
Tema IVTema IV

Programación de Orden
Superior

2

Funciones de orden superior

Son funciones que se aplican sobre otras funciones
(funcionales).

Vamos a estudiar unas funciones polimorfas o esquemas
funcionales que clasificaremos en las siguientes categorías:

Filtros
Iteradores
Generadores
Plegadores o transformadores de estructuras

3

Filtros (I)

Funcionales para reducir o filtrar una estructura con la
ayuda de un predicado. Dentro de esta categoría
tenemos:

Funcional para eliminar los elementos de una lista que no cumplen
un predicado:

filter :: (a->Bool)->[a]->[a]
filter _ [] = []
filter p (x:xs) | p x = x:xs’

| otherwise = xs’
where xs’=filter p xs

4

Filtros (II)

Funcional para producir el segmento inicial de mayor longitud de
una lista cuyos elementos cumplen un cierto predicado:

takeWhile :: (a->Bool)->[a]->[a]
takeWhile _ [] = []
takeWhile p (x:xs) | p x = x:takeWhile p xs

| otherwise = []

Funcional para producir el segmento complementario:

dropWhile :: (a->Bool)->[a]->[a]
dropWhile _ [] = []
dropWhile p (x:xs) | p x = dropWhile p xs

| otherwise = x:xs

5

Filtros (III)

Funcional para producir el segmento con todos los elementos de una
lista hasta el primero que cumple un cierto predicado:

takeUntil :: (a->Bool)->[a]->[a]
takeUntil _ [] = []
takeUntil p (x:xs) |p x = [x]

|otherwise = x : takeUntil p xs

6

Aplicaciones

mayores :: Int->[Int]->[Int]
mayores x = filter (x<)

eliminar ::Eq a => a->[a]->[a]
eliminar x = filter (x/=)

7

Algunas propiedades

p,q :: a->Bool .
(filter p . filter q = filter q . filter p)

xs, ys :: [a], p :: a->Bool .

(filter p (xs++ys) = filter p xs ++ filter p ys)

xs :: [a], p :: a->Bool .

(takeWhile p xs ++ dropWhile p xs = xs)

8

Ejercicios

Definid los funcionales siguientes:
test, que compruebe si todos los elementos de una lista
cumplen un determinado predicado.
primero, que calcule el primer elemento de una lista que
cumple un cierto predicado.
separar, que separe una lista en un par de listas, una con
todos los elementos que cumplen un cierto predicado y la otra
con los elementos que no lo cumplen.

9

Iteradores (I)

Funcionales para la aplicación reiterada de una función.
Dentro de esta categoría tenemos:

Funcional para la aplicación de una función a cada uno de los
elementos de una lista:
map :: (a->b)->[a]->[b]
map _ [] = []
map f (x:xs) = f x : map f xs

Funcional para la aplicación de una función a cada uno de los
elementos de un árbol de hojas:
mapHTree :: (a->b)->ArbolH a->ArbolH b
mapHTree f (H x) = H (f x)
mapHTree f (F x y) = F (mapHTree x) (mapHTree y)

10

Iteradores (II)

Funcional para la aplicación reiterada de una función a un valor
hasta alcanzar un resultado que cumpla una condición:

until :: (a->Bool)->(a->a)->a->a
until p f x | p x = x

| otherwise = until p f (f x)

(Esquema correspondiente a un ciclo While not p Do f End)

11

Iteradores (III)

Funcionales para generar listas por aplicación reiterada de una
función a un valor dado:

Lista infinita
iterate :: (a->a)->a->[a]
iterate f x = x : iterate f (f x)

Lista hasta que se cumpla una condición
iterateUntil :: (a->Bool)->(a->a)->a->[a]
iterateUntil p f x

| p x = x : []
| otherwise = x : listUntil p f (f x)

12

Ejercicios

Utilizando los funcionales anteriores, definid
Una expresión para la lista de las potencias de 2.
Un funcional para generar la lista infinita siguiente

[f x, x, f (f (f x)), f (f x), f (f (f (f (f x)))), f (f (f (f x))), ...
Una función para calcular la suma de los cuadrados de los n
primeros números naturales.

13

Notaciones especiales para
generadores de listas

[n..]
iterate (+1) n

[n,m..]
iterate (+(m-n)) n

[n..p]
takeWhile (<= p)(iterate (+1) n)

[n,m..p]
takeWhile ((if m>=n then (>=) else (<=)) p)

iterate (+(m-n))

14

Notación ZF (Zermelo-Fraenkel)
para listas

[expresión | calificador {, calificador}]
calificador:
– generador pat <- exp. de lista
– guarda exp. booleana
– def. local let pat = exp

R. del generador:
[e|pat<-xs, Q] = concat (map pt xs)

where pt x = case x of
pat -> [e|Q]
_ -> []

R. de la guarda:
[e|p, Q] = if p then [e|Q] else []

R. de la def. local:
[e|let pat=exp, Q] = [e|Q] where pat=exp

15

Notación ZF: Ejemplos (I)

[f x| x<-xs] = map f xs
[f x| x<-xs, p x] = map f (filter p xs)
[f x y|x<-xs,y<-ys] =

concat [[f x y|y<-ys]|x<-xs]
[2| even 4] = [4]
[2| 2>3] = []
[x| x+3<-[1..4]] = [0,1]
[y| (3,y)<-[(3,2),(5,1),(3,5)]] = [2,5]
[5| x+3<-[1..4]] = [5,5]
[x*x| x<-[1..10],even x] = [4,16,36,64,100]
[x*x| x+3<-[1..8],even (x+1)] = [1,9,25]

16

Notación ZF: Ejemplos (II)

[(x,y)| x<-[1..2],y<-[1..2]] =
[(1,1),(1,2),(2,1),(2,2)]

[x| x<-[1..3],y<-[1..2]] = [1,1,2,2,3,3]
[3*x| let x+2 = 4] = [6]

Ternas de números naturales que cumplen el teorema de
Pitágoras (ternas pitagóricas):
t_pit n = [(x,y,z)|x<-ns,y<-ns,z<-ns,

x*x+y*y==z*z] where ns = [1..n]

Lista de los números primos:
criba (p:xs) = [x|x<-xs, x`mod`p /= 0]
listaPrimos = map head (iterate criba [2..])

17

Notación ZF: Observaciones

Los calificadores pueden utilizar valores generados por
calificadores anteriores:
[(x,y)|x<-[1..3],y<-[x+1..4]] =

[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Las variables de los calificadores posteriores se imponen sobre
las variables de los calificadores anteriores
[x|x<-[1,2],x<-[3,4]] = [3,4,3,4]

[x|x<-[1..3],let x=5] = [5,5,5]
El orden de las guardas y las definiciones locales influyen en la
eficiencia de los cálculos
[(x,y)|x<-[1..3],even x,y<-[1..2]]
[facX + y|x<-[1..3],let facX = fact x, y<-[1,2]]

18

Plegadores

Son funciones de orden superior que sintetizan los esquemas
recursivos que se utilizan con las distintas estructuras
recursivas.
Para cada estructura (lista, árbol,...) se puede definir un
plegador adecuado.
Para algunas estructuras (listas) con las que se pueden utilizar
varios esquemas recursivos (r. lineal, r. de cola), se pueden
definir otros tantos plegadores.

19

Recursión sobre listas

Recursión lineal:
suma [] = 0
suma (x:xs) = x + suma xs

Recursión de cola:
suma_ac a [] = a
suma_ac a (x:xs) = suma_ac (a+x) xs

20

Plegadores (I)
Esquemas recursivos sobre listas:

Recursión lineal simple
Definición por recursión lineal:

g :: [a]->b
g [] = z
g (x:xs) = f x (g xs)

Elementos que caracterizan la definición:
f :: a->b->b
z :: b

Esquema funcional:
foldr :: (a->b->b)->b->[a]->b
foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

g = foldr f z

21

Recursión lineal. Ejemplos (I)

suma [] = 0
suma (x:xs) = x + suma xs
suma = foldr (+) 0
length [] = 0
length (x:xs) = 1 + length xs

= f x (length xs)
where f x y = 1 + y

length = foldr (\x y -> 1+y) 0
inversa [] = []
inversa (x:xs) = inversa xs ++ [x]

= f x (inversa xs)
where f x y = y ++ [x]

inversa = foldr (\x y -> y++[x]) []

22

Recursión lineal. Ejemplos (II)

esta _ [] = False
esta y (x:xs) = y==x || esta y xs

= f x (esta y xs)
where f x r = y==x || r

esta y = foldr (\x r -> y==x || r) False
map g [] = []
map g (x:xs) = g x : map g xs

= f x (map g xs)
where f x r = g x : r

map g = foldr (\x r -> g x : r) []

23

Plegadores (II)
Esquemas recursivos sobre listas:
Recursión de cola con acumulador

Definición por recursión de cola (con acumulador):
g :: b->[a]->b
g z [] = z
g z (x:xs) = g (f z x) xs

Elementos que caracterizan la definición:
f :: b->a->b

Esquema funcional:
foldl :: (b->a->b)->b->[a]->b
foldl _ z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

g = foldl f

24

Recursión de cola. Ejemplos (I)

suma_ac a [] = a
suma_ac a (x:xs) = suma_ac (a+x) xs
suma_ac = foldl (+)

inversa_ac a [] = a
inversa_ac a (x:xs) = inversa_ac (x:a) xs

= inversa_ac (f a x) xs
where f a x = x:a

inversa_ac = foldl (\x y -> y:x)

25

Recursión sobre árboles

Árboles de hojas:
n_hojas (H x) = 1
n_hojas (B iz de) = n_hojas iz + n_hojas de

Árboles homogéneos:
postorden Vacio = []
postorden (Nodo r i d) = postorden i ++

postorden d ++ [r]
Árboles generales:

postorden (Arbol r []) = [r]
postorden (Arbol r (t:ts)) =

postorden t ++ postorden (Arbol r ts)

26

(Plegadores III) Esquema recursivo sobre
árboles de hojas

Las funciones definidas sobre árboles del tipo ArbolH a
frecuentemente presentan el siguiente esquema recursivo:

g :: ArbolH a -> b

g (H x) = h x

g (B iz de) = f (g iz) (g de)

Elementos característicos de la definición:
f::b->b->b h::a->b

Esquema funcional adaptable a cada definición:

foldH :: (b->b->b) -> (a->b) -> ArbolH a -> b

foldH _ h (H x) = h x

foldH f h (B iz de)= f (foldH f h iz) (foldH f h de)

27

Recursión sobre árboles de hojas.
Ejemplos

n_hojas (H x) = 1
n_hojas (B iz de) = n_hojas iz + n_hojas de
n_hojas = foldH (+) (\x->1)

alturaH (H x) = 0
alturaH (B iz de)

= 1 + max (alturaH iz) (alturaH de)
= f (alturaH iz) (alturaH de)

where f x y = 1 + max x y
alturaH = foldH f (\x->0)

where f x y = 1 + max x y

28

(Plegadores IV) Esquema recursivo sobre
árboles de homogéneos

Las funciones definidas sobre árboles del tipo ArbolB a
frecuentemente presentan el siguiente esquema recursivo:

g :: ArbolB a -> b

g Vacio = z

g (Nodo r iz de) = f r (g iz) (g de)

Elementos característicos de la definición:
f::a->b->b->b z::b

Esquema funcional adaptable a cada definición:

foldB :: (a->b->b->b) -> b -> ArbolB a -> b

foldB _ z Vacio = z

foldB f z (Nodo r iz de) = f r (foldB f z iz) (foldB f z de)

29

Recursión sobre árboles homogéneos.
Ejemplos

n_nodos Vacio = 0
n_nodos (Nodo r iz de) =

1 + n_nodos iz + n_nodos de
n_nodos = foldB (\r i d -> 1+i+d) 0

alturaB Vacio = 0
alturaB (Nodo r iz de)

= 1 + max (alturaB iz) (alturaB de)
= f r (alturaB iz) (alturaB de)

where f r x y = 1 + max x y
alturaB = foldB f 0

where f r x y = 1 + max x y

30

(Plegadores V) Esquema recursivo sobre
árboles generales

Las funciones definidas sobre árboles del tipo ArbolG a
frecuentemente presentan el siguiente esquema recursivo:

g :: ArbolG a -> b

g (Arbol r []) = h x

g (Arbol r (t:ts)) = f (g t) (g (Arbol r ts))

Elementos característicos de la definición:
f::b->b->b h::a->b

Esquema funcional adaptable a cada definición:
foldG :: (b->b->b) -> (a->b) -> ArbolG a -> b

foldG _ h (Arbol r []) = h x

foldG f h (Arbol r (t:ts))= f (foldG f h t)

(foldG f h (Arbol r ts))

31

Recursión sobre árboles generales.
Ejemplos

n_nodosG (Arbol r []) = 1
n_nodosG (Arbol r (t:ts) =

n_nodosG t + n_nodosG (Arbol r ts)
n_nodosG = foldG (+) (\x->1)

alturaG (Arbol r []) = 1
alturaG (Arbol r (t:ts)
= max (1 + alturaG t) (alturaG (Arbol r ts))
= f (alturaG t) (alturaG (Arbol r ts))

where f x y = max (1+x) y
alturaG = foldG f (\x->1)

where f x y = max (1+x) y

	Tema IV
	Funciones de orden superior
	Filtros (I)
	Filtros (II)
	Filtros (III)
	Aplicaciones
	Algunas propiedades
	Ejercicios
	Iteradores (I)
	Iteradores (II)
	Iteradores (III)
	Ejercicios
	Notaciones especiales para generadores de listas
	Notación ZF (Zermelo-Fraenkel) para listas
	Notación ZF: Ejemplos (I)
	Notación ZF: Ejemplos (II)
	Notación ZF: Observaciones
	Plegadores
	Recursión sobre listas
	Plegadores (I) Esquemas recursivos sobre listas: Recursión lineal simple
	Recursión lineal. Ejemplos (I)
	Recursión lineal. Ejemplos (II)
	Plegadores (II) Esquemas recursivos sobre listas: Recursión de cola con acumulador
	Recursión de cola. Ejemplos (I)
	Recursión sobre árboles
	(Plegadores III) Esquema recursivo sobre árboles de hojas
	Recursión sobre árboles de hojas. Ejemplos
	(Plegadores IV) Esquema recursivo sobre árboles de homogéneos
	Recursión sobre árboles homogéneos. Ejemplos
	(Plegadores V) Esquema recursivo sobre árboles generales
	Recursión sobre árboles generales. Ejemplos

