
Neural Network Architecture Selection: Size

Depends on Function Complexity

Iván Gómez, Leonardo Franco, José L. Subirats, and José M. Jerez

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga, 29071 Málaga, Spain

{ivan, lfranco, jlsubirats, jja}@lcc.uma.es

Abstract. The relationship between generalization ability, neural net-
work size and function complexity have been analyzed in this work. The
dependence of the generalization process on the complexity of the func-
tion implemented by neural architecture is studied using a recently intro-
duced measure for the complexity of the Boolean functions. Furthermore
an association rule discovery (ARD) technique was used to find associ-
ations among subsets of items in the whole set of simulations results.
The main result of the paper is that for a set of quasi-random generated
Boolean functions it is found that large neural networks generalize bet-
ter on high complexity functions in comparison to smaller ones, which
performs better in low and medium complexity functions.

1 Introduction

The learning and generalization properties of artificial neural networks confer to
these models a wide applicability in pattern recognition and classification tasks.
The cornerstone of the neural network modeling is the selection of the network
architecture for a determined application, since there is not a theoretical formula
giving clear insight to this problem. Nevertheless, some general theoretical results
have been published about the size of the network needed to implement a desired
function [1, 2, 3], but at the time of the implementation the theory is not always
accurate.

In particular, some authors [3, 4] have demonstrated that very large networks
perform sometimes better than smaller ones, whereas others [8] state that the
generalization process depends mainly on the weight values distribution and not
on the network size. Moreover, most of the practical results based on simulations
[6, 7] concentrate on the use of very few functions (up to 30 different functions),
and also in general the complexity of the analyzed functions is ignored [3, 9].

In fact, the complexity of Boolean functions has been studied for a long time,
the aim of that being to have a criterion for deciding if a problem is easier to
solve or implement than another [12, 3].

This work studies the relationship among learning, generalization, network
architectures, and complexity over a set of one thousand different boolean func-
tions. With this aim, we use a recently introduced measure for the complexity
of Boolean functions [10, 11] to analyze how the network architecture affects the

S. Kollias et al. (Eds.): ICANN 2006, Part I, LNCS 4131, pp. 122–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Neural Network Architecture Selection 123

generalization ability in different classes of functions grouped by their levels of
complexity. Also, the huge amount of simulation data led the authors to use a
data mining technique (association rules) to find an statistical correlation among
generalization, network architecture and functions complexity. Association rule
discovery (ARD) is a particular technique widely used in data mining problems
[19, 20, 17, 18] to find interesting associations and/or correlation relationships
among large sets of data items. This algorithm extracts relevant information
from the data and provides rules in the form of ”if-then” statements, and, unlike
the if-then rules of Logic, association rules are probabilistic in nature.

2 Methods

2.1 Measure for the Complexity of Boolean Functions

The measure proposed in [9] is based on the results obtained in [15, 16], where
a close relationship between the number of examples needed to obtain valid
generalization and the number of neighboring examples with different outputs
was found. The complexity measure C[f] is obtained from the number of pairs
of neighboring examples having different outputs. The complexity measure used
in this paper is defined as:

C[f] = C1[f] + C2[f], (1)

where Ci[f], i = 1, 2 are the terms taking into account pairs of examples at a
Hamming distance one and two. The first term can be written as:

C1[f] =
1

Nex * Nneigh

Nex∑

j=1

⎛

⎝
∑

{l|Hamming(ej ,el)=1}
(|f(ej) − f(el)|)

⎞

⎠ , (2)

where the first factor, 1

Nex * Nneigh
, is a normalization one, counting for the total

number of pairs considered, Nex is the total number of examples equals to 2N ,
and Nneigh stands for the number of neighbor examples at a Hamming distance
of 1. The second term C2[f] is constructed in an analogous way. The complexity
of the Boolean functions using the measure of Eq. 1 ranges from 0 to 1.5 [9].

2.2 Association Rules Discovery

Data mining, also known as Knowledge Discovery in Databases(KDD), has been
defined as the extraction of implicit previously unknown useful information from
data. Motivated by the huge amount of information provided by the simulation
results, data mining techniques were applied to the process of finding interesting
relationships among generalization, complexity and network architecture.

