TemalV
AN AR m |

Programacion de Orden
Superior

Funciones de orden superior

Son funciones que se aplican sobre otras funciones
(funcionales).

Vamos a estudiar unas funciones polimorfas o esquemas
funcionales que clasificaremos en las siguientes categorias:

m Filtros

m Iteradores

m Generadores

m Plegadores o transformadores de estructuras

Filtros (I)

Funcionales para reducir o filtrar una estructura con la
ayuda de un predicado. Dentro de esta categoria
tenemos:

Funcional para eliminar los elementos de una lista que no cumplen
un predicado:

filter :: (a->Bool)->[a]l->[a]
filter [] = []
filter p (x:xs) | p x = x:xs’

| otherwise = xs’

where xs’'=filter p xs

Filtros (II)

Funcional para producir el segmento inicial de mayor longitud de
una lista cuyos elementos cumplen un cierto predicado:

takeWhile :: (a->Bool)->[a]->[a]
takeWhile [] = []

takeWhile p (x:xs) | p x = x:takeWhile p xs
[]

| otherwise

Funcional para producir el segmento complementario:

dropWhile :: (a->Bool)->[a]->[a]
dropWhile _ [] = []
dropWhile p (x:xs) | p x = dropWhile p xs

| otherwise = x:xs

Filtros (11I)

Funcional para producir el segmento con todos los elementos de una
lista hasta el primero que cumple un cierto predicado:

takeUntil :: (a->Bool)->[a]->[a]
takeUntil _ [] = []
takeUntil p (x:xs) |p x = [x]
|otherwise = x : takeUntil p xs

Aplicaciones

mayores :: Int->[Int]->[Int]
mayores x = filter (x<)

eliminar ::Eq a => a->[a]->[a]

eliminar x = filter (x/=)

Algunas propiedades

p,9 :: a->Bool
(filter p * filter g = filter q * filter p)

xs, ys :: [a]l, p :: a->Bool
(filter p (xs++ys) = filter p xs ++ filter p ys)

xs :: [a]l, p :: a->Bool
(takeWhile p xs ++ dropWhile p xs = xs)

Ejercicios

Definid los funcionales siguientes:

test, que compruebe si todos los elementos de una lista
cumplen un determinado predicado.

primero, que calcule el primer elemento de una lista que
cumple un cierto predicado.

separar, que separe una lista en un par de listas, una con

todos los elementos que cumplen un cierto predicado y la otra
con los elementos que no lo cumplen.

Iteradores (1)

Funcionales para la aplicacion reiterada de una funcion.

Dentro de esta categoria tenemos:

Funcional para la aplicacion de una funcion a cada uno de los
elementos de una lista:

map :: (a->b)->[a]->[Db]
map _ [] = []
map f (x:xs) = £ x : map £ xs

Funcional para la aplicacion de una funcion a cada uno de los
elementos de un arbol de hojas:

mapHTree :: (a->b)->ArbolH a->ArbolH b

mapHTree £ (H x) = H (f x)

mapHTree f (F x y) = F (mapHTree x) (mapHTree y)

9

Iteradores (11)

Funcional para la aplicacion reiterada de una funcidon a un valor
hasta alcanzar un resultado que cumpla una condicion:

until :: (a->Bool)->(a->a)->a->a
until p £f x | p x = x
| otherwise = until p £ (f x)

(Esquema correspondiente a un ciclo While not p Do £ End)

10

Iteradores (11I)

Funcionales para generar listas por aplicacion reiterada de una
funcion a un valor dado:

= Lista infinita
iterate :: (a->a)->a->[a]

iterate £f x = x : iterate f (f x)

m Lista hasta que se cumpla una condicion
iterateUntil :: (a->Bool)->(a->a)->a->[a]
iterateUntil p £ x
|l px=x: []
| otherwise = x : listUntil p £ (f x)

11

Ejercicios

Utilizando los funcionales anteriores, definid

Una expresion para la lista de las potencias de 2.
Un funcional para generar la lista infinita siguiente
[f x, x, T (f (fx)), f(fx), f(f{f(fx))),f{{{Fx))),..
Una funcién para calcular la suma de los cuadrados de los n
primeros numeros naturales.

12

Notaciones especiales para
generadores de listas

[n..]

iterate (+1) n

[n,m. .]
iterate (+(m-n)) n

[n..p]
takeWhile (<= p) (iterate (+1) n)

[n,m..p]
takeWhile ((if m>=n then (>=) else (<=)) p)

iterate (+(m-n))

13

Notacion ZF (Zermelo-Fraenkel)
para listas

m [expresidén | calificador {, calificador}]
m calificador:

— generador pat <- exp. de 1lista
— guarda exp. booleana
— def. local let pat = exp

m R. del generador:
[e|pat<-xs, Q] = concat (map pt xs)
where pt x = case x of
pat -> [e]|Q]
_ > 11

m R. de la guarda:
[elp, Q] = if p then [e|Q] else []

m R. de la def. local:

[e]|let pat=exp, Q] = [e|Q] where pat=exp y

Notacion ZF: Ejemplos (I)

m [£f x| x<-xs] = map f xs
m [f x| x<-xs, p x] = map £ (filter p xs)
m [f x y|x<-xs,y<-ys] =
concat [[f x y|y<-ys] |x<-xs]
m [2]| even 4] = [4]
= [2] 2>3] = []
m [x]|] x+3<-[1..4]] = [0,1]
= [yl 3,v)<-[(3,2),(5,1),(3,5)1]1] = [2,5]
m [5] x+3<-[1..4]] = [5,5]
m [x*x| x<-[1..10],even x] = [4,16,36,64,100]
B [x*x| x+3<-[1l..8],even (x+1)] = [1,9,25]

15

Notacion ZF: Ejemplos (II)

[(x,y) | x<-[1..2],y<-[1..2]] =
[(1,1),(1,2),(2,1),(2,2)]

[x|] x<-[1..3],y<-[1..2]] = 1[1,1,2,2,3,3]

[3*x| let x+2 = 4] = [6]

Ternas de numeros naturales que cumplen el teorema de

Pitagoras (ternas pitagoricas):

t pit n = [(x,y,2) |x<-ns,y<-ns,z<-ns,

x*x+y*y==2z*z] where ns = [1l..n]

Lista de los numeros primos:

criba (p:xs) = [x|x<-xs, x'mod'p /= 0]

listaPrimos = map head (iterate criba [2..])

16

Notacion ZF: Observaciones

Los calificadores pueden utilizar valores generados por
calificadores anteriores:

[(x,y) |x<-[1..3],y<-[x+1..4]] =
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Las variables de los calificadores posteriores se imponen sobre

las variables de los calificadores anteriores

[x|x<-[1,2],x<-[3,4]] = [3,4,3,4]

[x|x<-[1..3],1let x=5] = [5,5,5]

m El orden de las guardas y las definiciones locales influyen en la
eficiencia de los calculos
[(x,y) |x<-[1..3] ,even x,y<-[1..2]]

[facX + y|x<-[1..3],let facX = fact x, y<-[1,2]]

17

Plegadores

= Son funciones de orden superior que sintetizan los esquemas
recursivos que se utilizan con las distintas estructuras
recursivas.

m Para cada estructura (lista, arbol,...) se puede definir un
plegador adecuado.

m Para algunas estructuras (listas) con las que se pueden utilizar
varios esquemas recursivos (r. lineal, r. de cola), se pueden
definir otros tantos plegadores.

18

Recursion sobre listas

Recursion lineal:

m suma [] =0
suma (xX:xs)

Recursion de cola:
® suma ac a [] = a
)

suma ac a (x:xXs) = suma ac

= X 4+ suma XS

(a+x)

XS

19

Plegadores (I)

Esquemas recursivos sobre listas:
Recursion lineal simple

= Definicidn por recursion lineal:
g :: [a]l->Db
g [] = z
g (x:xs) = £ x (g xs)
= Elementos que caracterizan la definicion:
f :: a->b->b

z :: b
= Esquema funcional:
foldr :: (a->b->b)->b->[a]->b

foldr =z [] = z
foldr £ z (x:xs) = £ x (foldr £ z xs)

g = foldr f =z

20

Recursion lineal. Ejemplos (I)

suma [] =0

suma (X:Xs) = X 4+ suma XS
suma = foldr (+) O

length [] = 0

length (x:xs) 1 + length xs

f x (length xs)
where f x y =1 + vy

length = foldr (\x y -> 1+y) O

inversa [] = []
inversa (x:xXs) = 1inversa Xs ++ [x]
= £ x (inversa xs)

where f x y = vy ++ [X]

inversa = foldr (\x y -> y++[x]) []

21

Recursion lineal. Ejemplos (I1)

esta [] = False
esta vy (x:xs) = y==x || esta y Xxs
= f x (esta y xs)
where £ x r = y==x || <
esta y = foldr (\x r -> y==x || r) False
map g [] = []
map g (x:xs) = g X : map g XS
= f x (map g xs)
where £ x r = g x : r

map g = foldr (\x r -> g x : r) []

22

Plegadores (1I)

Esquemas recursivos sobre listas:
Recursion de cola con acumulador

= Definicion por recursion de cola (con acumulador):
g :: b->[a]->b
gz [] =z
g z (x:xs) =g (f z x) xs

= Elementos que caracterizan la definicion:
f :: b->a->b

= Esquema funcional:
foldl :: (b->a->b)->b->[a]->b
foldl =z [] = z

foldl £ z (x:xs) foldl £ (£ z x) xs

g = foldl £

23

Recursion de cola. Ejemplos (I)

® suma ac a [] = a
suma ac a (x:xs) = suma ac (a+x) Xs
suma ac = foldl (+)

m inversa_ac a [] = a
inversa_ac a (xXx:xs) = inversa_ac (x:a) Xs
= inversa ac (f a x) xs

where f a x = X:a

inversa ac = foldl (\x y -> y:x)

24

Recursion sobre arboles

Arboles de hojas:
= n hojas (H x) =1
)

n hojas (B iz de) = n hojas 1z + n hojas de

Arboles homogéneos:

m postorden Vacio = []
postorden (Nodo r 1 d) = postorden 1 ++
postorden d ++ [r]

