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the Generalization Complexity of Boolean Functions

Leonardo Franco, Member, IEEE, and Martin Anthony

Abstract—In this paper, we analyze Boolean functions using a re-
cently proposed measure of their complexity. This complexity mea-
sure, motivated by the aim of relating the complexity of the func-
tions with the generalization ability that can be obtained when the
functions are implemented in feed-forward neural networks, is the
sum of a number of components. We concentrate on the case in
which we use the first two of these components. The first is related
to the “average sensitivity” of the function and the second is, in a
sense, a measure of the “randomness” or lack of structure of the
function. In this paper, we investigate the importance of using the
second term in the complexity measure, and we consider to what
extent these two terms suffice as an indicator of how difficult it is to
learn a Boolean function. We also explore the existence of very com-
plex Boolean functions, considering, in particular, the symmetric
Boolean functions.

Index Terms—Average sensitivity, Boolean functions, com-
plexity, generalization, learning, randomness, symmetric func-
tions.

I. INTRODUCTION

A. Background

THE complexity of Boolean functions is one of the central
and classical topics in the theory of computation. Scien-

tists have long tried to classify Boolean functions according
to various complexity measures, such as the minimal size of
Boolean circuits needed to compute specific functions [1]–[3].
Franco [4], [5] introduced a complexity measure for Boolean
functions that appears to be related to the generalization error
when learning the functions by neural networks. This com-
plexity measure has been derived from results showing that the
generalization ability obtained for Boolean functions and for
the number of examples (or similarly queries) needed to learn
the functions when implemented in neural networks is related
to the number of pairs of examples that are similar (close with
respect to the Hamming distance), but have opposite outputs
[6], [7]. (The Hamming distance between two binary vectors

of length is simply the number of components
on which they differ.) When only the bordering (or boundary)
examples (those at Hamming distance 1) are considered, the
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complexity measure becomes equivalent to average sensitivity,
a measure introduced by Kahn et al. [8]. Average sensitivity
has been linked by Linial et al. [9] to the complexity of learning
in the probabilistic “PAC” model of learning introduced by
Valiant [10]; and many results about the average sensitivity of
Boolean functions have been obtained for different classes of
Boolean functions [11], [12]. It has been shown in [4], and is
further analyzed in this paper, that terms that account for the
number of pairs of opposite examples at Hamming distance
larger than 1 are important in obtaining a better match between
the complexity of different kinds of Boolean functions and the
observed generalization ability.

Knowing and characterizing which functions are the most
complex has a number of implications. It could help us to un-
derstand what functions can be most easily learned. (For human
learning, the difficulty of learning has been linked to function
complexity in [13].) In physics, a link has been established be-
tween the complexity measure and the Hamiltonian of spin sys-
tems [5], and a correspondence has been shown to exist between
the most complex Boolean functions and the ground state of
magnetic systems. It is worth noting that in recent years physics
and computational complexity theory have both benefited from
their interaction, and the analogy just mentioned offers a new
point of contact between the disciplines. (For an introduction
to some of the relationships between statistical mechanics and
computational complexity, see [14] and [15].) In this way, the
study of the complexity measure and of the most complex func-
tions that it defines are of interest in a number of disciplinary
contexts, including mathematical properties of Boolean func-
tions, the physics of magnetic systems, and learning in real and
artificial systems.

B. Overview of the Paper

In Section II, we introduce the complexity measure that is the
focus of this paper. In its most general form, for a Boolean func-
tion , the complexity is a weighted
sum of terms, , where can be interpreted,
broadly speaking, as indicating how many pairs of inputs to
the Boolean function that are Hamming distance apart have
different output values of the function. We briefly indicate that
some of the terms of this complexity measure can be related to
previously-studied concepts in the theory of Boolean functions,
such as average sensitivity and the Fourier coefficients.

In Section III, we report on some experiments conducted to
investigate the usefulness of the second-order complexity term

(used in conjunction with ) and it is demonstrated that
the complexity measure seems, for
the families of functions considered, to correlate well with the
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generalization error when the functions are learned using neural
network architectures.

Section IV contains a theoretical analysis of the complexity
of functions possessing some “irrelevant attributes,” meaning
that the functions do not depend on all the coordinates of
their inputs. We then look closely at a particular case of such
functions, namely those corresponding to the parity function
on some subset of the attributes. Here, we find that the cor-
respondence between the complexity and generalization
error is not extremely precise, and this therefore provides some
evidence that, in some cases, it may be wise to use additional,
higher-order, terms such as . This class of functions with
irrelevant attributes is, however, rather small and we do find,
empirically, a stronger correspondence between and the
generalization error when considering a larger class of func-
tions derived from the parity functions, with some irrelevant
attributes, but also a degree of “randomness”’ in their definition.

Sections V and VI consider a well studied class of Boolean
functions known as the symmetric functions. These are func-
tions whose output depends only on the number of ones in the
input (or, equally, these are the functions whose values are pre-
served under any permutation of the coordinates of the inputs).
This class has been much-studied in a number of contexts: Many
general results on sample and computational complexity have
been obtained [1], [4], [16]. Section V presents some theoret-
ical bounds on the complexity of these functions. Section VI
investigates how the complexity of symmetric functions can be
approximated by examining only the inputs that have a number
of ones close to .

The paper finishes with some discussion, conclusions, and
suggestions for future work.

II. THE COMPLEXITY MEASURE AND ITS INTERPRETATION

A. A Complexity Measure for Boolean Functions

In its most general form, the Boolean function complexity
measure considered here consists of a sum of terms, , each
of which accounts for the number of neighboring examples at a
given Hamming distance having different outputs (that is, dif-
ferent values of the function). The complexity measure can be
written in a general form as

(1)

where are constant values that weight how pairs of oppo-
sitely classified examples (that is, elements of with dif-
ferent outputs) at Hamming distance contribute to the total
complexity, and is the number of input bits. In all sections of
the paper, apart from where is clearly indicated, the complexity
measure used was equal to (i.e., only the
first two terms of (1) were used and the value of used was
equal to 1).

Each term has a normalization factor that takes into ac-
count both the number of neighboring examples at Hamming

distance and the total number of examples. Explic-
itly, if the examples are enumerated as , then

(2)
where is the number of examples at Hamming distance
from a given example, equal to the Binomial coefficient .
Thus, may be interpreted as the probability, uniformly
over choice of example , and uniformly over the choice of an
example at Hamming distance from , that .

B. Relationship to Other Measures Associated With Boolean
Functions

The first term, is proportional to the number of bordering
(or boundary) examples of the function ; that is, those with
an immediate neighbor having opposite outputs. Equivalently,
it is the probability that flipping a uniformly chosen bit in a
uniformly chosen example will change the output of . This is
proportional to the average sensitivity of the function
[8], [9], [17]. For a Boolean function on variables and

, the sensitivity of at , which we shall denote , is
the number of neighbors of (that is, differing
from only in one entry) such that . The average
sensitivity is defined to be the average, over all elements of

, of the sensitivities, .
The average sensitivity is also related to the notion of the
“influence” of a variable; see [8], for instance. The influence of
variable is defined to be the proportion of such
that if is obtained from by changing the th entry of , we
have . It can be seen that is the sum of the
influences of the variables. The connection between and
the average sensitivity is that .

The number of bordering examples (equivalently, the average
sensitivity or ) has been shown to be related to the general-
ization ability that can be obtained when Boolean functions are
implemented in neural networks [6], to the number of exam-
ples needed to obtain perfect generalization [6], [7], to a bound
on the number of examples needed to specify a linearly sepa-
rable function [18], and to the query complexity of monotone
Boolean functions [19]. Moreover, links between the sensitivity
of a Boolean function and its learnability in the PAC sense have
been established [9] and many results regarding the average sen-
sitivity of Boolean functions have been derived [8], [11], [12],
[20].

The complexity measures can also be related to another
important idea in the theory of Boolean functions, namely the
Fourier coefficients of . Fourier (or harmonic) analysis of
Boolean functions has recently proven to be extremely useful
in a number of areas, such as learning theory ([9], [21] for
instance) and circuit complexity [22]. (References [23] and
[24] provide good surveys of the harmonic analysis of Boolean
functions and its uses.) It is shown in [8] that the average
sensitivity of a Boolean function , and hence the complexity
measure may be written in terms of the Fourier coef-
ficients of . Furthermore, results of Kahn, Kalai, and Linial
also show that the higher-order complexity terms can be
expressed in terms of the Fourier coefficients.
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Fig. 1. Generalization ability versus first term (top graph), second term
(middle graph), and first plus second terms (bottom graph) of the complexity
measure for three different classes of functions. Each point in the graphs
corresponds to the average obtained across 30 generated functions with
approximately the complexity shown. (See text for more details.).

III. IMPORTANCE OF THE SECOND-ORDER TERM OF THE

COMPLEXITY MEASURE

The second-order term has been shown to be relevant in order
to produce an accurate match between the complexity measure
and the observed generalization ability when the functions
are implemented in neural networks [4]. Experimental results
indicate that the first-order complexity term alone does
not give as good a correspondence as does the combination

.
Fig. 1 (top) shows the generalization ability versus the first-

order complexity obtained from simulations performed for
three different classes of functions. Each point in the graphs
of Fig. 1 corresponds to the average obtained across 30 gener-
ated functions with approximately the complexity shown. The
first class of functions (indicated as in the

figure) was generated by modifications of the constant, identi-
cally-1, function, producing functions with first-order complex-
ities between 0 and 0.5. These were generated as a func-
tion of a parameter in the following way: For every example,
a random uniform number in the range [0, 1] was selected and
then compared to the value of . If the random value was smaller
than then the output of the function on that example was ran-
domly selected with equal probability to be 0 or 1. Thus, for each
example, with probability , the output is randomly chosen, and
with probability the output is 1. The second set of functions
( . in the figure) was generated in the same
way but through random modifications of the parity function,
to obtain functions with a complexity between 1 and 0.5. (The
parity function is the function that has output 1 on an example
precisely when the example has an odd number of entries equal
to 1.) The third set of functions ( in the
figure) was generated as follows: Starting with the parity func-
tion, for each positive example (that is, an example with output
1 on the parity function), the output is changed to 0 with prob-
ability . This yields functions with complexities ranging from
1 to 0, all of which, except the initial parity function, are unbal-
anced (in the sense that the number of outputs equal to 0 and
1 are different). The classes of functions span a range of com-
plexities according to the way they are generated. In particular,
for the case of the first term of the complexity measure, , the
maximum possible range of from 0 to 1 is covered only when
the class includes the constant function (with all outputs having
the same value), for which , and the parity function or
its complementary one, the only functions with complexity
equals to 1.

Fig. 1 (top graph) shows, for each of these three classes, the
generalization ability computed by simulations performed in a
neural network architecture with inputs and eight neu-
rons in the hidden layer trained with backpropagation, using half
of the total number of examples for training, one fourth for val-
idation and one fourth for testing the generalization ability (by
which we mean the proportion of the test set that is classified
correctly by the network after training). The generalization error
is measured at the point at which the validation error achieved
its minimum value. In Fig. 1 (middle) the generalization ability
is plotted against the second-order term of the complexity mea-
sure, , and it can be observed that the general behavior of
the generalization seems uncorrelated to this second term (Note
the different scale in this graph in comparison to the other two).
But when we plot, in figure (bottom), the generalization ability
versus better agreement is obtained for the three dif-
ferent classes of Boolean functions. The discrepancy observed
in the generalization ability in Fig. 1 for functions with sim-
ilar complexity appears to be almost totally corrected when

is used. The shape of the curves in Fig. 1 (middle graph)
is better understood if we consider at the same time the behavior
of the generalization ability as a function of , as the general-
ization ability is much more correlated to than to when
and are considered separately. In particular for the case of the
functions labeled . the shape of the curve
is understood by following the curve in Fig. 1 (middle graph)
starting from the point where generalization ability equals to 1
and equals to 0 in clockwise sense and consider that along
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Fig. 2. Complexity terms C (top) and C (bottom) versus the parameter p
that controls randomness for the class of functions used in Fig. 1. For the first
two classes of functions the amount of randomness is directly proportional to p
while for the third class the maximum randomness is achieved for p = 0:5. A
good agreement between the amount of randomness and C is obtained.

this trajectory the value of monotonically increases Fig. 1
(top graph) and thus, as expected, the generalization ability de-
creases.

We also show the values of and as a function of the
parameter that controls the amount of randomness in the func-
tions in Fig. 2 (top and middle). The first (second) class of func-
tions starts with the constant (parity) function when and
ends in a totally random function when . We see that
increases (decreases) and increases with , as expected. For
the third class of functions the maximum amount of randomness
corresponds to 0.5, at which point all of the outputs that were
originally 1 are changed to 0 with probability 0.5. (Note that, for
this class of functions, the value of is proportional to the frac-
tion of output bits 1 remaining in the definition of the function.)

The results for the three different classes of functions pre-
sented in Fig. 2 (middle) show a clear correlation between
the amount of randomness or lack of structure (or regularity)
present in the Boolean functions and the value of . The term

includes the contribution of pairs of examples at Hamming
distance 2 and belonging to the same “level” (that is, having
the same weight, the number of bits that are ON) and also from
examples that are at Hamming distance 2 from each other and
have weights differing by 2. It is worth noting that the first
contribution, from examples in the same level (i.e., of the same
weight) measures how “nonsymmetric” the function is. (For
symmetric functions, all examples of a particular weight have
identical outputs.)

We have also investigated the behavior of the generaliza-
tion error versus the complexity value of the functions when

Fig. 3. Generalization ability versus the complexity C (first and second
terms included) for Boolean functions with N = 14 inputs created starting
from the constant function and adding random modifications. The three curves
shown were computed for different sizes of the training set while the size of the
validation and generalization sets was held constant. It is indicated in the figure
legend the fraction of examples used in each set. (See text for more details.)
The error bars indicate the standard deviation of the mean computed over sets
of 10 functions.

different sizes of sets are used for the training, validation and
generalization measurement procedures. To analyze this, we
ran simulations using the set of Boolean functions generated
by random modifications of the constant function (previously
named ) that generates a set of Boolean
functions with complexity in the range from
0 to 1 for the case of inputs. The total number of
different input-output pairs (examples) is equal in this case
to . In Fig. 3 the results are shown for three
different analyzed cases. The upper curve in Fig. 3 corresponds
to the case of using half of the total number of examples for
training (8192), one fourth (4096) for validation, and one
fourth for measuring the generalization error. The middle curve
was constructed using [1/8, 1/4, 1/4] of the total number of
examples, corresponding to 2048, 4096, and 4096 examples.
The lower curve was computed using 128 examples for training
and the same size sets for the validation and generalization sets
(indicated by [1/128, 1/4, 1/4]). The figure indicates that the
monotonic relationship between complexity and generalization
ability is preserved for different selection of the training set
sizes. The figure also shows that as the fraction of examples
for training diminishes the generalization ability is reduced,
something that, of course, is to be expected from standard
models of generalization (such as discussed in [25] and [26]),
as a reduction in training sample size implies a reduction in
knowledge about the target function. The results presented in
Fig. 3 show that when a comparison between different functions
is done the size of the training set used has to be approximately
the same for all the different functions, as the size of the
training set clearly affects the level of generalization that can be
obtained. Thus, if the complexity of a function is measured it
is not straightforward to predict the level of generalization that
can be expected as the size of the training set used plays also
an important role. Nevertheless, the complexity value obtained
can be used as a comparison against other functions that will
be trained with the same size training set.

