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Information in the first spike, the order of spikes, and the number
of spikes provided by neurons in the inferior temporal visual cortex
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Abstract

Information theoretic analyses showed that for single inferior temporal neurons and neuronal populations, more information was
encoded in 20 or more ms by all the spikes available than just by the first spike in the same time window about which of 20 objects
or faces was shown. Further, the temporal order in which the first spike arrived from different simultaneously recorded neurons did
not encode more information than was present in the first spike or the spike counts. Thus information transmission in the inferior tem-
poral cortex by the number of spikes in even short time windows is fast, and provides more information than only the first spike, or the
spike order from different neurons.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The question of how information is encoded by neuro-
nal activity in the brain is fundamental for understanding
how the brain operates. Towards the end of the primate
ventral visual system, in the inferior temporal visual cortex,
neurons respond with some selectivity to different faces or
objects (Baddeley et al., 1997; Desimone, 1991; Perrett,
Rolls, & Caan, 1982; Rolls, 2000, 2005b; Rolls & Deco,
2002; Rolls & Tovee, 1995; Rolls, Treves, Tovee, & Panzeri,
1997b; Tanaka, 1996; Treves, Panzeri, Rolls, Booth, &
Wakeman, 1999). An important issue is how rapidly
information can be read from these neurons, or from any
stage of visual cortical processing. A rapid readout of
information from any one stage is important, for the ven-
tral visual system is organised as a hierarchy of cortical
areas, and the neuronal response latencies are approxi-
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mately 100 ms in the inferior temporal visual cortex, and
40–50 ms in the primary visual cortex, allowing only
approximately 50–60 ms of processing time for V1–V2–
V4–inferior temporal cortex (Baylis, Rolls, & Leonard,
1987; Nowak & Bullier, 1997; Rolls & Deco, 2002). There
is much evidence that the time required for each stage of
processing is relatively short. For example, visual stimuli
presented in succession approximately 15 ms apart can be
separately identified (Keysers & Perrett, 2002); the reaction
time for identifying visual stimuli is relatively short (Bacon-
Mace, Mace, Fabre-Thorpe, & Thorpe, 2005; Thorpe, Fize,
& Marlot, 1996; VanRullen & Thorpe, 2001a); a consider-
able amount of information about which stimulus was
shown is available in the spike counts of single inferior tem-
poral cortex neurons in 20 ms (Tovee & Rolls, 1995); and
we have shown in a backward masking paradigm that neu-
rons in the inferior temporal cortex fire for only approxi-
mately 30 ms to a visual stimulus presented for 16 ms
which can be identified above chance (Rolls, 2003; Rolls
& Tovee, 1994; Rolls, Tovee, & Panzeri, 1999; Rolls,
Tovee, Purcell, Stewart, & Azzopardi, 1994). Delorme
and Thorpe (2001) have suggested that just one spike from
each neuron is sufficient, and indeed it has been suggested
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that the order of the first spike in different neurons may be
part of the code (Thorpe, Delorme, & Van Rullen, 2001;
VanRullen, Guyonneau, & Thorpe, 2005; VanRullen &
Thorpe, 2001b). An alternative view is that the number
of spikes in a fixed time window over which a postsynaptic
neuron could integrate information is more realistic, and
this time might be in the order of 20 ms for a single receiv-
ing neuron, or much longer if the receiving neurons are
connected by recurrent collateral associative synapses and
so can integrate information over time (Deco & Rolls,
2006; Rolls & Deco, 2002; Rolls et al., 1999; Tovee & Rolls,
1995; Tovee, Rolls, Treves, & Bellis, 1993). Although the
number of spikes in a short time window of e.g. 20 ms is
likely to be 0, 1 or 2, the information available may be
more than that from the first spike alone, and we examine
this by actually measuring neuronal activity, and then
applying quantitative information theoretic methods to
measure the information transmitted by single spikes, and
within short time windows. Moreover, we perform this
analysis both for single neurons, and for populations of
neurons, and measure whether more information is avail-
able if the order of the spike arrival times from each neuron
is taken into account in addition to whether any spike is
present or not from each neuron.

2. Methods

2.1. Recording techniques

The responses of single neurons in the temporal cortical visual areas
were measured to a set of 20 visual stimuli in a rhesus macaque performing
a visual fixation task using experimental procedures similar except as
described below to those described in detail previously (Rolls, Treves, &
Tovee, 1997a). The stimuli included S = 20 grayscale images of objects
(7), faces (8), natural scenes (3), and geometrical stimuli (2) of the type
which produce differential responses from inferior temporal cortex neu-
rons, and examples of which have been illustrated previously (Rolls &
Tovee, 1995). The resolution of these images was 256 wide by 256 high
with 256 grey levels.

The neurons were selected where possible to show responses that
differed between the different stimuli (as shown by a one-way
ANOVA). Usually 20 trials for each stimulus were available. The set
of stimuli were shown once in random order, then a second time in
a new random sequence, etc. Populations of 2–9 neurons were record-
ed simultaneously using 2–4 independently movable single neuron
epoxy-insulated tungsten electrodes with uninsulated tip diameters of
less than 10 microns (FHC Inc., USA) using an Alpha-Omega (Israel)
recording system. Typically, we were able to move the microelectrodes
until 2–4 of the simultaneously recorded neurons responded differen-
tially to the set of stimuli used. This differential firing of the 2–4 neu-
rons was evident in the firing rates to the different stimuli. For the
other typically 2–4 neurons being simultaneously recorded in the same
brain region, there were no differential firing rates to the stimuli, but
these were also included in some of the analyses as described below.
The recordings were made as part of the experimental design in one
rhesus macaque, Macaca mulatta, so that an analysis could be per-
formed of non-simultaneously recorded neurons in which the informa-
tion from all the recordings made from different neurons in different
sessions in the same animal could be analysed as described by Rolls
et al. (1997a). The microelectrodes were stereotaxically guided, and
the location of the microelectrodes was reconstructed on each track
using X-rays and subsequent histological reconstruction using microle-
sions made on selected tracks as described by Feigenbaum and Rolls
(1991). The recording system (Neuralynx Inc., USA) filtered and
amplified the signal and stored spike waveforms which were later sort-
ed to ensure that the spike waveforms from each neuron in the small
number of cases when there were more than two spikes on one micro-
electrode were clearly separated into different waveform clusters using
the Datawave (CO, USA) Discovery software. The neurophysiological
methods used here have been described in detail by Booth and Rolls
(1998). All procedures, including preparative and subsequent ones,
were carried out in accordance with the NIH Guide for the Care
and Use of Laboratory Animals, the guidelines of The Society for
Neuroscience, and were licensed under the UK Animals (Scientific Pro-
cedures) Act, 1986.