Arboles generales:

m postorden (Arbol r []) = [r]
postorden (Arbol r (t:ts)) =
postorden t ++ postorden (Arbol r ts)

25

(Plegadores III) Esquema recursivo sobre
arboles de hojas

= Las funciones definidas sobre arboles del tipo ArbolH a
frecuentemente presentan el siguiente esquema recursivo:
g :: ArbolH a -> b
g (H x) = h x
g (B iz de) = £ (g i1iz) (g de)

= Elementos caracteristicos de la definicion:

f::b->b->b h::a->b
- Esquema funcional adaptable a cada definicion:

foldH :: (b->b->b) -> (a->b) -> ArbolH a -> b
foldd _ h (H x) = h x
foldH £f h (B iz de)= £ (foldH £ h iz) (foldH f h de)

26

Recursion sobre arboles de hojas.
Ejemplos

= n hojas (H x) =1
n hojas (B iz de) = n hojas iz + n hojas de

n hojas foldH (+) (\x->1)
m alturaH (H x) =0
alturalH (B 1z de)
= 1 + max (alturaH iz) (alturaH de)
= £ (alturaH 1iz) (alturaH de)
where f x vy = 1 + max x y

alturaH = foldH £ (\x->0)
where £f x y =1 + max x y

27

(Plegadores IV) Esquema recursivo sobre
arboles de homogéneos

= Las funciones definidas sobre arboles del tipo ArbolB a
frecuentemente presentan el siguiente esquema recursivo:

g :: ArbolB a -> b
g Vacio = z

g (Nodo r iz de) = £ r (g iz) (g de)

= Elementos caracteristicos de la definicion:
f::a->b->b->b z::b

= Esquema funcional adaptable a cada definicion:

foldB :: (a->b->b->b) -> b -> ArbolB a -> b

foldB _z Vacio =z

foldB £ z (Nodo r iz de) = £f r (foldB f z iz) (foldB f z de)

28

Recursion sobre arboles homogéneos.
Ejemplos

" n nodos Vacio = 0
n nodos (Nodo r iz de) =
1 + n nodos 1z + n nodos de

n nodos = foldB (\r i d -> 1+i+d) O

m alturaB Vacio = 0
alturaB (Nodo r 1z de)
= 1 + max (alturaB iz) (alturaB de)
= £ r (alturaB 1iz) (alturaB de)
where f r x vy = 1 + max x y

alturaB = foldB £ 0
where £f r x y =1 + max x y

29

(Plegadores V) Esquema recursivo sobre
arboles generales

= Las funciones definidas sobre arboles del tipo ArbolG a
frecuentemente presentan el siguiente esquema recursivo:

g :: ArbolG a -> b
g (Arbol r []) = h x
g (Arbol r (t:ts)) = £ (g t) (g (Arbol r ts))

= Elementos caracteristicos de la definicion:
f::b->b->b h::a->b

= Esquema funcional adaptable a cada definicion:
foldG :: (b->b->b) -> (a->b) -> ArbolG a -> b
foldG _ h (Arbol r []) = h x
foldG £ h (Arbol r (t:ts))= £ (foldG f£f h t)
(foldG £ h (Arbol r ts))

o1V

Recursion sobre arboles generales.
Ejemplos

= n nodosG (Arbol r []) =1

n nodosG (Arbol r (t:ts) =
n nodosG t + n nodosG (Arbol r ts)

n nodosG = foldG (+) (\x->1)

alturaG (Arbol r []) =1
alturaG (Arbol r (t:ts)
= max (1 + alturaG t) (alturaG (Arbol r ts))
= £ (alturaG t) (alturaG (Arbol r ts))
where f x yv = max (1+x) vy

alturaG = foldG £ (\x->1)
where £ x y = max (1+x) y

31

	Tema IV
	Funciones de orden superior
	Filtros (I)
	Filtros (II)
	Filtros (III)
	Aplicaciones
	Algunas propiedades
	Ejercicios
	Iteradores (I)
	Iteradores (II)
	Iteradores (III)
	Ejercicios
	Notaciones especiales para generadores de listas
	Notación ZF (Zermelo-Fraenkel) para listas
	Notación ZF: Ejemplos (I)
	Notación ZF: Ejemplos (II)
	Notación ZF: Observaciones
	Plegadores
	Recursión sobre listas
	Plegadores (I) Esquemas recursivos sobre listas: Recursión lineal simple
	Recursión lineal. Ejemplos (I)
	Recursión lineal. Ejemplos (II)
	Plegadores (II) Esquemas recursivos sobre listas: Recursión de cola con acumulador
	Recursión de cola. Ejemplos (I)
	Recursión sobre árboles
	(Plegadores III) Esquema recursivo sobre árboles de hojas
	Recursión sobre árboles de hojas. Ejemplos
	(Plegadores IV) Esquema recursivo sobre árboles de homogéneos
	Recursión sobre árboles homogéneos. Ejemplos
	(Plegadores V) Esquema recursivo sobre árboles generales
	Recursión sobre árboles generales. Ejemplos