Another indication of the importance of the second-order
complexity term comes from the fact that when only is
considered, the functions with highest complexity turn out to
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be the very well known parity function and its complement [4],
[27], yet, as we shall see, numerical simulations have shown
that there are functions which are more complex to implement
on a neural network (in the sense that the generalization error
is higher). Indeed, for this class of very complex functions the
generalization error obtained is greater than 0.5 (which is what
would be expected for random functions). In [4] it has been
shown that the average generalization error over a whole set
of functions using the same architecture is 0.5, indicating that
there exist functions for which the generalization error is higher
than 0.5. Similar results have been obtained for time series
implemented by perceptrons by Zhu & Kinzel [28].

IV. A METHOD FOR FINDING VERY COMPLEX BOOLEAN

FUNCTIONS AND GROUND STATES

A. Irrelevant Attributes

In this section, we investigate how to find Boolean functions
with a high complexity. One technique that seems to be
useful is to consider functions having a number of irrelevant at-
tributes. Such an approach is motivated by considerations from
statistical mechanics. In [4], [5] an analogy is established be-
tween the Boolean function complexity measure and the Hamil-
tonian of magnetic systems. This analogy implies that there is a
correspondence between the ground state of magnetic systems
and the most complex functions. Ground states of many mag-
netic systems have been observed often to have a certain type
of order (short or long range order) and it is a subject of contro-
versy under which conditions this order does not arise [5], [29].
In some cases the ordered ground state consists of two equal
size antiferromagnetic domains, corresponding in the language
of Boolean functions to a parity function on variables,
with the th variable being irrelevant. Finding the ground states
of magnetic systems is a complicated task only rigorously un-
dertaken in very few cases. It has been shown that in most cases
the problem of rigorously establishing that a state is the ground
state is computationally intractable [30], [31].

A Boolean function is said to have irrelevant at-
tributes if there are indexes such that the
value of the function does not depend
on . For the sake of simplicity, let us suppose
these “irrelevant attributes” are .
Then, the value of is determined entirely by its projection
onto the relevant attributes, given, in this case, by

(The choice of 0 for the last coordinates here is arbitrary, the
point being that the value of is independent of these.)

B. Complexity With Irrelevant Attributes

The complexity of can be related to that of as
follows.

Theorem 4.1: With this notation, we have

(3)

Proof: To see why (3) holds, it is useful to recall the prob-
abilistic interpretations of and . For , and

, let denote the example obtained from by
“flipping” the th component—that is, by changing from 0 to
1 or from 1 to 0—and let be the example obtained from
by flipping components and . Then, we have the following,
where all probabilities indicated are uniform over choice of
and over the choice of components to be flipped

From these, (3) follows.
Consider the -dimensional Boolean functions defined as the

parity function on variables for . The
complexity of these functions including the first- and second-
order terms, and , can be written in terms of as

(4)

(5)

This follows from (3), because the functions concerned have
irrelevant attributes, and because the projection onto the

relevant attributes is the parity function on vari-
ables, having and . It can also be seen
directly: The two terms in (4) represent the fraction of pairs of
examples with opposite outputs at Hamming distances 1 and
2, respectively. To find the function of this particular type with
highest complexity, we take the derivative of with re-
spect to (assuming, temporarily, that is a continuous pa-
rameter)

(6)
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Fig. 4. (Top graph) Complexity (C + C ) for Boolean functions that
implement the parity function onN �A variables as a function of the fraction
of relevant variables (1 � (A=N)), for different values of N . (Bottom graph)
Generalization error versus the fraction of relevant variables for the case of the
parity function on (N � A) bits.

Assuming that , and calculating the maximizing value
, the root of (6), we obtain

(7)

The complexity of the corresponding function is

(8)

In particular, for the case we obtain
which yields, when is an integer, a Boolean function
with complexity

(9)

The complexity of the function found is larger than 1.125 for
any , indicating that we have found a very complex function.
(For comparison, we note that the complexity of
the parity function and of a random function is approximately
1.0.) As mentioned in Section IV-A, the problem of finding the
most complex functions is analogous to finding the ground state
of magnetic systems, that can be rigorously analyzed only in
few cases. It is a specially difficult problem to analyze when
competing (or frustrating) interactions exists, as is the case of
the complexity measure comprising at least two terms. Our re-
sults show that there exists functions with a complexity

of at least 1.125 but we can not prove that these are
the maximum complexity functions. An exhaustive analysis of
all functions with inputs showed that the most complex
function in that case had equals to 1.25 [4].

C. Empirical Investigation

We empirically study the generalization error obtained when
Boolean functions are implemented on feed-forward neural net-
works, to analyze its correlation with the complexity measure.
We show in Fig. 4 the values of the complexity (top)
and generalization error (bottom) of parity functions that de-
pend on variables for the cases and . The
behavior of the generalization error (Fig. 4, bottom) follows ap-
proximately the shape of the curve obtained for the complexity

(Fig. 4, top) but only approximately. The com-
plexity reaches a maximum value for a value of
approximately equal to 0.7 (Fig. 4, top). The results from the
simulations for and show a generalization error
having an upward trend, as the fraction of relevant variables in-
creases, reaching a maximum when there are no irrelevant vari-
ables. This might be explained by the fact these functions are
quite regular and maybe easier to implement than other func-
tions with the same amount of randomness. We also note that
if the third term (or higher-order terms) is considered in the
complexity measure then the prediction is that a local maximum
value for the complexity as a function of the frac-
tion of relevant variables no longer exists. (More information
about this is given later in this section.) We analyze in the dis-
cussion what criteria to use when considering how many terms
to include in the definition of the complexity measure.

