Role of Function Complexity and Network Size
in the Generalization Ability of Feedforward
Networks

Leonardo Franco!?, José M. Jerez-Aragonés?, and José M. Bravo Montoya?

! Dept. of Experimental Psychology, University of Oxford,
South Parks Road, Oxford OX1 3UD, UK
Leonardo.Franco@psy.ox.ac.uk
2 Departamento de Lenguajes y Ciencias de la Computacién,
University of Malaga, 29071 Malaga, Spain

Abstract. The generalization ability of different sizes architectures with
one and two hidden layers trained with backpropagation combined with
early stopping have been analyzed. The dependence of the generalization
process on the complexity of the function being implemented is stud-
ied using a recently introduced measure for the complexity of Boolean
functions. For a whole set of Boolean symmetric functions it is found
that large neural networks have a better generalization ability on a large
complexity range of the functions in comparison to smaller ones and also
that the introduction of a small second hidden layer of neurons further
improves the generalization ability for very complex functions. Quasi-
random generated Boolean functions were also analyzed and we found
that in this case the generalization ability shows small variability across
different network sizes both with one and two hidden layer network ar-
chitectures.

1 Introduction

Neural networks are nowadays widely use in different applications in pattern
recognition and classification tasks due to their ability to learn from examples
and to generalize. There exists some general theoretical results about the size of
the network needed to implement a desired function [1,2,3] but at the time of
the implementation the theory is not always accurate. In practice, the problem
of selecting a network architecture for a determined application is mainly based
on the “trial-and-error” method as no theoretical formula gives clear insight into
this problem. Answers to general questions as: Are two hidden layer networks
better than one ? or Does larger networks generalize better than smaller ones?
are still controversial. A simple and general idea about what network size utilize
comes from Occam’s razor: the simpler the solution the better, but it has been
shown that very large networks perform sometimes better than smaller ones
[3, 4]. The reasons for the previous findings are still unclear and it seems that they
arise from properties of the backpropagation algorithm combined with validation

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1-8, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 L. Franco, J.M. Jerez-Aragonés, and J.M.B. Montoya

procedures that avoid overfitting [1, 4,5, 6, 7]. Another results [8] state that what
matters to obtain valid generalization is the value of the weights and not the size
of the network but this does not solve completely the size dilemma. Moreover,
most of the practical results based on simulations concentrate on the use of
very few functions, even the most complete studies use less than 30 different
functions [6, 7], and also in general the complexity of the analyzed functions is
ignored [3,9].

The complexity of Boolean functions has been studied for a long time, the
aim of that being to have a criterion for deciding if a problem is easier to solve
or implement than another [10]. Within the area of circuit complexity the com-
plexity of a Boolean function has been defined as the minimum size of a circuit
that could implement it, while the size of the circuit is measured as the number
of nodes that composed the circuit. Many results have been derived for certain
classes of functions, as for symmetric and arithmetic ones, where in general,
bounds on the size of the circuits to compute the functions are obtained [10, 11],
but all these measures are quite complicate to compute in most cases. In [3],
functions were generated with different complexity by selecting a parameter K
that controlled the size of the maximum weight in the network. They showed
that functions with higher K were more complex, and expected the generaliza-
tion to be worse as K increases. In this paper, we use a recently introduced
measure for the complexity of Boolean functions [9, 12] to analyze how the net-
work architecture affects the generalization ability obtained for different classes
of functions grouped according to their complexity.

2 A Measure for the Complexity of Boolean Functions

The measure proposed in [9] is based on the results obtained in [13,14], where
a close relationship between the number of examples needed to obtain valid
generalization and the number of neighbouring examples with different outputs
was found. The complexity measure C[f] is obtained from the number of pairs of
neighbouring examples having different outputs. The complexity measure used
in this paper is defined as:

ClfI = Glfl+Clf], (1)

where C;[f], i = 1,2 are the terms taking into account pairs of examples at a
Hamming distance one and two. The first term can be written as:

ex

1 N,
Gilf] = Now ® Noooon > (If(ej) = fle)D) |, (2)

Jj=1 \{l{|Hamming(e;,e;)=1}

where the first factor , is a normalization one, counting for the total

1
’ Neac * Nneigh
number of pairs considered, N., is the total number of examples equals to 2%,
and Nyeign stands for the number of neighbour examples at a Hamming distance

Role of Function Complexity and Network Size 3

of 1. The second term C3[f] is constructed in an analogous way. The complexity
of the Boolean functions using the measure of Eq. 1 ranges from 0 to 1.5 [9].

3 Simulations Results

To analyze the generalization ability of different architectures and to study how
this property change with network size we carried intensive numerical simu-
lations for symmetric and quasi-random generated Boolean functions. All the
networks were trained with Backpropagation with momentum. An early stop-
ping procedure was implemented with the aim of avoid overtraining and improve
generalization. The validation error was monitored during training and at the
end of the maximum number of epochs permitted, the generalization error was
taken at the point where the validation error was minimum. A important use of
the complexity measure is that permit to analyzed the complexity of the output
functions and compared it to the complexity of the target functions, to analyze
what functions the networks generalize to. The number of examples available
for training was 256 as in all cases we consider input functions of size N=8. We
divided the examples in a training set containing 128 examples, and into valida-
tion and generalization test sets containing 64 examples each one. The learning
rate constant was fixed during training and equal to 0.05 and the momentum
term was set to 0.3. The maximum number of epochs allowed for training was
selected after some initial tests and was selected to be approximated 4 to 5
times larger than the optimal training time (typical values were 600 to 1000).
Two sets of functions symmetric and quasi-random functions generated starting
from the parity function were considered and the results are described in the
subsections below. To analyze the dependence of the generalization ability with
the complexity of the functions the functions were grouped in ten different levels
of complexity from 0 to 1.0.

3.1 Symmetric Functions

An important class of Boolean functions are the symmetric ones, those with
values independent of the order of the input, i.e., the output of the examples
depends only on the total number of input bits ON (the number of 1’s). The
class of symmetric functions contains many fundamental functions like sorting
and all types of counting ones, including also the well known parity function
[9,10,11]. They have been extensively studied and many lower bounds have
been obtained for circuits computing them. A general result states that a circuit
of size O(\/N) gates and depth 3 with polynomial weights is enough to compute
all the symmetric functions [11].

We performed simulations using all 512 existing symmetric functions for the
case N = 8, using neural networks with one and two hidden layers. The number
of neurons for the analyzed cases in which the networks have only one hidden
layer was NH1=5, 10, 25, 50, 250, 500. The best result, in terms of the general-
ization ability obtained, was by using the architecture with NH1=250. In Fig. 1
the generalization ability as a function of the function complexity is shown for

4 L. Franco, J.M. Jerez-Aragonés, and J.M.B. Montoya

the different networks utilized. The results were computed from five averages
taken for every symmetric function. Standard deviations were also computed
for every complexity group and it showed that the differences obtained for dif-
ferent architectures (for example between the network with NH1=250 NH2=0
and the architecture with NH1=250 NH2=10) were statistically significant for
groups of functions with the same complexity. We also computed the average
absolute value of the weights in the different layers and the result was that the
size of the weights was proportional to the training time, that was also found
to be proportional to the function complexity (In [3,8] similar findings were
obtained).

The complexity of the functions to which the networks generalize to was also
investigated (i.e. the functions that the trained networks compute at the point
of minimum validation error). We found that in almost all cases the output
functions were more complex than the target ones.

Nhi= 5 —+

1 Nh1= 10 ---x-—- |
=2 Nhi= 50 %
3 . Nh1=250 —a
T 09r { Nn1=500 —-m- |

NN
S
8
S osf |
g
2
& 07t 1
06 | | | | "
0 0.2 0.4 0.6 0.8 1

Complexity

Fig. 1. Generalization ability vs function complexity for all Symmetric Boolean func-
tions with N=8 inputs implemented on single hidden layer networks with a number of
hidden neurons NH1= 5,10,25,100,250 and 500

We also analyzed the generalization ability for cases of architectures having
two hidden layers of neurons, first by restricting our study to networks with
NH1=250, that was the optimal value found for one hidden layer networks. The
number of second hidden neurons analyzed were NH2=5, 10, 25, 50, 250, 500. The
best results were obtained with an architecture 8-250-10-1, that outperformed
the architecture 8-250-1. In Fig. 2 the results are shown only for some two-layer
architectures (for clarity) in comparison to the best one hidden layer architec-
ture. A further enlargement of the second layer of neurons did not improve the
generalization ability. Other cases with a different number of neurons in the
first and second layer were considered but the results were worse than the cases
already mentioned.

Role of Function Complexity and Network Size 5

Nhi=250 —+—
Nhi1 =250 Nh2= 5 -

Generalization Ability

0.6 [_

| | | | |
0 0.2 0.4 0.6 0.8 1
Complexity

Fig. 2. Generalization ability vs function complexity for all Symmetric Boolean func-
tions with N=8 inputs for the cases of two two hidden layer architectures with 250 in
the first hidden layer and NH2=5,10 in the second hidden layer. For comparison the
results for the case of having a single layer with NH1=250 is also shown

Table 1. Average generalization ability, training time (epochs) and final training er-
ror obtained for different size architectures with one or two hidden layers of neurons
constructed to compute all Boolean symmetric functions with N=8 inputs

Neurons in Neurons in Generalization Train. time Final train.

1*¢ hidden layer 2"¢ hidden layer ability (epochs) error
5 - 0.761 256 0.111

50 - 0.781 167 0.019

250 - 0.803 132 0.060

500 - 0.780 291 0.187

250 5 0.839 192 0.150

250 10 0.852 186 0.136

250 25 0.846 159 0.142

It is possible to observe from Fig. 1 that for networks with a single layer of
neurons the use of a large number of neurons up to 250 increases the generaliza-
tion ability for the whole ranges of complexities. When a second layer of weights
is included, the main effect was that the network improved the generalization
ability on functions with a complexity larger than 0.6 (See Fig. 2). In table 1,
the average generalization ability obtained for some of the architectures used is
shown together with the training time (in epochs) until the point in which the
minimum validation error was found and also is shown the training error at the
end of the training procedure to give an idea of the computational capacity of
the network. In a previous study [9], in which the architecture sizes were much
restricted, up to 30 neurons in a single hidden layer, we found only a slightly im-

6 L. Franco, J.M. Jerez-Aragonés, and J.M.B. Montoya

10 ' ' Nhi= 5 —+ -
Nhi= 10 -
= Nhi= 50 ---%--
= 09 Nhi = B]
< ,,,,,
S o8t -
3
N
S 07} -
[0]
C
Q
O 06 .
05 1 1 1
0 0.2 0.4 0.6 0.8 1

Complexity

Fig. 3. Random functions implemented on a one hidden layer architecture

Table 2. Average generalization ability, training time (epochs) and final training er-
ror obtained for different size architectures with one or two hidden layers of neurons
constructed to compute quasi-random Boolean functions generated by modifications of
the parity function for N=8 inputs

Neurons in Neurons in Generalization Train. time Final train.

1°* hidden layer 2" hidden layer ability (epochs) error
5 - 0.789 79 0.063

50 - 0.787 58 0.004

250 - 0.785 132 0.060

5 5 0.798 19 0.165

5 10 0.795 44 0.136

5 50 0.792 83 0.129

provement in the generalization ability for the case of very low complex functions
and thought that the effect could be explained on the basis that larger networks
have more configurations implementing trivial functions. Whether the previous
assertion is true is worth but difficult to elucidate and in terms of the general-
ization ability that can be obtained using Backpropagation combined with early
stopping it does not seem to be the case at least for symmetric functions.

3.2 Random Functions

There exists 22" Boolean functions of N inputs, making their general study very
complicated except for very simple and small cases. Totally random functions
are very complex with an average complexity around 1.0 [9].

To analyze a large set of different functions we generate functions with dif-
ferent complexity by modifying with a certain probability the outputs equal to
1 of the parity function, to obtain functions that are asymmetric in the number

Role of Function Complexity and Network Size 7

of outputs and with a complexity in the range 1.0 to 0. One hundred functions
were analyzed for each of 10 levels of complexities in which the functions where
grouped, with average complexity from 0.1 to 1.0 in steps of 0.1. We run simula-
tions using networks with a single hidden layer and a number of hidden neurons
NH1 equal to NH1=5,10,25,50,100,250,500 and obtained that the generalization
ability for the different complexity groups of functions did not change much with
the size of the hidden layer, as can be appreciated from Fig. 3. On average the
best one hidden layer architecture was the one with only NH1=5 neurons. It was
also obtained as in the previous section that the introduction of a second hidden
layer of neurons improve the overall generalization ability and the optimal values
found were NH1=5 and NH2=5. In table 2 average results are shown for some
of the architectures used. Note from the results in table 2 that the final train-
ing error was higher for the optimal architectures, and this might indicate that
larger architectures has a major propensity to overfitting for these quasi-random
functions while two hidden layer networks seems to suffer less of this problem
that the one hidden layer ones.

4 Discussion

We have analyzed the generalization ability of different network architectures
studying how the generalization ability is affected by the complexity of the func-
tions being implemented and by the size of the architecture. It is generally as-
sumed that the generalization ability depends on the complexity of the target
function but we do not know of previous studies addressing this point except
from [3], and we think that this is mainly due to the lack of a simple measure
for the complexity of the functions. The use of a recently introduced complexity
measure permit us to have a clearer picture about how different architectures
perform by permitting the functions under analysis to be grouped according to
their complexity [9].

We obtained that large neural networks do not overfit much if trained with
the Backpropagation algorithm combined with an early stopping procedure as it
was observed in previous studies [3, 4]. For the case of network architectures with
a single layer of hidden neurons, the optimum value for the number of neurons
was obtained with NH1=250 when the set of symmetric Boolean functions was
considered. It was further shown that generalization ability improved if a second
layer of hidden neurons was used where the optimal number of neurons found
was NH2=10. In particular, it was observed that the introduction of the second
layer of neurons improves the generalization ability of very complex symmetric
functions with a complexity between 0.6 and 0.9.

For the case where quasi-random functions were analyzed it was found that
the optimal network with a single hidden layer was very small NH1=5, but when
using larger networks of up to NH1=500 the average generalization values were
quite similar (See table 2). It was also observed in this case that the introduction
of a second layer of hidden neurons further improved the average generalization

8

L. Franco, J.M. Jerez-Aragonés, and J.M.B. Montoya

ability, but no significant changes were observed in terms of the functions with
different complexity.

We are currently extending the measure of complexity to continuous input

functions to be able to carry out similar studies with real problems.

References

10.
11.

12.

13.

14.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmil-
lan/TEEE Press.

Baum, E.B. & Haussler, D. (1989) What size net gives valid generalization ? Neural
Computation, 1, pp. 151-160..

Lawrence, S., Giles, C. L., & Tsoi, A. C. (1996). What Size Neural Network Gives
Optimal Generalization ? Convergence Properties of Backpropagation. In Technical
Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer
Studies, Univ. of Maryland.

Caruana, R., Lawrence, S., & Giles, C.L. (2001). Overfitting in Neural Networks:
Backpropagation, Conjugate Gradient, and Early Stopping. In Leen, T. K., Di-
etterich, T. G. & Tresp, V. editors, Advances in Neural Information Processing
Systems, MIT Press, 13, pp. 402-408.

Krogh, A. & Hertz,J.A. (1992) A simple weight decay can improve generalization.
In J.E. Moody, S. J. Hanson, & R. P. Lippmann editors, Advances in Neural
Information Processing Systems Morgan Kaufmann, San Mateo, CA, 4, pp. 950
957.

Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation: Quantifying
the Criteria. Neural Networks, 11, pp.761-767.

Setiono,R. (2001) Feedforward neural network construction using cross-validation,
Neural Computation, 13, pp. 2865-2877.

Bartlett,P.L. (1997). For valid generalization the size of the weights is more im-
portant than the size of the network. In M.C. Mozer, M. 1. Jordan, & T. Petsche,
editors, Advances in Neural Information Processing Systems, MIT Press, 9, pp.
134-140 .

Franco, L. & Anthony, M. (2004). On a generalization complexity measure for
Boolean functions. In Proceedings of the 2004 IEEE International Joint Conference
on Neural Networks, IEEE Press, pp. 973-978.

Wegener, 1. (1987) The complexity of Boolean functions. Wiley and Sons Inc.

Siu, K.Y., Roychowdhury, V.P., & Kailath, T. (1991) Depth-Size Tradeoffs for
Neural Computation IEEE Transactions on Computers, 40, pp. 1402-1412.
Franco, L. & Cannas, S.A. (2004). Non glassy ground-state in a long-range anti-
ferromagnetic frustrated model in the hypercubic cell Physica A, 332, pp. 337-348.
Franco, L. & Cannas, S.A. (2000). Generalization and Selection of Examples in
Feedforward Neural Networks. Neural Computation, 12, 10, pp. 2405-2426.
Franco, L. & Cannas, S.A. (2001). Generalization Properties of Modular Networks:
Implementing the Parity Function. IEEE Transactions on Neural Networks, 12, pp.
1306-1313.