Eye position was measured to an accuracy of 0.5 degrees with the
search coil technique (Judge, Richmond, & Chu, 1980), and steady
fixation of a position on the monitor screen was ensured by use of a (blink
version of a) visual fixation task. The timing of the task is described below.
The stimuli were static visual stimuli presented at the centre of the video
monitor placed at a distance of 53 cm from the eyes. A full-size face image
typically subtended 21 degrees in the visual field. The fixation spot posi-
tion was at the centre of the screen. The monitor was viewed binocularly,
with the whole screen visible to both eyes.

2.2. Visual fixation task

Each trial started at �500 ms (with respect to the onset of the test
image) with a 500 ms warning tone to allow fixation of the fixation point,
which appeared at the same time. At �100 ms the fixation spot was
blinked off so that there was no stimulus on the screen in the 100 ms period
immediately preceding the test image. The screen in this period, and at all
other times including the inter-stimulus interval, was set at the mean lumi-
nance of the test images. At 0 ms, the tone was switched off and the test
image was switched on for 500 ms. At the termination of the test stimulus
the fixation spot reappeared, and then after a random interval in the range
150–3350 ms it dimmed, to indicate that licking responses to a tube in
front of the mouth would result in the delivery of fruit juice. The dimming
period was 500 ms, and after this, the fixation spot was switched off, and
reward availability terminated 500 ms later. (A diagram of the timing of
this task is provided by (Tovee & Rolls, 1995; Tovee, Rolls, & Azzopardi,
1994).) The monkey was required to fixate the fixation spot in that if he
licked at any time other than when the spot was dimmed, saline instead
of fruit juice was delivered from the tube; in that the dimming was by
so little that it could only be detected if the monkey fixated the spot;
and in that if the eyes moved by more than 1 degree from time 0 until
the start of the dimming period, then the trial was aborted. (When a trial
aborted, a high frequency tone sounded for 0.5 s, no reinforcement was
available for that trial, and the inter-trial interval was lengthened from 8
to 11 s.)

2.3. Measuring the information from many recorded neurons using a

decoding procedure

Estimates of how much information was available from a population
of neurons in a fixed time window about which stimulus was shown were
calculated using the decoding method described by Rolls et al. (1997a) to
analyse the information. This method measures the amount of informa-
tion available from the number of spikes from each neuron assuming
non-simultaneous recording so that it can be applied to the data accumu-
lated from different cells recorded in the same macaque over different days.
The method can be used for very large numbers of cells, and when there
are many spikes in a time window. The method uses a decoding procedure
in which on each trial the probability that each stimulus (called s 0) was
shown is estimated from the vector of neuronal responses. This estimate
is made by comparing the vector of neuronal responses on that trial to
the average response vectors to each stimulus. Then, knowing the actual
stimulus shown on that trial, the mutual information hIpi between the esti-
mated stimulus s 0 and the real stimulus s over the set of stimuli S can be
calculated as:
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Ip ¼
XS

s¼1

XS

s0¼1

Pðs; s0Þlog2

Pðs; s0Þ
PðsÞP ðs0Þ :

The decoding procedure used for the results presented here is Bayesian
probability estimate (PE) decoding using a Gaussian fit, as described by
Rolls et al. (1997a), Rolls and Treves (1998), Rolls and Deco (2002) and
Franco, Rolls, Aggelopoulos, and Treves (2004), and includes cross-vali-
dation procedure and bias correction procedures as described in detail
by Rolls et al. (1997a) and Franco et al. (2004). The same analysis pro-
gram was used for the calculation of the information from single cells.

Further details of the decoding procedures are as follows (see also
Rolls et al. (1997a) and Franco et al. (2004)). The full probability table
estimator (PE) algorithm uses a Bayesian approach to extract P(s 0jr) for
every single trial from an estimate of the probability P(rjs 0) of a stimu-
lus-response pair made from all the other trials (as shown in Bayes’ rule
shown in Eq. (1)) in a cross-validation procedure described by Rolls
et al. (1997a)

P ðs0jrÞ ¼ P ðrjs0ÞP ðs0Þ
PðrÞ ; ð1Þ

where P(r) (the probability of the vector containing the firing rate of each
neuron, where each element of the vector is the firing rate of one neuron) is
obtained as:

P ðrÞ ¼
X

s0
Pðrjs0ÞP ðs0Þ: ð2Þ

This requires knowledge of the response probabilities P(r js 0) which
can be estimated for this purpose from P(r,s 0), which is equal to
P ðs0Þ

Q
cP ðrcjs0Þ, where rc is the firing rate of cell c . We note that Pðrcjs0Þ

is derived from the responses of cell c from all of the trials except for
the current trial for which the probability estimate is being made. The
probabilities Pðrcjs0Þ are fitted with a Gaussian (or Poisson) distribution
whose amplitude at rc gives P ðrcjs0Þ. By summing over different test trial
responses to the same stimulus s, we can extract the probability that by
presenting stimulus s the neuronal response is interpreted as having been
elicited by stimulus s 0,

P ðs0jsÞ ¼
X

r2test

P ðs0jrÞPðrjsÞ ð3Þ

After the decoding procedure, the estimated relative probabilities (normal-
ized to 1) were averaged over all ‘test’ trials for all stimuli, to generate a
(regularized) table P R

N ðsjs0Þ describing the relative probability of each pair
of actual stimulus s and posited stimulus s 0 (computed with N trials). From
this probability table the mutual information measure Ip was calculated as
described above.