To continue with the empirical analysis, we decided to look
at some related functions with a greater element of randomness
in their definition. We considered functions that implement the
parity function of variables, where the final variables
on any given input example were subject to random alteration:
Each of the final variables of an example were, with proba-
bility 0.5, left unchanged, and with probability 0.5, were set to 0.
On each example, then, the function constructed computed the
parity function of variables on that example, where

is a value between 0 and , distributed according to a bino-
mial distribution with mean . The set of functions found is
a complex one for which the generalization error can, for some
values of , be larger than 0.5.

The simulations were performed in one hidden layer archi-
tectures, trained with backpropagation, using half of the total
number of examples for training, one fourth for validation and
the remaining fourth to measure the generalization error. The
validation set was used to prevent overfitting, i.e., the valida-
tion error is constantly monitored and at its minimum value the
generalization error is measured. The training was done using
standard backpropagation with momentum with learning rate
equal to 0.25 and momentum constant equal to 0.2. The number
of neurons in the single hidden layer used in the architectures
were equal to the number of inputs. (Other possibilities were
explored and no significant differences were found.) The error
bars plotted show the standard error of the mean (SME), when
50 averages were taken. The SME decreases as the number of
input bits, , increases and for fixed it was approximately
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constant as a function of , except for the case , in which
case the SME was normally larger.

In Fig. 5 the values of the complexity (top) and
generalization error (bottom) obtained for the Boolean functions
that implement the parity function on variables (in
the sense described earlier) are shown for the cases of 8, 10,
14. The generalization error is larger than 0.5 for some values of

. Fig. 5 (bottom) indicates that a correlation is found
with the computed values (from the numerical simulations) for
the complexity Fig. 5 (top). Furthermore, by using the
empirical value obtained for the maximum of the generalization
error as a function of we estimate, through (7), a
value for . From the results, plotted in Fig. 5 (bottom), we
obtain values of equal to 7/8 and 8/10 for 8 and
10, respectively, that we correct to 7.5/8 and 9/10 because the
functions were created by using the extra variables indicated
by as mentioned before and thus can be considered to
be equivalent for extra variables. These values lead to
equals to 0.5 and 0.5625 for the cases and ,
respectively (the simulations for the case do not show
a clear maximum value for the generalization error and this is
why we did not do the estimation for this case.

We can also find functions for which is very high, inde-
pendently of . In this case, we repeat the procedure used in
(4) to find that functions defined as the parity on variables
have a complexity equal to

(10)

which is larger than 0.5 for all . For the case , this
gives a function with and we have exhaustively ver-
ified that this is the largest value that can be obtained for any
Boolean function with . For cases where , we do
not know how close the value obtained for is to its maximum
possible; and, as aforementioned, it could be that the demonstra-
tion that this value corresponds to the functions with maximum
complexity is intractable (Istrail, 2000). For symmetric Boolean
functions, however, as we observe in Section V, the maximum
value that can be achieved for is 0.5.

D. Higher-Order Complexity Terms

Suppose that is a Boolean function of variables, of which
are irrelevant. Using the same notation as earlier, for

, the th complexity term of can be related to the
complexity terms (for ) of as follows.

Theorem 4.2: With this notation

(11)

where and .
Proof: Again, we use the probabilistic interpretation of

. For , and , let de-
note the element of obtained from by “flipping” the
components for —that is, by changing these from 0
to 1 or from 1 to 0. For , the number of relevant attributes

Fig. 5. (Top graph) Complexity (C +C ) and bottom graph) Generalization
error vs the fraction of relevant variables (1 � (A=N)) for Boolean functions
described in the text as the parity on (N �A+ �) variables for different values
of N .

in (which is ) has to be at least
(since there are irrelevant attributes); and, the number of rel-
evant attributes can be no more than (since
there are relevant attributes in total). In the Theorem
statement, if then should be considered equal to
0. Then we have the following, where all probabilities indicated
are uniform over choice of and over the choice of coordinate
set of cardinality

which is as required.
Consider now, as earlier, the function defined as the parity

function on variables, where is between 0 and .
(So, the case is the usual parity function, and the case

is a function that is constant (either identically 1 or
identically 0).
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Corollary 4.3: Suppose that and that is the
parity function on variables (having irrelevant at-
tributes). Then, for

where and
.

This follows from (11), because the projection of onto
the relevant attributes is the parity function on
variables, having if is odd, and

otherwise.
For , let

be the complexity of when all complexity terms
up to order have been included. We commented that in con-
sidering , the parity func-
tions on attributes have a complexity measure
that increases to a maximum and then decreases again, as the
number of relevant attributes is increased (that is, as is de-
creased). However, this behavior appears not to be present when
we consider ; and also when we consider
the full complexity . In considering
these “fuller” measures of complexity, it appears that as the
number of relevant attributes is increased, the complexity in-
creases monotonically, so that the parity function itself (with
no irrelevant attributes) has the highest complexity among the

functions. This perhaps explains the empirical results
on the generalization error for these functions (Fig. 4, bottom),
something that we noted could not be explained simply by the
first- and second-order complexity measure . We have
seen that the first-order complexity is often an inadequate
measure of complexity and that this can be corrected by adding
the second-order term. Now we see, additionally, that, for some
classes of function, even higher-order complexity terms are re-
quired to reveal a correspondence with generalization error.

