB, pero en ambos casos
deben ser guardados en la memoria EEPROM. A continuaciéon se explican las principales cuestiones
técnicas para la implementacion del algoritmo de acuerdo con las dos fases antes mencionadas:

5.1. Carga de patrones

Es necesario almacenar los diferentes patrones en la memoria de la placa debido a que el proceso de
aprendizaje es ciclico (utiliza el conjunto de patrones de forma repetida). Para funciones booleanas
s6lo es necesario almacenar las salidas, ya que las entradas corresponden a la tabla de verdad formada
por la posicion que dichas entradas representan. Al tratarse de un clasificador binario sblo es necesario
almacenar un bit, por lo que las diferentes posiciones en la memoria para generar la tabla de verdad se
realizaran a nivel de bit y no de Byte.

Por ejemplo, para un caso con 8 entradas, el patréon de entrada podria ser “01101001” (105 en valor
decimal) con salida ’1’. En este caso se debe almacenar un ’1’ en la posicién de memoria 105 de la
EEPROM que corresponde al valor en decimal del patron de entrada. La placa Arduino Uno tiene 1
KB de memoria EEPROM, es decir, 8192 bits (2'%); por lo que el nimero de entradas en las funciones
booleanas esta limitada a 13.

En el caso de que se empleen tablas de verdades incompletas, ya sea por la eliminacién de patrones
ruidosos o por la naturaleza de la funcién, la memoria se dividira en dos partes; una para identificar la
existencia de los patrones y otra para identificar las salidas de dichos patrones. En este caso el nimero
maximo de entradas se reduce a 12.

Si la funciéon es de patrones de valores reales es necesario saber de antemano el nimero de bits utilizado
para representar dicho valor. Se han utilizado 8 bits para representar los valores de las funciones,

teniendo en cuenta que deben estar normalizados entre 0 y 1. Las entradas se almacenan en las primeras
posiciones de memoria y las salidas en las dltimas, para maximizar el nimero de patrones que se pueden
almacenar en una determinada memoria. A continuacién se muestra la ecuacion para poder calcular el
nimero maximo de patrones permitido en funcién del ntimero de entradas que se disponga:

Np-Ni+ Np/8 < 1024, (10)

donde N7 es el nimero de entradas y Np es el nimero de patrones. Np depende del nimero de entradas
y el nimero de bits utilizados para cada entrada.

5.2. Aprendizaje de la red neuronal

C-Mantec es un algoritmo constructivo por lo que va agregando nuevas neuronas conforme se van
requiriendo; dicha accién no es de facil implantacién en un microcontrolador ya que el manejo de la
memoria se hace de forma estatica por lo que hay que definir el nimero maximo de neuronas en el
sistema. Se ha establecido un tamafio méximo de memoria para almacenar las variables asociadas a
cada neurona, 1IKB de memoria SRAM, por lo que se ha dejado disponible otro KB de memoria para
almacenar las diferentes variables del algoritmo.
Los microcontroladores son dispositivos cuya velocidad de procesamiento es limitada, por lo que para
contribuir a la mayor rapidez del aprendizaje de una red neuronal se ha cambiado la forma de almace-
namiento de las variables asociadas a las neuronas y se ha pasado de representaciéon en punto flotante
(la utilizada en este tipo de algoritmo para representar los pesos sinapticos y las salidas de la red) a
una representacion de punto fijo. Este cambio en el paradigma representativo de las variables provoca
cambios sustanciales en la forma de programar este algoritmo, aunque como contrapartida obtenemos
una mayor velocidad de aprendizaje y un tamano menor de cada variable ya que se pasa de tipo float
a tipo integer en los pesos sinapticos.
Las variables asociadas a las neuronas y sus diferentes tamaifios y representaciones son:
- Tfqc: debe ser una variable tipo float y ocupa 4 bytes.
- Nimero de iteraciones: un valor entero con un rango entre 1.000 y 100.000 iteraciones, por lo que
debe ser de tipo long, 4 bytes.
- Pesos sinapticos: En casi todos los calculos esta involucrada ésta variable por lo que para acelerar
los calculos se elige tipo enterosde 2 bytes de longitud.
- Potencial sinaptico (h): Se calcula a raiz de un sumatorio de los pesos sinapticos, por lo que para
no saturar este valor se utiliza un tipo long de 4 bytes de longitud.
De acuerdo con las definiciones anteriores, el nimero maximo de neuronas (Ny) que pueden ser uti-
lizadas debe cumplir la siguiente premisa:

4-Ny+4-Ny+2-Ny-(Nr+1)+4- Ny <1024, (11)

donde N7 es el numero de entradas. Para el calculo mas desfavorable en las funciones booleanas (cuando
se disponen de 13 entradas) el niimero de maximas neuronas permitidas en la implementacion es 25.
Los pesos sinapticos y el potencial sinaptico se han implementado con 10 bits de precisién para la parte
decimal, por lo que el valor de los pesos estara entre 32 y -32. Si se vieran como valores enteros seria
entre -32768 y 32767.

El calculo de Ty, se hace usando un tipo punto flotante de datos, ya que requiere una operacion
exponencial que so6lo se puede hacer con este tipo, pero dicho célculo también implica a otro tipo de
datos (enteros),por lo que se deben realizar diferentes conversiones.

La primera conversién se da en la Ecu. 3, en ella habra que convertir el valor 7%,. en un valor tipo
punto fijo, para ello se multiplica el T4, por 1024 y se cambia su representacién a niimero entero,
perdiéndose s6lo 27! de la precision del valor. La segunda conversion se realiza en la Ecu. 4 donde hay
que convertir el potencial sinaptico (h) a punto flotante para que pueda ser calculada la exponencial del
Ttac- En este caso so6lo habria que hacer un desplazamiento del potencial sinadptico 10 bits a la derecha
y después convertirlo a representacion punto flotante para que pueda ser operado dentro del calculo del
Ttqc. Este proceso tiene un inconveniente, la saturaciéon de los pesos sinapticos, ya que cuando éstos
son mas grandes que 32 y menores a -32 se produce un desbordamiento de la variable, pudiéndose
provocar errores graves de calculo. Para evitarlo se ha realizado una funcién por la cual cuando los
pesos sinapticos alcancen un valor superior a 30 o inferior a -30 todos los pesos son divididos por 2, es
decir un desplazamiento a la derecha de 1 bit. Este cambio no afecta en absoluto al procedimiento de
la red ya que a las redes neuronales no les afecta este tipo de escalado.

6. Resultados de implementacién

En la figura 1 pueden observarse las diferentes funciones del algoritmo C-Mantec. En ella se puede
comprobar que dicho algoritmo consta de cinco funciones claramente diferenciadas de las cuales tres
de ellas (el célculo del valor del potencial sinaptico y consiguiente salida de la red, el calculo del Tyqc
y el cambio de los pesos sinapticos) difieren su implementaciéon dependiendo si se realizan con punto
fijo o con punto flotante. Mientras que las demas funciones (afiadir neurona y el filtrado) es similar en
ambas implementaciones.

Se han aislado las funciones en las que las implementaciones en punto fijo y punto flotante difieren, y
se ha comprobado el tiempo medio que tardan dichas funciones, segin se tenga una implementacién u
otra. Se han ejecutado las funciones 50 veces y se ha calculado el tiempo medio que tarda cada funciéon
en ser resuelta.

En la figura 3 se puede observar el tiempo de cada funcién con las dos implementaciones (izquierda)
y el nimero de veces que es mas rapida la implementacién en punto fijo respecto a la implementacion
en punto flotante. (derecha). En la figura superior izquierda se puede observar el tiempo que tarda el
algoritmo en calcular el potencial sinaptico y las salidas de la red, en funcién del nimero de neuronas.
Hay que tener en cuenta que esta funcion es dependiente del nimero de entradas. En la central vemos
el tiempo que tarda el algoritmo en modificar los pesos de una neurona determina; dicha funcién es
dependiente del nimero de entradas. En la figura inferior se calcula el valor Ty, de cada neurona.
Ademas se ha probado el correcto funcionamiento de la implementacion del algoritmo C-Mantec en
la placa Arduino mediante la comparaciéon de resultados, en términos de neuronas obtenidas, de la
implementaciéon del microcontrolador y la de la aplicacion utilizada en el PC. La prueba también se
llevo a cabo para analizar los efectos de una representacion de punto fijo que disminuye la precision de
los pesos sinapticos.

Un conjunto de 12 funciones booleanas de salida binaria del MCNC benchmark se ha utilizado para
probar la arquitectura de la red del algoritmo C-Mantec, més las funciones XOR de 2 y 3 entradas,
haciendo un total de 14 funciones booleanas a estudiar. El algoritmo C-Mantec se realiz6 con los
siguientes valores de pardmetros: grac = 0,05 y Imaz = 1000 Tabla 4 muestra los resultados obtenidos
con el microcontrolador para el conjunto de las funciones de referencia. Las dos primeras columnas
indican el nombre de la funcién y el ntimero de entradas. Las columnas tercera, cuarta y quinta muestran
el tamaifio de la red neuronal de la implementaciéon en el PC, de la implementacion en punto fijo y de
la implementacion en punto flotante respectivamente. Mientras que las dos tltimas columnas muestras
el tiempo que tardan las diferentes implementaciones en el microcontrolador. Para realizar dicha tabla
se ha lanzado el algoritmo 50 veces por funcién con el fin de que los resultados sean estadisticamente
significativos.

Cuadro 4. Numero de neuronas y tiempo de aprendizaje de la sintesis de un conjunto de funciones para las imple-
mentaciones en punto fijo (entero) y punto flotante, comparada ademas con lo dicho en el paper original.

. o N° Neuronas Tiempo (s)
Funcién \N® Entradas Teoria Entero Flotante Entero Flotante
XOR2 2 2,0+0,0| 2,04+0,0 | 2,0+0,0 |0,36 +0,01| 0,57 + 0,03
XOR3 3 3,0+£0,0| 3,0+£0,0 | 3,04+0,0 | 1,44+0,11 | 2,22 + 0,26
cm&2af 5 3,0+£0,0| 3,04+£0,0 | 3,0+0,0 |1,84 0,28 3,15+ 0,64
cm82ag 5 3,0+0,0(3,644+0,63| 3,6 +0,7 |4,11+1,88] 8,1+44
cm82ah 5 3,0+£0,0| 3,04+0,0 | 3,04+0,0 |1,854+0,21| 3,35+ 0,63
z4ml24 7 1,0+0,0| 1,0+0,0 | 1,0+ 0,0 |0,23 +0,05| 0,47 + 0,13
z4ml25 7 3,1+0,0(3,11 +0,40(3,11 + 0,40|3,36 4+ 1,04| 6,43 + 2,05
z4ml26 7 3,0+£0,0| 3,04+£0,0 | 3,04+0,0 |2,67+0,45|5,39 £1,11
9symml 9 3,0+£0,0| 3,04+£0,0 | 3,0+0,0 |4,43 £0,58(12,8 4+ 2,061
alu2k 10 11,2+ 0,0(12,7 4+ 0,97|12,3 £ 0,71| 220 £ 50,1 | 969 + 260
alu2m 10 2,0+0,0| 2,04+£0,0 | 2,04+0,0 |3,94 +£0,21| 13,1 0,88
alu2n 10 1,0+0,0| 1,0+0,0 | 1,0+ 0,0 (0,41 +0,15/0,99 +0,41
alu2o 10 11,24+ 0,0(13,0+0,75(|12,4 £ 0,78/ 312 + 59,6 | 1444 + 824
alu2p 10 3,0+£0,0| 3,04+£0,0 | 3,04+0,0 |20,8 43,7 84,1 £17,2

Tiempo en el calculo de salida de la red

4000

O Entero
—— Punto flotante

3000t
g 2
o (5}
2 2000 o
E (=]
@ z
|_
3.5 2 entradas
1000} —<&— 5 entradas
3 —+&— 10 entradas
—©o— 15 entradas
0 = 25
0 5 10 15 20 0 5 10 15 20
N° neuronas N° neuronas
Tiempo en modificar una neurona
350 " ; 45 .
3001 | —m— Punto flotante 4
250
& 35
= 200 8
g e 3
£ >
g 150 S
= 25
100 1
000
50 60000000000 f 2
0 - : 15 - :
0 5 10 15 0 5 10 15
N° entradas N° entradas
Tiempo de calculo de max(Tfac(i))
5000 15
+
4000 Punto flotante | 1.4
— 1.3
2 3000 2
9]
o 12
£ °
.2 2000 z
= 11
1000 1
0 0.9 - : .
0 5 10 15 20
N° neuronas N° neuronas

Figura 3. Tiempo de calculo de las diferentes funciones del algoritmo C-Mantec con las dos implementaciones posibles
(graficas izquierdas) y el nimero de veces que es mas rapida la representacion de punto fijo que la de punto flotante
(graficas derechas).

En la figura 4 puede observarse, en la grafica superior, los diferentes tiempos de aprendizaje de todas las
funciones del conjunto seleccionado y, en la grafica inferior, una funcién del nimero de veces que es méas
rapido la representacién en punto fijo que la de punto flotante . La grafica superior se ha representado
en escala logaritmica para el eje y (tiempo de aprendizaje) para que pueda ser visualizada mejor. Para
la obtencién de dichos datos se ha lanzado cada implementacién 50 veces y se han calculados los valores
medios que son los representados en la figura.

10

Tiempo de aprendizaje

10 N ——————
O punto fijo
H punto flotante
¥ [|
10" -]
o (@]
2
s 10" .]
o
1 o
Q
F 10"k . m =]
[|
m ® 5 O o O O
B o o0
0 (@)
10"]]
[| (l) o
10_1 I I I I I ! L |))) ‘ ‘ ‘
22, X0 XOm Drro Crrro 22 22 o Crrre 95, AUya Ay AU
g e Ry R %?e;b&?a/;o”ee'”/?s"ew%’eegy’bo)f’ 2 24 M2,
N° veces mas rapido punto fijo que flotante
6 T T T T T T T T T T - :
5k o .
(0]
Ml o)]
[%2]
8 o
g 3 5 |
z Q
2l @ o © ¢ 1o |
(@] (@]
17 -

22y XV X Or e 28 29 Al 95, A A0
Figura 4. Tiempo de aprendizaje para cada funcion del conjunto de prueba (grafica superior) y ntimero de veces que
es mas rapida la representacion de punto fijo que la de punto flotante (grafica inferior)

En la Fig. 5 se puede observar la evolucion temporal de una funciéon determinada. Se ha escogido
la Alu2k por ser una funciéon que precisa de un mayor niimero de neuronas en la capa oculta para
ser aprendida y se ha comprobado el tiempo que tarda en llegar a una neurona determina. Por lo
que la grafica superior muestra el tiempo que tarda en llegar a una neurona determinada para ambas
implementaciones y en la grafica inferior el nimero de veces que es mas rapida la implementacién en
punto fijo que en punto flotante.

11

Tiempo para una neurona determinada
800 ‘ ‘ ‘ ‘ ‘
O punto fijo
—— punto flotante

600

tiempo (s)
N
o
o

200

o ©
0 Q@ ‘
0 2 4 6 8 10 12 14
N° Neurona
Comparativa de velocidad
4.5 T T T T
4r O
§ 3.5F o k
g
g]
Z 25 °
O
2t o0 9 :
o—©
1.5 Il Il Il Il Il Il
0 2 4 6 8 10 12 14

N° de Neuronas

Figura 5. Evolucion temporal de la funcion Alu2K segtn el tiempo que tarda la aplicaciéon en obtener un tamaiio de
red determinado (grafica superior) y el ntimero de veces que es méas rapida la representaciéon en punto fijo que la de
punto flotante en dicha evolucion.

7. Casos de estudios

Con el fin de comprobar la eficiencia de la utilizacién de redes neuronales en aplicaciones donde sean
necesarios el uso de microcontroladores para sensar y/o actuar sobre el entorno, se han considerado
3 casos de estudios de naturaleza dispar, que requieren diferentes tipos de soluciones. El primer caso
es la deteccion de incendios mediante una alarma, para ello se dispone de patrones booleanos que
conforman una tabla de verdad completa; el segundo caso es la activacion de una valvula de riego segiin
unas variables determinadas ambientales, las cuales se han discretizado para poder ser estudiadas
conformando una tabla de verdad, siendo lo mas probable que no esté completa; y por tltimo el
problema de deteccion de caidas de personas, este caso formado por patrones reales de los cuales s6lo
podran ser aprendidos un ntimero determinado de ellos.

7.1. Alarma de incendios

Existen muchos casos en los que los microcontroladores se usan como sensores/actuadores para controlar
una serie de variables y proceder en consecuencia. Un caso muy comin es la utilizacién de este tipo de
sistemas en la fabricacion de alarmas, como por ejemplo las de deteccion de incendios.

El sistema capta las diferentes variables encargadas de la deteccion de incendios (temperatura, humo
y gas), se definen ciertos umbrales para los cuales los niveles de dichas variables son peligrosos y el
sistema toma una decisién conforme a dichas variables. (Ver Fig. 6).

12

Humo Alarma

Temperatura

Figura 6. Representacion esquemaética de una habitacion en la cual se ha instalado una alarma de incendios.

Seria légico suponer que esta accién podria llevarse a cabo mediante la utilizacién de programacion
tradicional con el empleo de sentencias “if”. El problema surge cuando la decision tomada de antemano
no es la adecuada, ya sea por un mal estudio inicial o por la utilizacién de dicho sistema en entornos
diferentes a los previstos. Por ejemplo si se desarrolla un sistema para la detecciéon de incendio en una
habitacién y el sistema se coloca en estancias con altas concentraciones de humo, como podria ser la
cocina, en este caso el sistema activard la alarma en muchas situaciones en las que no deberia.
Siguiendo el método de programacién tradicional seria necesario desconectar el sistema, rehacer el
estudio previo para adaptarlo a las nuevas condiciones, cargar el nuevo cédigo y restaurar el sistema.
En cambio si utilizamos una red neuronal para este escenario lo tinico que tendriamos que hacer es
que el sistema aprenda el estudio previo y si éste es equivocado, por cualquier motivo, simplemente
tendriamos que indicarle su error y el sistema modificara sus patrones, reaprendiendo su nuevo estado
sin ninglin tipo de interacciéon o estudio sobre el nuevo escenario; y en particular sin necesidad de
interrumpir el sistema.

7.2. Predicciéon meteorologica

A lo largo de la historia siempre se han intentado hacer predicciones meteorologicas para conocer los
cambios climéaticos y poder tomar decisiones correctas sobre los cultivos (ya sean tiempo de recoleccion,
momento de riego o tipo de cultivo). Automatizar esta prediccién ha sido un problema ampliamente
abordado por las redes neuronales.

El sistema captara las diferentes variables ambientales (velocidad (Vv) y direcciéon (Dv) del viento,
temperatura (t), humedad (H) y radiacion solar (R)) y se discretizarén sus valores en diferentes escalas
dependiendo de qué variable sea. Y la decisién a tomar puede ser la necesidad o no de regar un tipo de
cultivo.(ver Fig.7).

Figura 7. Fotografia de un sistema de sensores encargado de captar las diferentes variables ambientales y actuar en
consecuencia.

13

A priori no se conoce la funcién de prediccion meteorologica para cualquier situacion geografica y
ademéas habra que tener en cuenta sobre qué tipo de cultivo se va a realizar la prediccion. Esto hace
que un estudio a priori del escenario sea practicamente imposible.

Con una red neuronal s6lo tenemos que ver la evolucion de los diferentes cultivos e ir modificando la red
neuronal conforme al historico de datos. Aunque se disponga de una red inicial de partida gracias a un
estudio general sobre condiciones climaticas para todo tipo de cultivo, esta red evolucionara conforme
a las condiciones microcliméticas del lugar y las necesidades de lo cultivado. Este hecho puede hacer
que no dispongamos de todos los datos necesarios para generar de forma completa la tabla de verdad
de los patrones del sistema.

7.3. Detecciéon de caidas

Existe una necesidad de hacer un seguimiento a ciertas personas que viven solas, ya sean personas
mayores u otras con algin tipo de minusvalia, ya que dichas personas son dependientes y no pueden
valerse por ellas mismas. La necesidad principal de seguimiento surge cuando estas personas sufren una
caida o un periodo prolongado de inactividad. Hay diferentes formas de abordar este problema, como
por ejemplo con caAmaras de videovigilancia, aunque este tipo de sistemas tienen un gran inconveniente,
la sensibilidad a los cambios de luz producidos en una estancias.

Una forma maés eficiente es captar las caidas de una persona utilizando un sensor. Primero colocamos a
una persona un acelerémetro de 3 ejes para controlar el angulo de inclinacién y el movimiento (ver Fig.
8). Esta configuracion detecta cualquier movimiento anémalo en el individuo que la usa, tales como un
fuerte movimiento hacia abajo o de hecho cualquier movimiento brusco o violento.

Sensor i Static node
@ Alarm
~~~~~ Wireless

Figura 8. Implementacién de un sistema para supervisar las caidas.

Extraer la logica que describe el comportamiento de las caidas es una tarea ardua y requiere demasiado
tiempo. Sin embargo con las redes neuronales esta tarea se simplifica, ya que para extraer una regla de
decisién que defina si una persona se ha caido o no, s6lo se precisa de unos patrones de entrenamiento
y que la red neuronal aprenda a partir de esos patrones de referencia.

C-Mantec necesita datos reales para ser entrenado por lo que para construir la red neuronal que luego
prodiga las caidas, se precisa de una recoleccién de datos previa para poder tener un conjunto de
patrones con los que poder entrenar, por lo que el desarrollador no tiene que saber la relaciéon entre los
datos recogidos con el fin de detectar la caida.

Después de generar la estructura del modelo de red neuronal, se probé utilizando otros patrones para
comprobar la fiabilidad de los resultados de la clasificacion. Si la arquitectura es correcta, el modelo
de red neuronal interpretara correctamente los datos proporcionados por los sensores y decidira si ésta
informacion corresponde a una caida o no.

14



8. Evaluacion

Con el fin de comprobar la eficiencia de la soluciéon empleada para los diferentes casos de estudio
planteados, se ha realizado un evaluacién de cada uno de ellos, comprobando el tiempo de re-aprendizaje,
y el consumo del Arduino para poder realizado, y asi conocer si es mas rentable realizar el reaprendizaje
de nuevos escenarios en el propio microcontrolador en lugar de realizarlos por otros métodos.

8.1. Alarma de incendios

La realizacion de este caso de estudio requiere acoplar diferentes sensores (temperatura, humo y gas)
al Arduino, estos sensores se activaran ('1’) cuando los niveles medidos superen un determinado um-
bral, que puede ser modificado y dependerd de cada sensor. Por ejemplo el sensor de temperatura se
activara (’1’) cuando el valor medido sea superior a 40° C, mientras que para temperaturas inferiores
consideraremos que se encuentra desactivado (’0’).

Con la activaciéon de los sensores se conforma una tabla de verdad que el sistema debera aprender
para poder decidir en qué estado de alarma se encuentra. Hemos especificado ocho estados de alarma
diferentes, ya que éste es el caso mas desfavorable, puesto que cada entrada de la tabla de verdad
dispone de un estado diferente, dicho caso sera el estado inicial del sistema. Los estados de alarma
se especifican del 8 menos peligroso al 1 el més peligroso. En la tabla 5 puede observarse la tabla de
verdad generada para satisfacer el estado inicial. Donde la columna “alarma” indica el grado de peligro,
y la columna “representacion” indica la representacién binaria que tendrd cada alarma. Cabe destacar
que la representacion binaria se realiza ya que el algoritmo C-Mantec es un clasificador binario y de
esta forma se puede realizar una clasificaciéon multiclase.

Cuadro 5. Tabla de verdad del estado inicial del sistema para la detecciéon incendio.

Gas|Humo|Temperatura|Alarma|Representacion
0 0 0 8 000
0 0 1 7 001
0 1 0 6 010
0 1 1 5 011
1 0 0 4 100
1 0 1 3 101
1 1 0 2 110
1 1 1 1 111

En primera instancia se ha comprobado el tiempo que tarda el sistema en aprender el estado inicial,
con cuantas neuronas ha sido capaz de resolverlo y la potencia consumida en hacerlo. En la tabla 6
pueden observarse los datos mencionados.

Cuadro 6. Valores de tiempo, consumo y ntmero de neuronas del proceso de aprendizaje del estado inicial.

N° Neuronas|Tiempo (ms)|Consumo(nAh)
30+0,0 |8,228F488| 73,13 43,4

Después se ha comprobado el tiempo que tarda el sistema en re-aprender un cambio en el estado de una
alarma de una entrada concreta de la tabla, con el fin de evaluar la eficiencia de esta implementacion en
comparacion con una programacion tradicional en la que se necesitaria recargar el codigo programado.
En la Fig. 9 puede observarse el tiempo que tarda y su correspondiente consumo en el proceso de
re-aprendizaje de un cambio en el estado de una alarma, en funcién del estado inicial de dicha alarma
(eje abscisa); ademas se puede observar el tiempo y consumo medios producidos por el proceso de
re-aprendizaje.

15



Tiempo y consumo de re—aprendizaje de un nuevo estado de alarma

O Aumentar Alarma
20| —m— Disminuir Alarma 1177.7
Media
(@]
@]
15F o 4133.34
™ o
£ 2
g 5
g o =4
£ 10110.97 ms 97.5 nA 88.88%
(@] =
5r 144.44
Il Il Q Il Il Il
1 2 3 4 5 6 7 8
Estado previo de la alarma 0

Figura 9. Tiempo y consumo del proceso de re-aprendizaje de cambiar un estado de una determinada alarma ya sea
aumentar o disminuir, en el eje de abscisa se representa la gravedad de la alarma.

8.2. Prediccion climatica

Con el fin de evaluar la implementacion de la prediccion climética para la apertura de una valvula de
riego en un cultivo determinado, se deben discretizar las diferentes variables. Se dispone solamente de
12 bits para realizar la representacion, ya que lo normal es que no se dispongan de toda la informaciéon
para completar la tabla de verdad. Se han escogido 2 bits para la direccion del viento(norte, sur, este,
oeste), 2 bits para la velocidad del viento (< 1,5 m/s, (1,5 —3] m/s, (3 —5] m/s, > 7,5 m/s ), 2 bits
para la humedad (< 20%, (20 — 50] %, (50 — 80] %, > 80 % ),2 bits para la radiaciéon (< 150 W/m?,
(150 — 400] W/m?, (400 — 800] W/m?, > 800 W/m? )y 4 bits para la temperatura(—5 : 2,5 : 35 °C).

Gracias a la discretizacion realizada a las variables, se pueden realizar instancias que corresponden a

una entrada de la tabla de verdad, por lo que se considera un patrén de la funcién a aprender. Las
instancias son del tipo:

» Sil5<¢<17,5AND Vv < 1,5m/s AND Dv = (N) AND 50% < H < 80% AND R > 800 W/m>
->“abierta’”.

Esta instancia corresponde con la entrada de la tabla de verdad “0100 00 00 10 11” que tiene como
salida '1’. La tabla de verdad del sistema tiene por lo tanto 4096 entradas diferentes, el caso peor es el
que se desconocen todas las instancias del sistema y no se tiene ninguna entrada de la tabla a rellenar.
Dichas entradas se irdn rellenando conforme el sistema vaya recopilando informacioén del entorno, ésta
se puede extraer de forma automatica, aunque la opcién méas viable es mediante un “experto” (persona
encargada del cultivo”) que indique al sistema que salidas deben tener los diferentes estado conforme
el sistema vaya pasando por ellos.

Para poder realizar un estudio mas completo hemos completado la tabla de verdad, después se ha
comprobado el tiempo que tarda el sistema en aprender cada uno de las entradas y la precisiéon que
tiene la red neuronal resultante comparada con la tabla completa. Las entradas se han ido aprendiendo
de manera aleatoria para considerar el caso peor. En la Fig. 10 se puede comprobar el tiempo que
tarda el sistema en aprender todas las entradas y el correspondiente consumo por parte del Arduino en
realizarlo (superior), Ademéas se puede observar la precision conforme mas instancias son aprendidas
(inferior).

16



Tiempo y consumo de aprendizaje de una nueva instacia

80 T T T T T T T T 7111
»— Tiempo,Consumo
1 Media
60 4533.3
@ I 9
g | o 13 7
g 40 55.&3
Kol R [}
= I =
If 4 >
° =)
I =2
20+ f 1177.7
WED L ) :
122 SM & = ‘ ‘ 80'8 HA
0 500 1000 1500 2000 2500 3000 3500 4000
N° de instancias aprendidas
Precision segun las instancias aprendidas
1
0.8F b
S 0.6 ]
@
(8]
(9]
a 04r b
0.2F b
0 ! ‘

0 500 1000 1500 2000 2500 3000 3500 4000
N° de intancias

Figura10.

Con el fin de evitar el aprendizaje de los patrones iniciales, se podria hacer un estudio precio y empezar
el sistema con un nimero de entradas ya aprendidas, esto supondria un ahorro de tiempo y consumo
para el sistema. Ademas se podria especificar instancias que abarquen méas de una entrada de verdad
de nuestra tabla para tener menos pasos que aprender. Por ejemplo la instancia:

» Si15 <t <25 AND Vo < 1,5 m/s AND Dv = (N,W) AND 50% < H < 80% AND R >

800 W/m? ->“abierta”

corresponde a 8 entradas de la tabla de verdad ya que abarca un rango mayor de temperaturas (4
franjas) y mayor rango en cuanto a la direccion del viento (2 direcciones diferentes) hacen que esta
instancia corresponda con 8 entradas diferentes de la tabla de verdad. De esta forma se podria conseguir
un avance significativo en la eficiencia de la aplicacion.

8.3. Prediccién de caidas

La evaluacion de este caso ha requerido de diferentes actuaciones, ya que es necesario la utilizacion
de la placa Arduino junto a un sensor acelerometro que captura la posicion del dispositivo en los ejes
(x,y,z). La posicion captada es muestreada por el microcontrolador que normaliza los datos para que
éstos tengan un rango entre 0 y 255, con el fin de almacenarlos en una variable tipo “byte” y asi ser
almacenados en menos espacio.

Se considerara una caida cuando en un breve periodo de tiempo (2 segundos) la posicion del dispositivo
pasa de un estado inicial vertical a un estado final horizontal. Por lo tanto el microcontrolador debera

17



almacenar 2 posiciones (estado inicial y final), cada una de las cuales tiene 3 variables (x,y,z) por lo
que el sistema pasa a ser una funciéon con 6 variables.

El nimero de patrones que pueden ser almacenados en el sistema debe cumplir la ecu. 10, por lo cual el
nimero maximo de patrones, en este caso, es de 167 patrones de 6 variables. Debido a esto por mucho
que se dispongan mas patrones para ser aprendidos, si queremos aprender un nuevo patrén debemos
desaprender otros, esto hara que el sistema pierda cierta precisiéon en la toma de decisiones.

Conseguir patrones de test es el primer paso para comprobar la eficiencia de nuestra implementacion.
Primero se ha colocado el microcontrolador junto con el acelerémetro en una persona y se realiza la
accion de caida reiterativamente para poder guardar esos patrones. Se han obtenido 4400 patrones de
test o referencia.

Después comprobamos como evolucionaria el sistema si partimos de 0 con el microcontrolador y poco
a poco se van captando diferentes patrones. En la figura 11 “superior” puede observarse la evolucion de
la precision de la red neuronal que se va calculando conforme se obtienen los diferentes patrones, y en
la “inferior” puede observarse el tiempo que tarda en aprender cada patrén y el consumo de la placa
Arduino en realizarlo. Hay que tener en cuenta que a partir del patron 167 es cuando para afiadir un
patron se ha de eliminar otro.

Precision segun los patrones captados

1 T T T T
0.9947
0.8F
& 06 .
K]
(8]
]
a 04 b
0.2F b
O Il Il Il Il Il Il Il Il Il
20 40 60 80 100 120 140 160 180 200
N° de patrones captados
Tiempo y consumo de aprendizaje de un nuevo patron
30 \ T T 266.6
©— Tiempo,Consumo
Media °
°
20 1177.7
w @)
2] o
E o 2
g 5
e o
2 1 3
10 =88.8 =
86.5 nAh
0 : : 0
0 50 100 150 200

N° de patrones captados

Figura 11. Precision de la red neuronal obtenida en funcién del nimero de patrones que se hayan aprendido(supeior)
y tiempo de aprendizaje y consumo en realizarlo (inferior).

18



9. Conclusiones

Se ha aplicado en este trabajo el algoritmo de red neuronal constructivo C-Mantec a una placa Arduino,
solucionando los principales problemas que surgen a la hora de programar el mismo, los cuales vienen
dado por las limitaciones de la placa en cuanto a tamafio de memoria y velocidad de cémputo. En
este sentido se han propuesto diversas modificaciones de la implementaciéon para suplir dichas caren-
cias. Se ha analizado también, el nimero méximo de patrones que pueden ser almacenados, ya sean
estos representado por valores reales o booleanos, observandose como las modificaciones propuestas
maximizan el nimero de patrones que se pueden almacenar. Para el caso de patrones booleanos, se ha
llevado a cabo una comparacion entre una programacion en representacion de punto flotante, utilizada
tradicionalmente en estos algoritmos, y la modificacién en punto fijo que se ha propuesto, quedando
demostrado que la implementacién propuesta para el aprendizaje en todos los casos analizados, siempre
es méas rapida que la programacion tradicional.

También se ha comprobado la correcta implementaciéon del algoritmo, y para ello se han comparado los
resultados obtenidos con los datos del articulo original [5], observandose que a medida que el niimero
de entradas de las funciones aumentan, la aplicacion Arduino necesita solo una pequeiia cantidad
adicional de neuronas en el aprendizaje. Este efecto puede estar relacionado con la limitaciéon inherente
a la representacién en punto fijo que se utiliza para los pesos sinapticos. Los efectos de redondeo no
deberian, en principio, degradar el funcionamiento del algoritmo, pero si es verdad que afecta en cuanto
al nimero de iteraciones necesarias para lograr la convergencia.

Para finalizar, se ha analizado la posibilidad de adaptar el sistema a diferentes escenarios, elegidos
de naturaleza dispar para que se deban resolver con enfoques diversos, con el fin de demostrar su
polivalencia. Se ha comprobado que el tiempo empleado en cada caso es significativamente mas bajo,
con lo que el consumo en su realizacién también lo sera. Puede concluirse que el método propuesto parece
una muy buena solucion para diferentes aplicaciones, ya que compite claramente en tiempo y consumo
con los métodos tradicionales, en particular en el proceso de adaptacion a escenarios cambiantes.

Agradecimientos

El autor agradece el apoyo de la Junta de Andalucia a través del proyecto P10-TIC-5770.

Referencias

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12)
(August 2008) 2292-2330

2. Marwedel, P.: Embedded System Design. Springer-Verlag New York, Inc., Secaucus, NJ, USA
(2006)

3. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications. 1st
edn. Kluwer Academic Publishers, Norwell, MA, USA (1997)

4. Andersson, A.: An Extensible Microcontroller and Programming Environment. Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science (2003)

5. Subirats, J., Franco, L., Jerez, J.: C-mantec: A novel constructive neural network algorithm incor-
porating competition between neurons. Neural Networks 26 (2012) 130-140

6. Oxer, J., Blemings, H.: Practical Arduino: Cool Projects for Open Source Hardware. Apress,
Berkely, CA, USA (2009)

7. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1994)

8. Gomez, 1., Franco, L., Jerez, J.: Neural network architecture selection: Can function complexity
help? Neural Processing Letters 30 (2009) 71-87

9. Hunter, D., Hao, Y., Pukish, M., Kolbusz, J., Wilamowski, B.: Selection of proper neural network
sizes and architectures — a comparative study. IEEE Transactions on Industrial Applications 8
(2012) 228-240

10. Lakshmi, K., Subadra, M.: A survey on fpga based mlp realization for on-chip learning. In:
International Journal of Scientific & Engineering Research. Volume 4. (2013)

11. Franco, L., Elizondo, D., Jerez, J.: Constructive Neural Networks. Springer-Verlag, Berlin (2009)

19



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Salewski, F., Taylor, A.: Fault handling in fpgas and microcontrollers in safety-critical embedded
applications: A comparative survey. In: Proceedings of the 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools, IEEE Computer Society (2007) 124-131
Buccella, C., Cecati, C., Latafat, H.: Digital control of power converters - a survey. IEEE Trans.
Industrial Informatics 8(3) (2012) 437447

Malinowski, A., Yu, H.: Comparison of embedded system design for industrial applications. IEEE
Trans. Industrial Informatics 7(2) (2011) 244-254

Vieira, M.A.M., Coelho, Silva, D., da Mata, J.M.: Survey on wireless sensor network devices. In:
Proc. IEEE Conf. Emerging Technologies and Factory Automation ETFA ’03. Volume 1. (2003)
537-544

Cela, A. Yebes, J.J., Arroyo, R., Bergasa, L.M., Barea, R., Lopez, E.: Complete low-cost imple-
mentation of a teleoperated control system for a humanoid robot. Sensors 13(2) (2013) 1385-1401
Kornuta, J.A., Nipper, M.E., Brandon Dixon, J.: Low-cost microcontroller platform for studying
lymphatic biomechanics in vitro. Journal of Biomechanics (November 2012)

Zachariadou, K., Yiasemides, K., Trougkakos, N.: A low-cost computer-controlled arduino-based
educational laboratory system for teaching the fundamentals of photovoltaic cells. European Jour-
nal of Physics 33(6) (2012)

alt1040: 10 usos creativos que podemos darle a arduino. http://alt1040.com/2013/04/usos-
creativos-de-arduino

Urda, D., Canete, E., Subirats, J.L., Franco, L., Llopis, L., Jerez, J.M.: Energy-efficient reprogram-
ming in wsn using constructive neural networks. International Journal of Innovative, Computing,
Information and Control 8 (2012) 7561-7578

E. Canete, E., Chen, J., R.Luque, Rubio, B.: Neuralsens: A neural network based framework
to allow dynamic adaptation in wireless sensor and actor networks. J. Network and Computer
Applications 35(1) (2012) 382-393

Farooq, U., Amar, M., ul Haq, E., Asad, M.U., Atiq, H.M.: Microcontroller based neural network
controlled low cost autonomous vehicle. In: Proceedings of the 2010 Second International Confer-
ence on Machine Learning and Computing. ICMLC 10, Washington, DC, USA, IEEE Computer
Society (2010) 96-100

S.Kumaravel, P.Neelamegam, R.Vasumathi: Article:distributed chloride prediction system using
neural network and pic18f452 microcontrollers in water analysis. International Journal of Computer
Applications 8(14) (October 2010) 15-20

Susnea, I.: Distributed neural networks microcontroller implementation and applications. Studies
in informatics and control 21(2) (2012) 165-172

Aleksendri¢, D., Jakovljevi¢, I.; Irovi¢, V.: Intelligent control of braking process. Expert Syst. Appl.
39(14) (October 2012)

Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks. Pattern Recogn.
40(1) (January 2007) 4-18

Subirats, J.L., Jerez, J.M., Gémez, 1., Franco, L.: Multiclass pattern recognition extension for the
new c-mantec constructive neural network algorithm. Cognitive Computation 2(4) (2010) 285-290
Atmel: Datasheet 328. http://www.atmel.com/Images/doc8161.pdf

20