Because the probability tables from which the information is calculated
may be unregularized with a small number of trials, a bias correction pro-
cedure to correct for the undersampling is applied, as described in detail by
Rolls et al. (1997a) and Panzeri and Treves (1996). In practice, the bias
correction that is needed with information estimates using the decoding
procedures described here and by Rolls et al. (1997a, 1997b) is small, typ-
ically less than 10% of the uncorrected estimate of the information, pro-
vided that the number of trials for each stimulus is in the order of the
number of stimuli. We also note that the distortion in the information esti-
mate from the full probability table needs less bias correction than that
from the predicted stimulus table (i.e. maximum likelihood) method, as
the former is more regularized because every trial makes some contribu-
tion through much of the probability table (see Rolls et al. (1997a)).

2.4. Measuring the information in the order of spike arrival times

The decoding method as just described measures how much informa-
tion is present in the first spike, or in the number of spikes in a given time
window. It is possible that there is in addition extra information in the
order in which the first spike arrives from different neurons about which
stimulus is shown. Although normally the order of spike arrival would
be expected to depend on the average firing rate of neurons (with for
example a neuron with a high average firing rate to a particular stimulus
likely to produce an early spike), in principle the order information could
be distinct from the rate information (with for example a neuron with a
low firing mean firing rate to a stimulus nevertheless producing an early
spike to that stimulus), thus providing additional information independent
from the mean response about which stimulus was shown.

We were able to test for this type of order information by ordering the
first spike arrival times for each neuron on each trial to each stimulus, and
measuring the information when it was this rank ordering that was being
decoded by the dot product algorithm described below (see also Franco
et al., 2004; Rolls et al., 1997a). To measure the information contained
in the relative order of the spikes from different neurons, for each recorded
trial we constructed a vector with a number of components equal to the
number of simultaneously recorded neurons. Each component contained
the rank order of the first spike of that neuron relative to the other neu-
rons. (The component contained one if the first spike from that neuron
was the first among all neurons to arrive, 2 if it was the second, etc. If there
was no spike from that neuron on that trial, the component was set to one
greater than the number of spikes that had arrived.) To measure the infor-
mation contained in the order of the arrival of the spikes of the different
neurons, dot product decoding then compares each trial with the average
of the trials to each stimulus, to determine how close the current trial is to
the data obtained to each stimulus. (The average vector for each stimulus
is calculated excluding the data for the current trial in what is a cross-val-
idation procedure (Franco et al., 2004; Rolls et al., 1997a).) The dot prod-
uct (DP) algorithm computes the normalized dot product between the
current firing vector r on a ‘test’ (i.e. the current) trial and each of the
mean firing rate response vectors in the ‘training’ trials for each stimulus
s 0 in the cross-validation procedure. (The normalized dot product is the
dot or inner product of two vectors divided by the product of the length
of each vector. The length of each vector is the square root of the sum
of the squares.) Thus, what is computed are the cosines of the angles of
the test vector of cell rates with, in turn for each stimulus, the mean
response vector to that stimulus. The highest dot product indicates the
most likely stimulus that was presented, and this is taken as the best guess
or (the predicted stimulus Sp) for the probability table P(S,Sp) with max-
imum likelihood information measurement (Rolls et al., 1997a). We veri-
fied that using this rank ordering in this information measurement
procedure was effective by simulating spike trains with the same mean fir-
ing rate of each neuron to any stimulus, and then introducing rank order-
ing so that the order of spikes from the different neurons was different for
each stimulus. The control condition was to take the same number of
spikes in the time window in which the information was being measured,
but to allocate the time of any spikes in that window to random times
(with a uniform probability distribution), thus preserving any information
present in the number of spikes in the time window (i.e. the ‘‘rate’’ infor-
mation), but removing any information present in the relative time at
which spikes arrived from different neurons for each stimulus. In both
cases, just the first spike in the time window was used in the information
analysis. The reason for using just the first spike is that the order informa-
tion becomes arbitrary after the first spike from each neuron, for it is not
assumed that the order encoding in the brain acts like a counting processor
that is able to take into account for example that the second spike from
neuron x has to follow the first spike from neuron y. Indeed, when sug-
gesting that order information was encoded, Delorme and Thorpe
(2001) used just one spike per neuron.

3. Results

From 62 cells recorded simultaneously in groups of 2–4
neurons in 31 experiments, we performed the analyses on
21 neurons that had significant differences in their firing
rate to the set of 20 stimuli, as shown by ANOVA
(p < .001). There were typically 20 trials of data available
for each stimulus for each neuron. Examples of peristimu-
lus time rastergrams and histograms for a neuron are illus-
trated in Fig. 1. Most of the neurons had their best
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ig. 1. Peristimulus rastergrams and time histograms for the responses of
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imulus illustrated, image 3 (which produced a small decrease in firing
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responses to objects, and such neurons sometimes respond-
ed to one or two faces in the set.

We began by measuring the information in the first
spike of neurons about which stimulus was present, and
compared this with the information present in time win-
dows starting at the same time but extending for longer
durations. We did this for both single cells, and for multi-
ple simultaneously recorded cells. This addresses the issue
of how much information is available in the first spike com-
pared to longer spike trains. To further analyze the speed
and nature of cortical processing, we measured the infor-
mation available in short fixed time windows (of 20 and
50 ms), and compared this to the information available
from the first spike. To measure whether the order of the
arrival times of the spikes of different neurons is part of
the code, as has been hypothesized (Thorpe et al., 2001),
we measured the information available when the order
was retained, and compared it to the information present
when the order of the spike times of each neuron for each
stimulus was made random as described in Section 2.

The cumulative single cell information about which of
the 20 stimuli was shown from all spikes and from the first
spike starting at 100 ms after stimulus onset is shown in
Fig. 2a. One hundred milliseconds is just longer than the
shortest response latency of the neurons from which
recordings were made, so starting the measure at this time
provides the best chance for the single spike measurement
to catch a spike that is related to the stimulus. The means
and standard errors across the 21 different neurons are
shown. The cumulated information from the total number
of spikes is larger than that from the first spike only, and
this is evident and significant within 50 ms of the start of
the time epoch. In calculating the information from the
first spike, just the first spike in the analysis window start-
ing in this case at 100 ms after stimulus onset was used.

The brain does not know when to start looking for the
first spike to a stimulus, so we show a re-analysis starting
at the time at which the stimulus appeared in Fig. 2b. As
expected, the information measure starts to increase at
approximately 100 ms. The information measures do not
in general reach such high values as when the analysis
starts at 100 ms, and the reason for this is that any spikes
due to spontaneous neuronal firing in the period
0–100 ms after stimulus presentation are effectively noise
in the system. This effect is particularly a problem for the
single spike measurement condition, for the system just
utilizes the first spike after time 0, and this might well be
a spontaneous activity-related spike with no information
at all about the stimulus. This underlines the fact that the
single spike measure does rather make the assumption that
one knows when to start measuring the effects of the
stimulus, if much information about the stimulus is to be
extracted.

Because any one neuron receiving information from the
population being analyzed has multiple inputs, we show in
Fig. 3 the cumulative information that would be available
from multiple cells (21) about which of the 20 stimuli was
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Fig. 2. (a) Cumulative single cell information from all spikes and from the
first spike with the analysis starting at 100 ms after stimulus onset. The
mean and SEM over the 21 neurons are shown. (b) Cumulative single cell
information from all spikes and first spike starting at 0 ms with respect to
stimulus onset. The mean and SEM over the 21 neurons are shown.
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shown, taking both the first spike after 100 ms, and the
total number of spikes after 100 ms from each neuron
(Fig. 3a). The cumulative information even from multiple
cells is much greater when all the spikes rather than just
the first spike are used. The same conclusion is reached if
the measurement starts at 0 ms with respect to the stimulus
onset, as shown in Fig. 3b. As in Fig. 2, the information
particularly with the first spike is less when starting at
0 ms than at 100 ms, because in the 0 ms condition the first
spike may not reflect any firing produced by the stimulus,
as it may just be spontaneous activity.

An attractor network might be able to integrate the
information arriving over a long time period of several
hundred ms, and might produce the advantage shown in
Fig. 3 for the whole spike train compared to the first spike
only. However a single layer pattern association network
might only be able to integrate the information over the
time constants of its synapses and cell membrane, which
might be in the order of 15–30 ms (Panzeri, Rolls, Batta-
glia, & Lavis, 2001; Rolls & Deco, 2002). In a hierarchical
processing system such as the visual cortical areas, there
may only be a short time during which each stage may
decode the information from the preceding stage, and then
pass on information sufficient to support recognition to the
next stage (Rolls & Deco, 2002). We therefore analyzed the
information that would be available in short epochs from
multiple inputs to a neuron, and show the multiple cell
information for the population of 21 neurons in Fig. 4a
(for a 20 ms epoch) and in Fig. 4b (for a 50 ms epoch).
The epochs started at 0 ms with respect to stimulus onset.
We see in this case that the first spike information, because
it is being made available from many different neurons (in
this case 21 selective neurons discriminating between the
stimuli each with p < .001 in the ANOVA), fares better rel-
ative to the information from all the spikes in these short
epochs, but is still less than the information from all the
spikes, particularly in the 50 ms epoch. In particular, for
the epoch starting 100 ms after stimulus onset in Fig. 4a
the information in the 20 ms epoch is 0.37 bits, and
from the first spike is 0.24 bits. Correspondingly, for the
50 ms epoch, the values in the epoch starting at 100 ms post
stimulus are 0.66 bits for the 50 ms epoch, and 0.40 bits for
the first spike. Thus, with a population of neurons, having
just one spike from each can allow considerable informa-
tion to be read if only a limited period (of e.g. 20 or
50 ms) is available for the readout, though even in these
cases, more information was available if all the spikes in
the short window are considered (Fig. 4a and b).

To show how the information increases with the num-
ber of neurons in the ensemble in these short epochs, we
show in Fig. 4c the information from different numbers of
neurons for a 20 ms epoch starting at time = 100 ms with
respect to stimulus onset, for both the first spike condi-
tion and the condition with all the spikes in the 20 ms
window. The linear increase in the information in both
cases indicates that the neurons provide independent
information, which could be because there is no redun-
dancy or synergy, or because these cancel (Rolls, Agge-
lopoulos, Franco, & Treves, 2004; Rolls, Franco,
Aggelopoulos, & Reece, 2003b). It is also clear from
Fig. 4c that even with the population of neurons, and
with just a short time epoch of 20 ms, more information
is available from the population if all the spikes in
20 ms are considered, and not just the first spike. The
20 ms epoch analyzed for Fig. 4c is for the post-stimulus
time period of 100–120 ms. (Given this, the values for 21
neurons in Fig. 4c correspond to the values shown for
time 100–120 ms in Fig. 4a.) Thus, even with a population
of neurons selected to be tuned to the stimulus set, at 21
neurons the information available from the first spike
only has not reached that obtainable from all the spikes
in the 20 ms epoch. (The first spike information measures
the information obtained by the presence or absence of a
spike in the given time window.)
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To elucidate the spike train properties that give rise to
the information just described, we show in Fig. 5a the
probability distribution of the number of spikes on each
trial from each neuron for the most effective stimulus
for each neuron, for a 20 ms epoch starting at 100 ms
after stimulus onset. Because the data in Fig. 5a is com-
puted across all 21 neurons, we note that some individual
neurons will have relatively higher probabilities of 2 or
more spikes on each trial in this time window. For com-
parison, we show in Fig. 5b the probability distribution of
the number of spikes on each trial from each neuron
across all stimuli for each neuron, for the same 20 ms
epoch.

To assess whether there is information that is specifically
related to the order in which the spikes arrive from the dif-
ferent neurons, we computed for every trial the order
across the different simultaneously recorded neurons in
which the first spike arrived to each stimulus, and used this
in the information theoretic analysis described in Section 2.
The control condition was to randomly allocate the order
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Fig. 5. (a) The probability distribution of the number of spikes on each
trial from each neuron for the most effective stimulus for each neuron, for
a 20 ms epoch starting at 100 ms after stimulus onset. (b) The probability
distribution of the number of spikes on each trial from each neuron across
all stimuli for each neuron, for the same 20 ms epoch.
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values for each trial between the neurons that had any
spikes on that trial, thus shuffling or scrambling the order
of the spike arrival times in the time window. In both cases,
just the first spike in the time window was used in the infor-
mation analysis. (In both the order and the shuffled control
conditions, on some trials some neurons had no spikes, and
this itself in comparison with the fact that some neurons
had spiked on that trial, provided some information about
which stimulus had been shown. However, by explicitly
shuffling in the control condition the order of the spikes
for the neurons that had spiked on that trial, comparison
of the control with the unshuffled order condition provides
a clear measure of whether the order of spike arrival from
the different neurons itself carries useful information about
which stimulus was shown.) The dataset was 36 cells with
significantly different (p < .05) responses to the stimulus
set where it was possible to record simultaneously from
groups of 3 and 4 cells (so that the order on each trial could
be measured) in 11 experiments. Taking a 75 ms time win-
dow starting 100 ms after stimulus onset, the information
with the order of arrival times of the spikes was
0.142 ± 0.02 bits, and in the control (shuffled order) condi-
tion was 0.138 ± 0.02 bits (mean across the 11 experiments
±SEM). Thus the information increase by taking into
account the order of spike arrival times relative to the con-
trol condition was only (0.142 � 0.138) = 0.004 bits per
experiment (which was not significant, p = .7, t = 0.33,
df = 10, paired t test). For comparison, the information
calculated for the first spike using the same dot product
decoding, as described above was, 0.136 ± 0.03 bits per
experiment. Analogous results were obtained for different
time windows, as follows. For a time window of 50 ms,
when the spike order was taken into account, the informa-
tion was 0.104 ± 0.03 bits, and when the spike order was
scrambled in the control condition, the information was
0.115 ± 0.03 bits. For a time window of 25 ms, when the
spike order was taken into account, the information was
0.108 ± 0.03 bits, and when the spike order was scrambled
in the control condition, the information was 0.091 ± 0.03
bits. As before, these differences were not significant. Thus,
taking the spike order into account compared to a control
condition in which the spike order was scrambled made
essentially no difference to the amount of information that
was available from the populations of neurons about which
stimulus was shown.

We acknowledge that in single neuron neurophysiology
some of the neurons studied are selected to have changes
in firing rate to the set of stimuli, and that if a specialized
population of neurons might carry information in other
ways such as the relative temporal order of spike arrival
from different neurons and specifically without any
change of firing rate, this could bias the analysis against
these other possible types of encoding. First, we note that
it is a priori unlikely, though possible, that only neurons
with no change of firing rate would convey such relative
temporal order information, as many neurons in visual
cortical areas do respond to visual stimuli by altering
their firing rates. Second, we explicitly took steps in the
present study to include some neurons in the analysis that
did not have changes in firing rate to the set of stimuli, as
described next, just in case relative temporal order infor-
mation then became apparent in the analyses. So as not
to bias this analysis of information present in spike order
only towards a dataset of neurons that is highly stimulus
selective (in case the order information may be expressed
in other neurons than these), we set the criterion for neu-
rons to be included in the analysis as having a p value in
the ANOVA of only .05 for the significance of the differ-
ence of the firing rates to the different stimuli. To further
address this issue, we performed further analyses of two
types. In one, we measured the order information for
datasets from neurons where the ANOVA was not signif-
icant at all, although the neurons were recorded in the
same brain area. In a typical case, we found very low
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amounts of information present in the order (e.g. 0.03
bits), found that this was not reduced by shuffling the
order on each trial between neurons, and that the infor-
mation from the first spike analysis was also (as expected)
similarly low. In a second approach, we included addi-
tional neurons that had no significant rate information
in datasets that were included in the order analyses
described above. Again, in a typical case, adding such
neurons made no significant difference to the order infor-
mation analysis. The evidence from these two approaches,
and the fact that a low criterion was set for the ANOVA
in the main order analyses, thus does not suggest that
order information might have been missed in the present
study because it is not present in neurons that have high
selectivity to the stimulus set. We have thus introduced a
systematic approach to measuring the information present
in the order of spike arrival times of different neurons,
have found that there is little information present in the
order in the current dataset, and hope that similar quan-
titative approaches may be applied in future studies.

The recording sites of the neurons analyzed in this paper
in the inferior temporal visual cortex are shown in Fig. 6.
Zero millimeter with respect to the sphenoid corresponds
approximately to the antero-posterior level of the anterior
commissure, and is approximately 18 mm anterior to the
auditory meatus.
6-8.5mm2-4mm

Level of brain sections
Coronal section 
at 3mm posterior to the sphenoid

35 8

10mm

mm

STS

IT

Fig. 6. The recording sites shown on coronal sections of the neurons
included in this study. The positions of the coronal sections are shown on
a lateral view of the macaque brain. The distances refer to mm posterior
(P) to the sphenoid reference plane (see text). STS, superior temporal
sulcus; IT, inferior temporal cortex.
4. Discussion

The information analyses shown in Figs. 2–4 show that
the information available from the first spike is not as great
as that from all the spikes, even in short time windows. In
particular, Fig. 2 shows that the cumulated single cell infor-
mation is much less with the single spike than with all the
spikes in the time window. (Information could be cumulat-
ed across time by for example an attractor network (Rolls
& Deco, 2002).) Fig. 3 shows that even from multiple neu-
rons (21), the cumulated firing rate information is higher if
all the spikes rather than only the first spike from each neu-
ron in the same time window is utilized. The point is also
made in Figs. 2 and 3b that if one does not know when
to start counting the first spike, spontaneous activity adds
noise to the information estimate, which is low. In a sense,
to utilise the information from the first spike, one needs to
be told by a teacher when to start counting, which seems
biologically implausible. Fig. 4c shows that even in a short
epoch (20 ms), the information from the presence or
absence of a first spike from each neuron is somewhat low-
er than the information computed when all the spikes in the
same time window are considered.

These results provide the first quantitative test we know
at both the single neuron and population of neuron levels
of the hypothesis that the first spike is all that is necessary
to decode the stimulus. First, we show that a considerable
amount of information is present in the first spike at both
the single neuron (Fig. 2) and the population (Fig. 4) levels.
Second, the results show that although considerable infor-
mation is present in the first spike, more information is
available under the more biologically realistic assumption
that neurons integrate spikes over a short time window
(depending on their time constants) of for example 20 ms.
The results shown in Fig. 4c are of considerable interest,
for they show that even when one increases the number
of neurons in the population, the information available
from the number of spikes in a 20 ms time window is larger
than the information available from just the first spike.
Thus although intuitively one might think that one can
compensate by taking a population of neurons rather than
just a single neuron for using just the first spike instead of
the number of spikes available in a fixed time window, this
compensation by increasing neuron numbers is insufficient
to make the code as efficient as taking the number of
spikes. Of course, if the total amount of information
required to discriminate a stimulus set of a fixed size (4 bits
if 16 stimuli) was reached by both the first spike and spike
count codes asymptotically as the number of neurons in the
ensemble was reached (Rolls et al., 1997a), then the codes
would still be unequal, for more neurons would be required
in the first spike only case, and in this sense the first spike
only code would be inefficient, and require neurons that
with the more efficient code would be redundant.

The encoding of information that uses the number of
spikes in a short time window that is supported by the anal-
yses presented here deserves further elaboration. It could
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be thought of as a rate code, in that the number of spikes in
a short time window is relevant, but is not a rate code in the
rather artificial sense considered by Thorpe et al. (Delorme
& Thorpe, 2001; Thorpe et al., 2001; VanRullen et al.,
2005; VanRullen & Thorpe, 2001b) in which a rate is esti-
mated from the interspike interval. This is not just artifi-
cial, but also begs the question of how, once the rate is
calculated from the interspike interval, this decoded rate
is passed on to the receiving neurons, or how, if the receiv-
ing neurons calculate the interspike interval at every syn-
apse, they utilize it. In contrast, the spike count code in a
short time window that we consider here is very biological-
ly plausible, in that each spike would inject current into the
post-synaptic neuron, and the neuron would integrate all
such currents in a dendrite over a time period set by the
synaptic and membrane time constants, which will result
in an integration time constant in the order of 15–20 ms.
Explicit models of exactly this dynamical processing at
the integrate-and-fire neuronal level have been described
to define precisely the operations to which we refer (Deco
& Rolls, 2003, 2005a, 2005c; Deco, Rolls, & Horwitz,
2004; Rolls & Deco, 2002). Even though the number of
spikes in a short time window of e.g. 20 ms is likely to be
0, 1 or 2, it can be 3 or more for effective stimuli (see
Fig. 5), and this is more efficient than using the first spike.
To add some detail here, a neuron receiving information
from a population of inferior temporal cortex neurons of
the type described here would have a membrane potential
that varied continuously in time reflecting with a time con-
stant in the order of 15–20 ms (resulting from a time con-
stant of order 10 ms for AMPA synapses, 100 ms for
NMDA synapses, and 20 ms for the cell membrane) a
dot (inner) product over all synapses each spike count
and the synaptic strength. This continuously time varying
membrane potential would lead to spikes whenever the
results of this integration process produced a depolariza-
tion that exceeded the firing threshold. The result is that
the spike train of the neuron would reflect continuously
with a time constant in the order of 15–20 ms the likelihood
that the input spikes it was receiving matched its set of syn-
aptic weights. The spike train would thus indicate in con-
tinuous time how closely (for a dot product is essentially
a correlation) the stimulus or input matched its most effec-
tive stimulus. In this sense, no particular starting time is
needed for the analysis, and in this respect it is a much bet-
ter component of a dynamical system than is a decoding
that utilizes an order in which the order of the spike arrival
times is important and a start time for the analysis must be
assumed. However, we may note that an autoassociation or
attractor network implemented by recurrent collateral con-
nections between the neurons can using its short term
memory integrate its inputs over much longer periods,
for example over 500 ms in a model of how decisions are
made (Deco & Rolls, 2006), and thus if there is time, the
extra information available in more than the first spike of
few spikes that is evident in Figs. 2 and 3 could be used
by the brain.
To assess whether there is information that is specifically
related to the order in which the spikes arrive from the dif-
ferent neurons, which has been proposed by Thorpe et al.
(Delorme & Thorpe, 2001; Thorpe et al., 2001; VanRullen
et al., 2005; VanRullen & Thorpe, 2001b), we computed the
information present when the order across the different
simultaneously recorded neurons in which the first spike
arrived to each stimulus was used. We compared this to a
control condition in which the spike arrival times in the
time window were allocated at random, but leaving the
same number of spikes. The control condition takes into
account the fact that if the mean spike rate or count is high-
er in the time interval, then on average a spike will arrive
earlier in that condition. We found that the increase of
information by taking the order into account was not sig-
nificant. Thus, in this first empirical test of which we know
of the hypothesis, we found that in the inferior temporal
visual cortex there was no significant evidence that the
order of the spike arrival times from different simulta-
neously recorded neurons is important. Indeed, the evi-
dence found in the experiments described here is that the
number of spikes in the time window is the important prop-
erty that is related to the amount of information encoded
by the spike trains of simultaneously recorded neurons.
Of course it would be interesting to test this at earlier stages
of cortical visual processing with the rigorous methods
applied to empirical neurophysiological data described
here, but as far as we know this has not yet been attempted.
We believe that because the thinking of Thorpe et al.
(Delorme & Thorpe, 2001; Thorpe et al., 2001; VanRullen
et al., 2005; VanRullen & Thorpe, 2001b) did not take into
account the spontaneous firing that is typical of cortical
neurons, this may have influenced their conclusions. In
particular, if an integrate-and-fire conceptualization starts
with a hyperpolarized neuron, then inevitably the time at
which a neuron fires is causally linked to the average rate
at which spikes arrive, and there is not independence of
the spike arrival time or the order of the spikes from the
average spike count in a short time window hypothesis.
Indeed, the rank order of spike arrival times is inevitably
linked to the number of counts in any short time window
if that type of conceptualization is used. (If the input to a
neuron is stronger, it will charge up from reset potential
to reached its threshold for firing more quickly giving a
low rank for its order of firing, and it will also fire more
spikes in a short count period.)

As we have just seen, using the number of spikes in a
short time window is very biologically plausible, and more
efficient as well as more plausible than just taking the first
spike. If one were to take literally the further suggestion
that it is the order of arrival of spikes from different
neurons that is the code (Delorme & Thorpe, 2001; Thorpe
et al., 2001; VanRullen et al., 2005; VanRullen & Thorpe,
2001b), one would need special mechanisms for
decoding the ranking, which are not biologically plausible.
Further, the spike order code considered did not take
into account the spontaneous firing of cortical neurons,
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together with its approximately Poisson spike time charac-
teristics. For the neurons described here, the mean sponta-
neous firing rate was 7.1 spikes/s (SD = 6.7). This
spontaneous activity of cortical neurons would make utili-
zation of the order of arrival of spikes in the cortex very
difficult to use as a code, just as it made difficult the simpler
case shown in Figs. 2 and 3b where one does not know when
to start taking the first spike as there is no independent
indicator of when the stimulus was shown. The analogous
problem for the spike order code hypothesis is from when
does one start taking the order of arrival, given that
spontaneous spiking is present in the cerebral cortex all the
time? We note that spontaneous firing is not only present
as described in visual fixation tasks such as this, but is also
present with a very similar rate when macaques are searching
for a target in a natural visual scene (Aggelopoulos, Franco,
& Rolls, 2005; Rolls, Aggelopoulos, & Zheng, 2003a).

In fact, the spontaneous spiking of cortical neurons is
part of the solution that we propose to how information
is processed fast by the cerebral cortex (Battaglia & Treves,
1998; Rolls & Deco, 2002; Rolls & Treves, 1998; Treves,
1993). If cortical neurons were continually in a hyperpolar-
ized state as they are just after spiking, then the cell mem-
brane would have to charge up before the neuron could
respond to a new input, and given that the membrane time
constant may be in the order of 20 ms, this could delay
information transmission by 20 or more ms. However, by
having random (Poisson) spontaneous spiking activity,
whenever a new input is received, some neurons will be
close to their firing threshold, and will be able to emit a
spike almost immediately (within 1–2 ms) in response to
the new input. Thus some neuronal responses to the new
stimulus can occur within a very few ms of synaptic input
to an area. (These new responses will of course be selective,
in that if the dot product of the new synaptic input with the
synaptic strengths is larger than previously the neuron will
be more likely to fire, whereas if the dot product of the new
synaptic input with the strengths is smaller than previously,
or because of feedforward or even feedback inhibition, the
neuron will be less likely to fire. Thus, the spontaneous
activity has the effect of ensuring that some neurons are
ready to respond fast, but they only do respond if the input
is effective for the neuron.) These spikes, earlier than would
have occurred by Poisson variability, can then influence
other neurons, within a very few ms. These other neurons
could be within the next cortical area, resulting in rapid
feedforward information transmission. Of course, none of
this would imply a fixed time window within which all
the information must be read out from one cortical area
before the next cortical area can start processing the spikes
it is already receiving. Instead, the whole process within a
cortical area can instead be seen as a continuous dynamical
process which involves feedback inhibition between differ-
ent neurons, with the neuronal population having its
responses set not only by its feedforward inputs from the
preceding area, but also by competition from neighboring
neurons. With this dynamical process, it is found that the
characteristic propagation delays from cortical area to cor-
tical area for useful information transmission is in the
order of 5–10 ms per cortical stage (Panzeri et al., 2001).
This process utilizes the number of spikes received in the
processing time of approximately 20 ms set by the synaptic
and membrane time constants (assuming 10 ms for the syn-
aptic and 20 ms for the membrane time constants). It is
exactly this rapid processing as a result of spontaneous
activity of neurons that enables even recurrent attractor
networks to settle into a global basin of attraction very rap-
idly, in a time in the order of 1–2 time constants of the syn-
apses (Battaglia & Treves, 1998; Rolls & Deco, 2002; Rolls
& Treves, 1998; Treves, 1993). In a multilayer network
modeling successive cortical areas, it has been shown that
this local autoassociation circuitry implementing attractor
dynamics could contribute to useful constraint satisfaction
and information retrieval in each cortical area with times as
short as 15–17 ms per cortical stage, which fits with the
time actually taken (Panzeri et al., 2001). Thus, far from
it being the case that cortical computation is so fast that
there is time for only purely feedforward processing
(Delorme & Thorpe, 2001; Thorpe et al., 2001; VanRullen
et al., 2005; VanRullen & Thorpe, 2001b), it is instead the
case that because of spontaneous firing in the cortex, recur-
rent processing using excitatory synapses to allow settling
into a global attractor within each cortical area can be
sufficiently fast to contribute usefully to cortical informa-
tion processing with the time available, of approximately
15–17 ms per cortical stage.

In fact, other evidence indicates that the first spike from
a cortical neuron is insufficient to account for visual recog-
nition let alone for conscious visual perception. For exam-
ple, in a study of backward masking it was found that if the
16 ms presentation of a test stimulus was followed with no
delay by a mask stimulus which started 20 ms after the start
of the test stimulus (a stimulus onset asynchrony, SOA, of
20 ms), then identification of which of five faces was seen
was better than chance, but was far from perfect, and
indeed subjects felt that they were guessing and did not
report having consciously seen or processed the test stimuli.
Under these conditions, cortical neurons fired for approx-
imately 30 ms (Rolls & Tovee, 1994; Rolls et al., 1999,
1994). With an SOA of 40 ms, the neurons fired for
approximately 50 ms, identification performance was bet-
ter, and some consciousness of the test stimulus was evi-
dent (as shown for example by the clarity ratings). Thus,
reasonable performance at the task required cortical neu-
rons to be firing for approximately 50 ms, with perfor-
mance above chance but not good if the neurons were
firing for 30 ms. Thus, adequate performance at the task
required more than just the first spike, but instead the num-
ber of spikes that could occur in a time of cortical firing of
30–50 ms. As shown in the present paper, much more
information is available in time windows of 20–50 ms than
is just available from one spike, and it must be these extra
spikes that contribute to the better recognition perfor-
mance, and also to the conscious awareness of the stimuli
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(Rolls, 2003, 2005a; Rolls & Tovee, 1994; Rolls et al., 1999,
1994). Further evidence for the inadequacy of the first spike
alone is that behavioral accuracy in image identification
was confirmed to increase with SOAs of 40–60 ms in visual
masking (Bacon-Mace et al., 2005).

We have shown elsewhere that most of the information
available from the spiking activity of neurons is present in
the number of spikes, and not in stimulus-dependent syn-
chrony between the spike firing times of different neurons
(Franco et al., 2004; Rolls et al., 2004, 2003b). This is the
case even when two objects must be discriminated in a
complex natural scene, and processes such as binding and
segmentation are required (Aggelopoulos et al., 2005).
Thus, on the basis of the evidence presented in this paper,
and elsewhere, we suggest that the information is represent-
ed by a population of neurons in the number of spikes
occurring in a short time window of for example 20 ms,
and that the relative spike timing or synchrony of the dif-
ferent neurons carries little additional information (less
than 5%). Moreover, we have indicated here and elsewhere
how this information could be used very effectively and
rapidly by populations of integrate-and-fire neurons with
spontaneous activity.

We have thus seen how cortical information could be
fast in a dynamical system allowing the number of spikes
in approximately 20 ms to be utilized by neurons that
receive a large number of inputs, and integrate over the
currents injected into them by the afferent inputs. It is a fur-
ther issue about how the cortical visual system could use
processing occurring in approximately 15 ms per cortical
stage to implement invariant object recognition. We have
proposed for this a hierarchical series of networks with
feedforward convergence from stage to stage, and competi-
tion implemented within each stage, and training of the
feedforward synaptic connections using an associative syn-
aptic modification rule with a short term memory trace to
allow the network to learn invariant representations of
objects, and shown that such a network could learn invari-
ant representations (Elliffe, Rolls, & Stringer, 2002; Rolls,
1992; Rolls & Deco, 2002; Rolls & Milward, 2000; Wallis
& Rolls, 1997). Within this system, the type of information
transmission described here would be sufficiently fast, and
the dynamical processing within each area to implement
the competition through feedback inhibitory neurons suffi-
ciently fast, to account for the speed of operation of the
whole system, of approximately 15–17 ms per cortical area
(Deco & Rolls, 2004; Rolls & Deco, 2002). The operation
from stage to stage would be feedforward (with recurrent
processing within each stage), with insufficient time given
the evidence from backward masking just described for
information to travel from the primary visual cortex (with
a latency of approximately 40–50 ms) to the inferior tem-
poral visual cortex (with a latency of approximately 90–
100 ms), and then back again to V1 to influence further
processing (Rolls, 2003, 2005a; Rolls & Tovee, 1994; