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To analyse the functions of the perirhinal cortex, the activity of single neurons in the perirhinal
cortex was recorded while macaques performed a delayed matching-to-sample task with up to
three intervening stimuli. Some neurons had activity related to working memory, in that they
responded more to the sample than to the match image within a trial, as shown previously.
However, when a novel set of stimuli was introduced, the neuronal responses were on average
only 47% of the magnitude of the responses to the set of very familiar stimuli. Moreover, it was
shown in three monkeys that the responses of the perirhinal cortex neurons gradually increased
over hundreds of presentations (mean � 400 over 7–13 days) of the new set of (initially novel)
stimuli to become as large as those to the already familiar stimuli. Thus perirhinal cortex
neurons represent the very long-term familiarity of visual stimuli. Part of the impairment in
temporal lobe amnesia may be related to the difficulty of building representations of the degree
of familiarity of stimuli. A neural network model of how the perirhinal cortex could implement
long-term familiarity memory is proposed using Hebbian associative learning.

In this paper, we produce a new model of how the perirhinal cortex implements a long-term
form of familiarity memory. In the Introduction, we first describe the neurophysiological data
that implicate the perirhinal cortex in long-term familiarity memory and set out what needs to
be modelled. Then we compare this type of memory to other types of memory in which the
perirhinal cortex is implicated. These other types of memory include, as described below, recog-
nition memory as measured in delayed match-to-sample tasks with short time delays, in which
perirhinal cortex neurons typically respond more to the sample than the match stimulus, and
delayed match-to-sample tasks with intervening stimuli in which perirhinal cortex neurons may
respond more to the match stimulus than the sample; and paired associate learning.

Evidence that the perirhinal cortex is involved in long-term familiarity memory comes
from a neuronal recording study in which it was shown that perirhinal cortex neuronal
responses in the rhesus macaque gradually increase in magnitude to a set of stimuli as that
set is repeated for 400 presentations each 1.3 s long (Hölscher, Rolls, & Xiang, 2003). The
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single neurons were recorded in the perirhinal cortex in monkeys performing a delayed
matching-to-sample task with up to three intervening stimuli, using a set of very familiar
visual stimuli used for several weeks. When a novel set of stimuli was introduced, the neu-
ronal responses were on average only 47% of the magnitude of the responses to the familiar
set of stimuli. It was shown in eight different replications in three monkeys that the
responses of the perirhinal cortex neurons gradually increased over hundreds of presenta-
tions of the new set of (initially novel) stimuli to become as large as those to the already
familiar stimuli. The mean number of 1.3 s presentations to induce this effect was 400 occur-
ring over 7–13 days. These results show that perirhinal cortex neurons represent the very
long-term familiarity of visual stimuli. A representation of the long-term familiarity of
visual stimuli may be important for many aspects of social and other behaviour, and part of
the impairment in temporal lobe amnesia may be related to the difficulty of building repre-
sentations of the degree of familiarity of stimuli. It is this type of memory that is modelled
in this paper.

The perirhinal cortex is also involved in recognition memory in that damage to the
perirhinal cortex produces impairments in recognition memory tasks in which several items
intervene between the sample presentation of a stimulus and its presentation again as a
match stimulus (Malkova, Bachevalier, Mishkin, & Saunders, 2001; Zola-Morgan, Squire,
Amaral, & Suzuki, 1989; Zola-Morgan, Squire, & Ramus, 1994). Indeed, damage to the
perirhinal cortex rather than to the hippocampus is believed to underlie the impairment in
recognition memory found in amnesia in humans associated with medial temporal lobe
damage (Buckley, Booth, Rolls, & Gaffan, 2001; Buckley & Gaffan, 2000). Neurophysiologically,
it has been shown that many inferior temporal cortex (a term we use to refer to area TE)
neurons (Rolls, 2000; Rolls & Deco, 2002), which provide visual inputs to the perirhinal
cortex (Suzuki & Amaral, 1994a, 1994b), respond more to the first than to the second pres-
entation of a stimulus in a running recognition task with trial-unique stimuli (Baylis & Rolls,
1987). In this task, there is typically a presentation of a novel stimulus, and after a delay,
which may be in the order of minutes or more and in which other stimuli may be shown, the
stimulus is presented again as “familiar”, and the monkey can respond to obtain food
reward. Most neurons responded more to the “novel” than to the “familiar” presentation of
a stimulus, where “familiar” in this task reflects a change produced by seeing the stimulus
typically once (or a few times) before. (A small proportion of neurons respond more to
the familiar (second) than to the novel (first) presentation of each visual stimulus.) In the
inferior temporal cortex this memory spanned up to 1–2 intervening stimuli between the
first (novel) and second (familiar) presentations of a given stimulus (Baylis & Rolls, 1987),
and as recordings are made more ventrally, towards and within the perirhinal cortex, the
memory span increases to several or more intervening stimuli (Brown & Xiang, 1998;
Wilson, Riches, & Brown, 1990; Xiang & Brown, 1998).