V. COMPLEXITY OF SYMMETRIC BOOLEAN FUNCTIONS

An important class of Boolean functions is the class of sym-
metric functions, those for which the output depends only on the
number of input bits ON (or, equivalently, on the weight of the
example). This class includes many important functions, such
as the parity function and the majority function, and many re-
sults regarding different properties of these functions have been
obtained [1], [6], [7], [16], [32], [33]. We first determine inde-
pendently the maximum values of and that such func-
tions can achieve and then by using an approximation, in which
we consider only the input examples with a balanced or almost
balanced number of input bits ON and OFF, we analyze which
symmetric functions have high complexity measure.

For the case of it is trivial to see that the parity function
and its complement, for which , are the only Boolean
functions for which is maximum, and they are symmetric.
The maximum possible value for among symmetric func-
tions is 0.5, as we now show.

For a given number of input bits, , we organize the exam-
ples in levels according to the number of bits ON (number of
bits equal to 1), . The number of OFF bits in a given ex-

Fig. 6. Poset for N = 4.

ample is then equal to . A useful picture to see
how the examples are organized in levels is the poset diagram
(see Fig. 6) where neighboring examples at a Hamming distance
1 are linked by bonds or edges. (If we identify examples with
subsets of , the poset is the power set of with respect to
set inclusion.) In Fig. 6 the poset is shown for the case .

The number of examples at Hamming distance 2
from any given example is . For any example , this
number may be decomposed as

(12)

where is the number of examples at distance 2 in the
same level of the poset as , and is the number of
examples at distance 2 and in a different level (either level
or ). Now, and depend only on the level
of the poset to which belongs. Explicitly, for all in level

(13)

as this is the number of examples in the same level that have one
different bit ON and one different bit OFF but the same total
number of bits ON. For in level

(14)

as this is the number of different examples that can be obtained
from by flipping two ON bits to OFF or by flipping two OFF
bits to ON. (The binomial coefficient is interpreted as 0 if

.)
For a symmetric Boolean function, examples in the same level

have the same output. It follows that, in considering the com-
plexity measure , only examples at distance 2 and in a dif-
ferent level need be considered. Therefore, if denotes level
of the poset, we have

(15)

(16)

(17)

where

(18)
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Fig. 7. Triangle created from (18) starting from N = 2 up to N = 12. The
ith coefficient C in row j (j = 2 being the first row) has value C =
C(i; j) = (1= ) ( + )= ((i + (j � i) � j)=(j � j)) .

is times the maximum possible contribution to from
the examples in level .

The numbers of (18) are indicated (for to )
in the triangular array of Fig. 7.

It is apparent that, in this triangle, an entry in a given row
can be obtained by adding the two elements that are located
above it in the preceding row. It can also be seen that the sum
of the numbers in each row is double that of the sum in the
preceding row. Both these observations are easily verified. It can
be checked that for any and

(19)

Additionally, the sum of the numbers in row can be seen to
be as follows. We note that

since both sides of this identity are different expressions for the
number of pairs where
and . (Clearly, for each choice of there
are possible , giving the right-hand side. But the same
quantity can be calculated as follows. Choose some subset of

and then some 2-subset of . This second approach
gives the left-hand side.) Also

since both sides are the number of pairs where
, and . It follows that

(20)

This shows, in particular, that for any symmetric Boolean
function, we have

(21)

The maximum value of 0.5 for can be achieved for any
by the symmetric functions with the property that the outputs
chosen for the different levels alternate between 0 and 1 every
two levels.

VI. APPROXIMATING THE COMPLEXITY OF SYMMETRIC

BOOLEAN FUNCTIONS

We now analyze approximately the -complexity of sym-
metric functions, where . The idea
of the approximation is to focus on the middle layers of the
poset, these being the largest, to compute locally the complexity
around these layers.

The middle layer (in the case of even ) and the middle two
layers (in the case of odd ) are the most populated ones. Since
the complexity measure that we are considering involves exam-
ples up to Hamming distance 2, to compute our approximation,
we consider only the layers within distance 2 of these largest
ones. We first consider the case even and base our analysis,
therefore, on the levels , , , ,

. We analyze the validity of the approximation by con-
sidering the fraction of pairs of examples at Hamming distance
1 (those contributing to ) that are taken into account by the
approximation in proportion to the total number of pairs of ex-
amples at Hamming distance 1.

Fraction of pairs in the approx.

pairs

Total number of pairs
(22)

where pairs indicates the number of pairs between levels
and . For the case of (22) leads to

Fraction of pairs in the approx. (23)

Statistical tests of significance for the approximation were
carried for the cases and and they are detailed
later.

We express the approximated complexity of the symmetric
Boolean functions in terms of the “interactions” of the examples
at Hamming distance 1 and 2 of these five levels and introduce a
function that will account for this value. ,
where and reflect the
values of the interactions between the different levels consid-
ered. Explicitly, reflects the value of the interaction at Ham-
ming distance 1 between levels and and be-
tween levels and . That is, takes value 0 if
the Boolean function assigns the same output to all these three
layers; it has value 1 if, for one of these pairs of layers, the out-
puts are different and for the other pair they are equal; and it
has value 2 if for each pair of layers, the outputs are different.
Similarly, reflects the value of the interaction at Hamming
distance 1 between levels and and between
levels and . The parameters and
describe distance-2 interactions: reflects the value of the in-
teraction at Hamming distance 2 between levels and

, and accounts for the interaction at Hamming dis-
tance 2 between the middle level and levels .
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TABLE I
THE ASSIGNMENTS OF VALUES TO THE MIDDLE FIVE LAYERS OF THE POSET

AND THE CORRESPONDING PARAMETER VECTORS

Now we approximate and assess numerically, for all config-
urations of assignments of output values to these middle layers,
the complexity of symmetric functions whose outputs are con-
sistent with these. Without any loss of generality we assume out-
puts of examples in level to be 1. By symmetry, we then
need only consider the ten configurations of output values to
the five layers that are shown in the first column of Table I.
Here, the assignment means, for example, that
layer is assigned 1, layer is assigned 0, and so
on. We also indicate, in the second column, the corresponding
parameters .

We use two different ways of measuring the com-
plexity in these five central layers. These approximations
are made by two functions and of the parameters

. These are given (for , 2) by

where measures the complexity, relativized to these layers,
and , are two approximations for the complexity, locally
around these layers. The function is defined by

(24)

The approximation is defined as follows:

(25)

Here, the leading factor of 1/2 reflects the fact that, for sym-
metric functions, can be no more than 1/2 (as shown in the
previous section). The function is given by

(26)

where , the number of pairs of examples in these five layers
which are at distance 2 and in the same layer is

(27)

Generally, we would expect to underestimate , because al-
though accounts for all distance-2 pairs within the same layer,
in these five layers, does not account for possible distance-2
interactions between points of these five layers and points out-
side these layers. (There is no term corresponding to a possible
interaction between layer and layer , and so
on.)

Table II shows the values of , , , and for the
configurations of interest (see Table I), for the case .
(The first column indicates the appropriate parameter values.) In
the final column of the table, we give the mean values of , ,

over all symmetric functions on variables which
extend the given configuration on the five central layers. So, for
instance, for the last entry of the first column, we consider all
those symmetric Boolean functions on which assign
values 1, 0, 1, 0, 1 to layers 5, 6, 7, 8, 9 (respectively)—that
is, all those that extend the pattern of the central
layers—and we compute the mean values of , , and
over all such functions.

Table II shows the mean values of the complexity measures
for extensions of the given configurations of the middle layers.
More information is provided by the distribution of these. For
instance, Fig. 8 shows the distribution of complexities ,
and for extensions of the configuration [cor-
responding to the third row of Table II with equal to (2, 1,
0, 1)]. As noted in Table II, in this case the means of ,
and are (respectively) 0.709, 0.194, and 0.903. The corre-
sponding standard deviations are 0.067, 0.047, and 0.082. The
minimum values of each are 0.576, 0.097 and 0.733, and the
maximum values are 0.843, 0.290, and 1.0, respectively. We
also assessed statistically how good the approximations of
and using only examples from the five middle layers were
in relationship to the real values. For the case of we
computed the regression value between the true complexity of
all the symmetric Boolean functions and their respective ap-
proximated value, finding the Pearson correlation coefficient to
be highly significant and for and

, respectively. For the case we computed the cor-
relation between the values given by the approximations and
the complexity values of all the symmetric Boolean functions
compatible with each of the 10 different function approxima-
tions defined in Table I ( functions were considered for each
of the cases) to find values of the Pearson correlation equal to

and for and , respectively. The
correlation was statistically significant in all cases .

So far we have considered the case of even . To analyze
the case of odd , we would consider the four most populated
levels with . Suppose (without loss
of generality) that a Boolean function assigns value 1 to the
examples in level . If then alternates its values be-
tween immediate layers of the poset, we obtain the parity func-
tion or its complement, for which and . Another
interesting configuration is that in which assigns value 1 to ex-
amples in layer and then alternates its values every
two layers. As we have seen, this gives the maximum possible
value (for a symmetric function) of , namely . The
function also has , as we now show. Suppose that
is of the form for a positive integer . (A very similar
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TABLE II
APPROXIMATIONS TO THE COMPLEXITIES C , C AND C OF FUNCTIONS HAVING A GIVEN CONFIGURATION OF OUTPUTS ON THE MIDDLE FIVE LAYERS (IN THE

CASE N = 14). (SEE TEXT AND TABLE I.) THE LAST COLUMN SHOWS THE MEAN VALUES OF COMPLEXITIES OF ALL FUNCTIONS CONSISTENT WITH THESE

GIVEN OUTPUT PATTERNS OF THE MIDDLE LAYERS. APPROXIMATIONS AND MEANS OF C COMPLEXITIES ARE HIGHLIGHTED IN BOLD

argument can be made if, instead, is of the form .) The
contributions to are of two types: Those arising from, for
each example in layer , the neighbors in layer (for

) and (equally) those arising from, for each example
in layer , the neighbors in layer . These two
types of contribution are equal, since each is the total number of
edges between layers and . We, therefore, have

(28)

Now, we can argue combinatorially, as follows:
is equal to the number of pairs where is of even
cardinality and . (For, there are subsets of cardi-
nality and, for each, there are choices for .) Now, suppose
that . Let be any element of not equal to . Then
the subsets of containing can be partitioned into
pairs where runs through all subsets of
containing but not containing . Since precisely one member
of each such pair is of even cardinality, and since there are
choices for , it follows that the number of pairs where

and is even is exactly . Hence

as claimed.

VII. DISCUSSION AND CONCLUSION

The ability to generalize is a very interesting and important
property of many intelligent systems like humans and neural
networks, and a lot of effort has been devoted to its under-
standing. We analyzed in this paper a recently proposed mea-
sure for the complexity of Boolean functions related to the dif-
ficulty of generalization when neural networks are trained using
examples of the function. We studied the first-order ( ) and
second-order ( ) terms of the complexity measure and demon-
strated the importance of the second term in obtaining accurate
comparisons with the generalization error. Furthermore, we an-
alyzed the relationship between and the amount of random-
ness introduced in three different classes of functions and found
a very clear correlation, suggesting that the second-order com-
plexity term can be used as an estimate of the randomness ex-
isting in a Boolean function. This is, we believe, an important
feature, since measuring randomness is a very complicated and

delicate matter [34], [35], and also because it is important to
quantify randomness in applications such as cryptography [12].

By using an assumption on the nature of the most complex
functions based on some results from statistical mechanics,
we have been able to obtain very complex Boolean functions,
with a complexity larger than 1. We showed empirically that
the difficulty of generalization for these functions was related
to the complexity measure (once the functions were modified
by adding a controlled element of randomness). We have
seen in the experiments in Section III that the use of the first
and second term were enough to get a nice match between
generalization and complexity for different classes of functions
but when in Section IV we analyzed the parity function using
some irrelevant variables we found that the two first terms
were not enough and that higher-order terms were needed to
obtain an accurate match. Our opinion is that when analyzing
large classes of functions, in which the values are averaged
across many different functions around a certain complexity
the two first terms are enough, but when the analysis is done for
very few functions, as is the case of the functions analyzed in
Section III it might be necessary to include terms of third-order
or higher, but this is an issue that needs further investigations.
Regarding the values of the constants that weigh the dif-
ferent terms in the complexity measure in relationship to the
first term, we have been able to estimate the value of to be
close to 0.5 (the estimations were 0.5 and 0.5625 for
and 10 inputs, respectively). We note that the estimation relies
on some approximations, and so they should be not considered
as definitive values, and that is why we take a conservative
approach in some parts of this paper and use the value of
used in previous analysis [4], [5] in which was equal to 1.
This value permits, as demonstrated in Section III, to obtain a
good match between generalization error and complexity for
different classes of functions. We have also observed in the
different studies carried out in this paper and in [4], [5] that
for large classes of functions higher-order terms normally have
a similar value to the first and second, in particular the first,
third, fifth terms tends to have similar values and the same for
the even terms (second, fourth, sixth, etc.). The consequence
of the previous observations in relationship to the values of the
constants would be that consecutive terms will have to be
weighted by an amount proportional to the relationship between
first and second terms (i.e, ; ) but
we do not have yet experimental or theoretical justification for
a proper choice of their absolute values. As higher-order terms
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Fig. 8. Number of functions compatible with the values of the middle layer
being 10100, and having givenC , C and C = C +C complexities (top,
middle, bottom histograms, respectively).

weight the effect of examples at larger Hamming distances the
logic indicates that their weight should be not higher than those
for the first and second terms.

For the class of symmetric Boolean functions, we first ob-
tained a general bound on the maximum value that the second-
order term of the complexity can take and, secondly, by focusing

on the most populated levels of inputs, we found approximate
values for the complexity of certain symmetric functions (and,
in particular, we were able to obtain an indication that some
complex symmetric functions existed). We have performed sta-
tistical tests that showed that these approximations compared
well (for and ) with the computationally cal-
culated actual values of the complexities.

As a whole, the results presented in this paper show that the
complexity measure introduced in [4] can be used to charac-
terize different classes of Boolean functions in relationship to
the complexity of generalization, and we think that this may lead
to new lines of research contributing to a better understanding of
the difficulty of learning Boolean functions by neural networks
and in particular to the study of how changes in the neural ar-
chitecture affect the computability of functions [36], [37].

Classical statistical learning theory (see [25] or [26], for ex-
ample) suggests that the difference between generalization error
and training error (that is, between the error on a test set and
on the training set) can be bounded (with high probability) by
a quantity that depends on the size of the network (more pre-
cisely, its VC-dimension) and is independent of the function
being learned. In particular, this leads to an upper bound on the
generalization error that increases as the training error increases.
It is possible that a perceived correlation between complexity
and generalization error is in large part due to a correlation be-
tween complexity and training error (a higher complexity indi-
cating that it is more difficult to “fit” the network to the func-
tion). More recently, certain nonuniform bounds depending on
the sizes of the weights in the network after training have been
obtained [38]. (These weights can depend on the particular func-
tion being learned, and in this sense are nonuniform.) As men-
tioned, the classical VC-dimension based results from statistical
learning theory give a (high-probability) upper bound on the
difference between generalization and training errors, and this
bound depends on the size of the network, but not on the func-
tion. We conjecture that such a uniform bound can be replaced
by one that involves not only the size of the network, but also
the complexity of the particular Boolean function being learned.
Further experiments would indicate whether this is the case.

We are currently exploring different extensions of this work,
such as the generalization of the measure to continuous input
functions, the use of the complexity measure for individual pat-
terns to improve learning, the construction of neural networks
architectures for restricted classes of Boolean functions, the
use of the second term of the complexity measure to estimate
randomness, and also applications to the statistical mechanics
of magnetic systems. In particular, we think that the complexity
measure will be an important element in order to study how
changes in the architecture (number of hidden layers and
number of neurons on each layer) affect the generalization
ability and we are currently doing such analysis on the class of
symmetric Boolean functions.
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