ARD technique is a data mining method used in many applications to dis-
cover associations patterns between subsets of items in transactions databases.
It detects set of elements that co-occur frequently, creating relations of the form

124 I. Gómez et al.

X− > Y , which means that when the antecedent of the rule, X , occurs, it is
probably for the consequent, Y , also to be occur. This technique has been ex-
tensively used in market analysis [19, 20] and analysis of gene expression data
[17, 18].

In addition to the antecedent (if condition) and the consequent (then condi-
tion), an association rule provides two numbers that express the degree of un-
certainty about the rule. In association analysis, the antecedent and consequent
are disjointed items sets. The first number, named support for the rule, is simply
the number of rows that include all items in both antecedent and consequent
parts of the rule. The second number represents the lift, another parameter of
interest in the association analysis, that gives the ratio of confidence to expected
confidence. Expected confidence is the number of transactions, that include the
consequent divided by the total number of transactions.

In the context of this work, we define transactions that contains function
complexity, network architecture (number of hidden neurons) and generalization
capability. Each item included in the transaction was discretized into four cate-
gories as follows: [0, 0.25), [0.25, 0.50), [0.50, 0.75) and [0.75, 1] for functions com-
plexity; [0.5, 0.70), [0.70, 0.85), [0.85, 1.0) for generalization ability; and [0, 10),
[10, 20), [20, 30), [30, 100] for the number of hidden neurons.

One of the limitations of ARD is the large amount of rules that can be
generated, which becomes a major problem in many applications. Some post-
processing pruning methods have been proposed to reduce the number of rules
[18]. One of the limitations of ARD is the large amount of rules that can be
generated. Some pruning methods have been proposed to reduce the number of
rules. In this work, we have used a filter designed to eliminate those rules that
present low confidence or does not have the generalization item in, what reduces
drastically the number of association rules.

2.3 Set of Quasi-random Functions

In a previous work [21], the authors analyzed the generalization ability of dif-
ferent network architectures studying how the generalization ability is affected
by the complexity of the functions being implemented and by the size of the
architecture. More exactly, generalization ability was tested in six different ar-
chitectures in size, and a set of 512 symmetric boolean functions was considered.
The results showed that was necessary the introduction of a second layer of
neurons to improve the generalization ability of very complex functions.

In this paper we extend the study to a set of quasi-random functions. There
exists 22N

boolean functions of N inputs, making their general study very com-
plicated except for very simple and small cases. Totally random functions are
very complex with an average complexity around 1.0 [10]. To analyze a large set
of different functions we generate functions with different complexity by modify-
ing with a certain probability K outputs of the constant function. The value of
K is related to the complexity of the generated function, and the most complex
generated function is the parity one. This procedure let us to obtain functions
that are asymmetric in the number of outputs and with a complexity in the range

Neural Network Architecture Selection 125

1.0 to 0. One hundred functions were analyzed for each of 10 levels of complexi-
ties in which the functions where grouped, with average complexity from 0.1 to
1.0 in steps of 0.1.

2.4 Neural Network Architectures and Simulations

To analyze the generalization ability of different architectures and to study how
this property change with network size and functions complexities, we carried
intensive numerical simulations for quasi-random Boolean functions generated
according to the procedure described before. All the networks were trained
with back-propagation with momentum. An early stopping procedure was im-
plemented with the aim of avoid overtraining and improve generalization. The
validation error was monitored during training and at the end of the maximum
number of epochs permitted, the generalization error was taken at the point
where the validation error was minimum.

The number of examples available for training was 256 as in all cases we con-
sider input functions of size N=8. We divided the examples in a training set con-
taining 128 examples, and into validation and generalization test sets containing
64 examples each one. The learning rate constant was fixed during training and
equal to 0.01 and the momentum term was set to 0.05. The maximum number
of epochs allowed for training was set to 10000.

3 Results

We performed numerical simulations on one hidden layer neural networks using
the whole set of quasi-random functions (up to 1000 different functions) with
N = 8 input variables. The number of neurons for the analyzed cases ranged from
5 to 100 in steps of 5 hidden units. The best results for each complexity level,
in terms of the generalization ability obtained, were computed simulating for
every network architecture and averaging over the 100 quasi-random functions.
In the case of a coincidence in the generalization ability from two architectures
with a different number of hidden neurons, a simple and general idea about what
network size come from Occam’s razor: the simpler the solution the better. In
Fig. 1 mean values for architecture sizes are represented vs function complexity,
and standard deviations were also computed for every complexity group.

It is possible to observe from Fig. 1 that the most appropriate network size for
obtaining the best generalization ability remains small for low level complexity
groups (from 0.0 to 0.55), noting also that the standard deviation is also rela-
tively low. As the complexity of the functions increase, the number of hidden
neurons grows up fast for groups with a complexity between 0.64 and 0.97. In
table 1, the average generalization ability obtained for the different architectures
used in every complexity group is shown together with the training error at the
point in which the minimum validation error was found.

In Fig. 2 the number of iterations as a function of the number of hidden
neurons, for each complexities group, is shown. In this figure the lowest level

126 I. Gómez et al.

Table 1. Average generalization ability and final training error (with standard de-
viations between parenthesis) obtained for the network architectures constructed to
compute all Boolean quasi-random functions with N=8 inputs

Complexity group Generalization Training
(mean value) ability error

0.07 0.976 (0.009) 0.015 (0.015)
0.14 0.968 (0.010) 0.031 (0.017)
0.27 0.929 (0.019) 0.078 (0.033)
0.34 0.898 (0.023) 0.078 (0.029)
0.45 0.875 (0.022) 0.125 (0.038)
0.55 0.835 (0.026) 0.171 (0.039)
0.64 0.804 (0.029) 0.203 (0.050)
0.75 0.757 (0.032) 0.250 (0.052)
0.86 0.695 (0.041) 0.296 (0.056)
0.97 0.585 (0.067) 0.421 (0.072)

complexities groups are located at the top of the figure, being the highest level
complexity group labeled as 10. Figure 2 demonstrates that the time of training
(number of epochs) in very complex functions (labeled as 8−10) is proportional
to the network size. Moreover, in the case of low complexity functions, the time

0.070.14 0.27 0.34 0.45 0.55 0.64 0.75 0.86 0.97
0

5

10

15

20

25

30

Complexity (C1+C2)

N
um

be
r

of
 h

id
de

n
ne

ur
on

s

Fig. 1. Number of hidden neurons vs function complexity for quasi-random functions
with N=8 inputs. The x-axis labels identify the mean values for each level of complexity.

Neural Network Architecture Selection 127

0 10 20 30 40 50 60 70 80 90 100
2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of hidden neurons

N
um

be
r

of
 it

er
at

io
ns

10

9

8

7

Fig. 2. Training time, in epochs, as a function of the network size, in number of hidden
neurons, for every complexity group of Boolean functions

necessary to train the network is approximately constant and independent of the
network size selected to implement that function.

The ARD technique was applied to the whole set of 20.000 simulations re-
sults. Association rules were extracted with absolute minimum support value
of 10, minimum confidence of 40% and minimum improvement of one, obtain-
ing a total of 35 association rules. After filtering and analyzing the set of rules
extracted, it is possible to observe that a correlation exists among the architec-
ture size, the complexity level and the generalization ability. That is confirmed
through association rules with the form: { low complexity } and { low network
size } → { high generalization ability }, with confidence 0.98 and lift 1.66; and
others as { high complexity } and { medium network size } → { low gener-
alization ability }, with confidence 0.93 and lift 1.60. In this case, the ARD
technique confers statistical precision to graphical results, since the confidence
value can be interpreted as the a posteriori probability for the consequent given
the antecedent. Moreover, a lift value greater than 1.0 is interpreted as a positive
correlation between the antecedent and the consequent.

4 Discussion

We have analyzed through numerical simulations the relationship between neu-
ral network size and function complexity. It was found that for groups of low
complexity functions, smaller architectures have a better generalization ability
than larger ones. Also, it was found that the optimal value for the number of

128 I. Gómez et al.

hidden neurons (between the analyzed values) grows with function complexity.
This result is what is expected from theoretical reasons but the interestingly, up
to our knowledge, is one of the first times that this problem is systematically
studied and reported. We have also made use of a extraction rule technique
(ARD) to analyze the result of the simulations and this technique confirmed our
analysis giving also statistical confidence. Regarding the architecture selection
process, much work remains to be done and we are in the process of studying it
in multi-layers networks and modular architectures.

Acknowledgement. This work was supported by the ”Comisión Interministerial
de Ciencia y Tecnoloǵıa” (Spain) through grant TIN2005-02984, and by FEDER
funds. Leonardo Franco acknowledges support from the Spanish Ministry of
Education and Science through a ”Ramón y Cajal” fellowship.

References

1. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Macmil-
lan/IEEE Press.

2. Baum, E.B. & Haussler, D. (1989) What size net gives valid generalization ? Neural
Computation, 1, pp. 151-160..

3. Lawrence, S., Giles, C. L., & Tsoi, A. C. (1996). What Size Neural Network Gives
Optimal Generalization ? Convergence Properties of Backpropagation. In Technical
Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer
Studies, Univ. of Maryland.

4. Caruana, R., Lawrence, S., & Giles, C.L. (2001). Overfitting in Neural Networks:
Backpropagation, Conjugate Gradient, and Early Stopping. In Leen, T. K., Di-
etterich, T. G. & Tresp, V. editors, Advances in Neural Information Processing
Systems, MIT Press, 13, pp. 402-408.

5. Krogh, A. & Hertz,J.A. (1992) A simple weight decay can improve generalization.
In J.E. Moody, S. J. Hanson, & R. P. Lippmann editors, Advances in Neural
Information Processing Systems Morgan Kaufmann, San Mateo, CA, 4, pp. 950
957.

6. Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation: Quantifying
the Criteria. Neural Networks, 11, pp.761-767.

7. Setiono,R. (2001) Feedforward neural network construction using cross-validation,
Neural Computation, 13, pp. 2865-2877.

8. Bartlett,P.L. (1997). For valid generalization the size of the weights is more im-
portant than the size of the network. In M.C. Mozer, M. I. Jordan, & T. Petsche,
editors, Advances in Neural Information Processing Systems, MIT Press, 9, pp.
134-140 .

9. Franco, L. & Anthony, M. (2004). On a generalization complexity measure for
Boolean functions. In Proceedings of the 2004 IEEE International Joint Conference
on Neural Networks, IEEE Press, pp. 973-978.

10. Franco, L. Generalization ability of Boolean functions implemented in feedforward
neural networks. Neurocomputing. (2006). In Press.

11. Franco, L. and Anthony, M. The influence of oppositely classified examples on
the generalization complexity of Boolean functions. IEEE Transactions on Neural
Networks. (2006). In Press.

Neural Network Architecture Selection 129

12. Wegener, I. (1987) The complexity of Boolean functions. Wiley and Sons Inc.
13. Siu, K.Y., Roychowdhury, V.P., & Kailath, T. (1991) Depth-Size Tradeoffs for

Neural Computation IEEE Transactions on Computers, 40, pp. 1402-1412.
14. Franco, L. & Cannas, S.A. (2004). Non glassy ground-state in a long-range anti-

ferromagnetic frustrated model in the hypercubic cell Physica A, 332, pp. 337-348.
15. Franco, L. & Cannas, S.A. (2000). Generalization and Selection of Examples in

Feedforward Neural Networks. Neural Computation, 12, 10, pp. 2405-2426.
16. Franco, L. & Cannas, S.A. (2001). Generalization Properties of Modular Networks:

Implementing the Parity Function. IEEE Transactions on Neural Networks, 12, pp.
1306-1313.

17. Becquet, C. & Blachon, S. & Jeudy, B. & Boulicaut, J.F. & Gandrillon, O. (2002).
Strong association rules mining for large-scale gene-expression data analysis: A
case study on human SAGE data. Genome Biology, 3, pp. 1-16.

18. Creighton, C. & Hanash, S. (2003). Mining gene expressions databases for associ-
ation rules. Bioinformatics, 19, pp. 79-86.

19. Agrawal, R. & Imielinski, T. & Swami, A. (1993). Mining associations rules between
sets of items in large databases. In Proceedings of the ACM SIGMOD international
conference on Management of data, Washignton D.C., pp. 207-216.

20. Brian, S. & Motwani, R. & Silverstein, C. (1997). Beyond Market baskets: Gen-
eralizing associations rules to correlations. In Proceedings of the ACM SIGMOD
conference, Tucson, pp. 265-276.

21. Franco, L. & Jerez, J.M. & Bravo, J.M (2005). Role of function complexity and
network size in the generalization ability of feedforward networks. LNCS, 3512, pp.
1-8.

	Introduction
	Methods
	Measure for the Complexity of Boolean Functions
	Association Rules Discovery
	Set of Quasi-random Functions
	Neural Network Architectures and Simulations

	Results
	Discussion