In a similar task, though, typically performed with non-trial-unique stimuli—a delayed
matching-to-sample task with up to several intervening stimuli—some neurons respond
more to the match stimulus than to the sample stimulus (Miller, Li, & Desimone, 1998).
Many neurons in this task respond more to the sample (“novel”) than to the match (“famil-
iar”) presentations of the stimuli, and this short-term memory is reset at the start of the next
trial (Hölscher & Rolls, 2002). The resetting at the start of each trial shows that the perirhinal
cortex is actively involved in the task demands.
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A fourth type of memory in which the perirhinal cortex is implicated is paired associate
learning (a model of semantic long-term memory), which is represented by a population of
neurons in a restricted part of area 36 where the neuronal responses may occur to both
members of a pair of pictures used in the paired association task (Miyashita, Kameyama,
Hasegawa, & Fukushima, 1998; Miyashita, Okuno, Tokuyama, Ihara, & Nakajima, 1996).

We emphasize that the type of familiarity memory modelled here is a very long-term
type of familiarity or recognition memory, which reflects the gradual build-up of neuronal
responses over several hundred presentations of a stimulus, and which may thus represent
the degree of long-term familiarity of stimuli. We call this long-term familiarity memory in
this paper. Figure 1 shows some of the neurophysiological data on long-term familiarity
memory from Hölscher et al. (2003) that we wish to model. Figure 1 shows the results of
three different replications of the whole investigation in macaque BL. Each replication con-
sisted of starting with a completely new set of “novel” images and using this set for 10 days
of testing, in which experiments were performed on many different neurons. The ordinate
shows the mean response of a neuron to the set of stimuli in the novel set expressed as a per-
centage of the response to the set of stimuli in the familiar set. In each replication of the
overall investigation, for many neurons early on after the novel set of stimuli was introduced,
there were highly significant differences between the mean responses of the neurons to the
set of familiar and novel stimuli, as shown by nonparametric (Mann–Whitney U) tests.
Indeed, for many cells the difference between the responses to novel and familiar stimuli on
the days soon after the novel stimuli were introduced were significant at p � 10�5. For the
first replication, the degree of variation is indicated by the standard errors of the mean
responses of each cell. The slope of the (linear) regression line for each replication
(BL1–BL3) was calculated and was highly significant. The intercept of the regression line
indicates the average percentage of the neuronal response to novel stimuli compared to very
familiar stimuli at the start of testing with novel stimuli. The regression lines show how long
it takes neurons to take to respond to the novel set of images as well as to the highly famil-
iar set, shown for hundreds of previous trials so that their maximal response level had been
reached. Similar results were found in five further replications in two further monkeys.

Overall, it was found that stimulus selectivity was less than that in the inferior temporal
cortex (Rolls, 2000; Rolls & Deco, 2002). This was even confirmed by direct comparison in
one of the macaques used in the study, in which when the macaque performed the same
task, 15/22 (68%) of inferior temporal cortex (IT) neurons had selective responses to the
same set of stimuli. Moreover, the selectivity of the inferior temporal cortex neurons was
greater than that of the neurons in the perirhinal cortex (that is, the sparseness of the
representation for inferior temporal cortex neurons is lower, see Rolls, 2000; Rolls & Deco
2002). Related perhaps partly to the specificity of the responses of many inferior tempo-
ral cortex neurons, in the experiments described here there was no difference apparent in
the responses of IT neurons to the novel and the long-term familiar stimuli used. This
means at least that long-term familiarity is not made explicit in the responses of inferior
temporal cortex neurons, whereas it is made explicit in the responses of neurons in the
perirhinal cortex. By “made explicit”, we mean that it can be easily read off from the 
firing rates of one or a small number of neurons, by, for example, dot product decoding
(Rolls & Deco, 2002; Rolls & Treves, 1998; Rolls, Treves, & Tovee, 1997a; Rolls, Treves,
Tovee, & Panzeri, 1997b).
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The model

To analyse how neurons in a receiving brain area such as the perirhinal cortex might build
long-term familiarity representations, let us consider the model shown in Figure. 2. This
consists of a set of perirhinal cortex neurons yi receiving synaptic connections wij from a set
of neurons xj (such as those in the inferior temporal visual cortex), which are tuned to
respond to different stimuli and which do not show long-term familiarity-related responses.
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Figure 1. Regressions showing the relative response of each neuron to novel vs. familiar stimuli (expressed as a
percentage) as a function of the number of experiments since the novel set of stimuli were investigated (abscissa), for
three complete replications (BL1, BL2, and BL3) in macaque BL. Each point on the graph shows the results of one
experiment involving 80 trials of the delayed matching-to-sample task on one neuron. The 80 trials included 40 with
the novel stimulus set and 40 with the familiar stimulus set, with 5 stimuli on each trial. On some days more than one
neuron was analysed in a separate experiment, and the number of days since introduction of the novel set of stimuli is
also shown on the abscissa. Results for three separate replications of the whole investigation in one monkey (BL) are
shown. Each replication involved starting with a completely novel set of images, and using that novel set on 10 days of
testing in which on any day as many experiments as possible were performed, each experiment with a different neuron,
and each experiment involving 40 trials with the novel set and 40 trials with the familiar set of images. The first repli-
cation (left) involved recordings in 51 experiments from 51 separate neurons over 10 testing days. The slope and inter-
cept of the regression line are shown. The intercept indicates the magnitude of the response to novel stimuli expressed
as a percentage of that to familiar stimuli at the start of the replication. During an experiment on each neuron, the set
of novel stimuli was shown for approximately 12.5 of the 1.3 s presentations of each novel stimulus during the delayed
matching-to-sample task. The results for replication BL1 show the standard error of the mean response of the neuron
to the novel relative to the familiar stimuli to give an indication of the degree of accuracy with which this could be
estimated. The error bars are omitted from the other replications for clarity.
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Figure 2. The network model for the formation of neurons with responses related to the long-term familiarity of
visual stimuli. This consists of a set of perirhinal cortex neurons yj receiving synaptic connections wij from a set
of neurons xj (such as those in the inferior temporal visual cortex) which are tuned to respond to different stimuli
and which do not show long-term familiarity-related responses.
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We first consider analytically cases under which it would be possible to observe a linear
increase in the response of the cells yi to the familiar set of patterns as they are presented
very many times (of order 400) to the network. If we consider a case of neurons with a linear
transfer function and a Hebb (associative) learning rule, there will be an exponential growth
of the synaptic weights and correspondingly of the firing rates of the output neurons to the
familiar stimuli. The activation hi (sometimes termed the net input to a neuron, and corre-
sponding to the depolarization of a neuron produced by its inputs) of neuron i is

1

This can be read as indicating that the depolarization hi of the neuron is the sum of the acti-
vations produced through each synapse, which depend on the presynaptic firing rate xj and
the synaptic strength wij.

For a linear activation function yi�hi relating the firing rate yi of neuron i to its depolar-
ization or activation hi, the output, , of a neuron i after p presentations of the familiar set
of stimuli can be calculated to be

2

where wij
p�1 are the values of the synaptic weights after the (p � 1)th presentation, and xj is

the firing rate of input neuron j.
For binary (i.e., 0,1) input patterns with sparseness a (where the sparseness can be

thought of as the proportion of the input neurons that respond to any one pattern and thus
takes the value 0.2 if 20% of the neurons are active for a stimulus, and 80% are not firing,
see Rolls & Deco, 2002; Rolls & Treves, 1998), and for the case of N input neurons we obtain

3

If the weights wij are updated according to a Hebbian associative learning rule in which the
change of weight depends on the product of the presynaptic firing rate xj and the post-
synaptic firing rate yi shown below in Equation 4,

4

where k is the learning rate, the change in weights at the pth presentation can be calculated
to be

5

for active input neuron xj (using substitution of Equation 3 into Equation 4).
It can then be shown that

6

and since (1 � kaN) � 1, the weights grow exponentially in this case of using a linear trans-
fer function and an associative learning rule; wij
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weight after the pth presentation, and (1 � kaN) to the power p arises because on every one
of the p learning trials, as the synaptic weight increases, it contributes to its own further
increase on every trial by influencing the output firing rate on that trial.

Simulation results

We ran simulations using a network comprising 1,000 input neurons projecting to a set of
output neurons as shown in Figure 2. The input to the network consisted of random binary
patterns that were divided into two sets: the novel and the familiar stimulus sets. In different
simulations we tested sparsenesses of the (novel and familiar) input patterns of 0.1 and 0.01.

The growth of the weights summarized in Equation 6 when the network was trained with
a Hebb rule and a linear activation function was found in the simulations, and it produced
an exponential increase in the firing rate to the familiar patterns, as illustrated in Figure 3.
This scenario, therefore, does not account for the approximately linear increase in the firing
rate found as a function of the number of training trials, which is illustrated for the real
neuronal firing in Figure 1.

Two possible solutions are to use a nonlinear saturating activation function, such as a sig-
moid function (which would limit the maximum firing of the output neuron), or to use an
associative synaptic modification rule with a decrementing term that captures effects of
long-term synaptic depression (LTD). We investigated both.

The results for the case of a sigmoid activation function relating the firing rate yi of
neuron i to its depolarization or activation hi (shown in Equation 7 where alpha is the thresh-
old, and beta is the slope) are shown in Figure 4. The cell firing rate grows approximately
linearly up to its maximum value after approximately 400 repeated presentations.
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Figure 3. An exponential increase in the firing rate to the familiar patterns as a function of the number of training
trials was produced when the network was trained with a Hebb rule and a linear activation function. The familiar
set of stimuli was initially novel, and the solid curve shows how the response to this set of stimuli gradually increases
as the set becomes familiar over approximately 400 training (i.e., weight modification) presentations. For compari-
son, the responses to novel stimuli, which were not trained and remained novel, are also shown (dotted curve).
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We also explored the case of using a modified Hebb rule of the type useful for competi-
tive networks (see Rolls & Deco, 2002; and Rolls & Treves, 1998) in which the synaptic
modification, describing heterosynaptic long-term depression in which the synaptic weight
can decrease (in proportion to the postsynaptic neuron firing yi) if the presynaptic firing 
xj is lower than the value of the synaptic weight wij, is:

8

This allows active output neurons to increase their synaptic weight if the input xj is above the
existing weight and to decrease the synaptic weight if the input is below the existing weight.
(The fact that the weight is subtracted from the presynaptic firing rate in Equation 8 captures
the fact that LTD is easier to obtain after long-term potentiation [LTP] has been produced—
see Rolls & Deco, 2002.) The weights are clipped to be non-negative. The simulation results
using this learning rule and the linear activation function are presented in Figure 5a. After an
initial period of learning, there is an almost linear increase in the firing as a function of the
number of training trials in the range 0–400, with saturation of the mean neuronal activity 
to familiar stimuli occurring after that. The response to the novel stimuli remains low. 
The sparseness was 0.01.

In Figure 5b we show that the model still works well at a higher loading of 0.25. In
Figure 5c we show that the model works well with a sigmoid activation function, in which
beta � 15 and alpha � 0.7, so that the success of the model is especially related to the
modified learning rule, not to the particular activation function chosen.

We then analysed the capacity of the network as the number of patterns stored in the net-
work grows. The capacity in which we are interested is the capacity to respond differently to
familiar stimuli after many training trials than to novel stimuli. The results are presented in
Figure 6. The training rule shown in Equation 8 was used with a linear activation function.
With a loading of 1.0, N patterns are trained when there are N synapses per neuron. (A loading
of 1.0 corresponds to the case of training the network with 1,000 random familiar patterns
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Figure 4. An approximately linear increase in the firing rate to the familiar patterns as a function of the number of
training trials was produced when the network was trained with a Hebb rule and a sigmoid activation function (in
which beta � 15 and alpha � 0.7). The firing rate saturated at a high value after approximately 500 training 
trials, and this is a function of the learning rate parameter k in Equation 4. The familiar set of stimuli was initially
novel, and the solid curve shows how the response to this set of stimuli gradually increases as the set becomes
familiar over approximately 400 training (i.e., weight modification) presentations. For comparison, the responses to
novel stimuli, which were not trained and remained novel, are also shown (dotted curve).
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and testing with 1,000 novel random patterns, when each neuron in the network has 1,000
inputs.) The results are shown in Figure 6 for sparsenesses values of 0.01 and 0.1. (The
random initial synaptic weights were initialized to the mean asymptotic value.) Given that
the actual neurons in the perirhinal cortex respond to novel stimuli with approximately 50%
of the firing rate response to familiar stimuli (see Figure 1 and Hölscher et al., 2003), the
model operates within approximately the correct area for a sparseness of the patterns of 0.01
up to a loading of approximately 1. With a sparseness of 0.1 of the binary patterns, the
network can be loaded less, up to a loading value of approximately 0.1.

Discussion

The analysis and model show that neurons that gradually increase their response approxi-
mately linearly over 400 or more presentations of a stimulus cannot be accounted for by a
Hebb rule with a linear activation function. If a sigmoid activation function is used with the
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Figure 5. a. (Top left panel) An approximately linear increase in the firing rate to the familiar patterns as a function of
the number of training trials was produced when the network was trained with the learning rule shown in Equation 8
and a linear activation function. The firing rate saturated at a high value after approximately 500 training trials, and when
this occurs is a function of the learning rate parameter k in Equation 8. The loading was 0.1, and the sparseness a was
0.01. The familiar set of stimuli was initially novel, and the solid curve shows how the response to this set of stimuli grad-
ually increases as the set become familiar over approximately 400 training (i.e., weight modification) presentations. For
comparison, the responses to novel stimuli, which were not trained and remained novel, are also shown (dotted curve).
b. (Top right panel) The same simulation as that in Figure 5a, but with a higher loading of 0.25.
c. (Bottom panel) The same simulation as that in Figure 5a, but with a sigmoid activation function, in which
beta � 15 and alpha � 0.7.
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same associative learning rule, then the limited maximal value of the firing rate results in
only a limited maximum weight change on any one trial, due to yi having a fixed maximum
value in Equation 4. With a relatively low learning rate, gradually more and more neurons
have synaptic weight increases that result in the neurons reaching their maximal firing rate,
as shown after 400 trials in Figure 4a. After that point in the learning, although the firing
rates are at a maximal value to the familiar stimuli, the synaptic weights will continue to
increase without bound as further learning trials of the familiar stimuli occur. Unbounded
synaptic weights are a well-known problem with a simple associative Hebb learning rule. In
this situation, to the extent that the random novel patterns overlap with the familiar patterns,
the neuronal responses to the novel patterns will continue to increase after Trial 400.

A more attractive model, because the synaptic weights are self-limiting, is therefore a
model with heterosynaptic long-term depression of the type shown in Equation 8 in the
learning rule. In this case, as illustrated in Figure 4b, the firing rates to the familiar stimuli
gradually saturate to a fixed high value at which the synaptic weights to the familiar stimuli
are bounded to within a range set by the presynaptic firing rate, as shown in Equation 8 (the
term xj � wij). At the same time, the firing rates to the novel stimuli remain relatively low,
because the values of the synapses that are activated by the novel stimuli tend to remain low
as a result of the heterosynaptic long-term depression. In this case, the activation function
can be linear, threshold linear, or a sigmoid activation function that approximates a thresh-
old linear activation function. Because the modified Hebb rule shown in Equation 8 is self-
limiting, and simulations with it can approximate the neuronal data showing long-term
familiarity effects in the perirhinal cortex, this simple model is what we propose could
implement the neurophysiological results.

With respect to the model, it is also the case that sparse input representations (in each of
which few neurons have high firing rates) will allow larger numbers of stimuli to be in the
familiar and novel sets, as shown in Figure 6. Indeed, the loading effects shown in Figure 6

Figure 6. The operation of the model as a function of the number of patterns trained. The training rule shown in
Equation 8 was used with a linear activation function. With a loading of 1.0, N patterns are trained when there are
N synapses per neuron. (A loading of 1.0 corresponds to the case of training the network with 1,000 random famil-
iar patterns and testing with 1,000 novel random patterns, when each neuron in the network has 1,000 inputs.) The
results are shown in sparsenesses of the patterns of 0.01 and 0.1.



show that the number of patterns in the novel and familiar sets that can be discriminated is
in the order of the number of synapses per neuron for sparse representations, as is typical
for associative networks (Rolls & Treves, 1990, 1998). Further, we note that the capacities for
the network scale with the number of synapses per neuron. Further, if there is sparse con-
nectivity from the set of input neurons xj to the output neurons yi, it will be possible to load
the whole system to higher capacities, because in effect some patterns will tend to be learned
more by some neurons, and other patterns more by other neurons. Indeed, this effect could
account for why many neurons, rather than just one or very few neurons, are present in the
perirhinal cortex. (These neurons are the y neurons in the model.)

We do not know of other models of how long-term familiarity-related neuronal responses
could develop in the perirhinal cortex. Bogacz, Brown, and Giraud-Carrier (2001) modelled
how, in what is effectively a short-term memory test, the responses to a novel visual stimu-
lus can be large the first time that the stimulus is shown, but small the second time that the
same stimulus is shown. That model thus is not of familiarity-related neurons, in that the
neurons in that model respond more to novel stimuli. Also, that model is of a short-term
memory process that occurs in one trial. (We note incidentally that that model cannot by
itself account for the active resetting of perirhinal cortex neurons in a delayed match-to-
sample short-term memory task, in that the responses to the sample stimulus are larger than
those to the following match stimulus, even if the sample has been seen very recently of the
immediately preceding trial, Hölscher & Rolls, 2002.) In contrast, the model described here
is of how perirhinal cortex neurons can gradually increase their responses to stimuli as they
become familiar over several hundred presentations. McLaren and Mackintosh (2002) dis-
cuss how a number of phenomena in associative learning might arise in systems with dis-
tributed representations. We note that the modified Hebb rule we use in Equation 8 (used
by Willshaw & von der Malsburg, 1976, and developed by Oja, 1982) has self-limiting prop-
erties similar to those of an associative learning rule used by Vogel, Brandon, and Wagner
(2003).

With respect to the neurophysiological discovery of perirhinal cortex neurons with activ-
ity related to the long-term familiarity of stimuli, with the familiarity building over hun-
dreds of trials (Hölscher et al., 2003), we note that such a time scale has not been investigated
previously, since most studies did not record neuronal responses for longer than 24 h and
did not allow a slow emergence of increased neuronal responses to images related to their
long-term familiarity to be observed (Brown & Xiang, 1998; Erickson & Desimone, 1999;
Xiang & Brown, 1998). Although some neurons responding more to familiar than to novel
images, and others responding more to novel than familiar images, have been found previ-
ously in the perirhinal cortex where novelty and familiarity refer to changes that occur over
a few stimulus presentations (Brown & Xiang, 1998; Hölscher & Rolls, 2002; Sobotka &
Ringo, 1993), the neurons described by Hölscher et al. (2003) had responses related to a dif-
ferent, long-term type of familiarity in which the increased neuronal responses to familiar
images can take days or weeks to develop.

The perirhinal cortex is well placed to form such long-term familiarity representations,
because it receives stimulus-selective information about what object is being viewed from
the inferior temporal visual cortex. Indeed, it has been shown in a tracer study that the
anteroventral part of area TE (TEav) projects diffusely over a wide extent of perirhinal
cortex (Saleem & Tanaka, 1996), making the perirhinal cortex anatomically suited for making
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associations between features in an object (Bussey, Saksida, & Murray, this issue) or the
objects in a scene, or computing a general property of all inputs being received, such as how
familiar they are. The perirhinal cortex can thus use the stimulus-selective input from
potentially most parts of area TE of the inferior temporal visual cortex to form new associ-
ations between such selective inputs and thereby to form a unique representation of com-
plex stimuli to identify familiar objects or scenes.

Xiang and Brown (1998) found that in a recognition memory task with trial-unique visual
stimuli, the perirhinal cortex neurons tended to respond more to the first than to the second
presentation of the stimuli. With stimuli that were already familiar, even this difference was
not clear. This may be because the neurons respond at their highest rates to stimuli that are
highly familiar, allowing less room for a smaller response to a match than to a nonmatch
stimulus in a recognition memory task.

What advantages might the representation of the long-term familiarity of images, a model
for which is reported for the first time in this paper, confer? The potential functions of com-
puting the long-term familiarity of objects or images in the brain are many-fold, and include
recognition of complex object–environment configurations such as members of one’s own
social and family group, recognition of one’s own possessions, recognition of one’s own ter-
ritory, and so on. Further, it is notable that the loss of the feeling of familiarity for objects
and events introduced after medial temporal lobe damage is one of the important symptoms
of medial temporal lobe amnesia (Squire, Stark, & Clark, 2004), and this too may be related
to these operations that we suggest are being performed by the perirhinal cortex (Henson,
this issue; Holdstock, this issue). What we propose is that the identity of the object or face
would be represented by area TE of the inferior temporal visual cortex (in the way reviewed
by Rolls & Deco, 2002) and that the long-term familiarity of the object would be represented
by how strongly the perirhinal cortex neurons analysed here are firing. Together, the two
types of neuronal activity encode both identity and long-term familiarity, but allow each
type of information to be read out from the system (by other brain areas) independently of
the other.
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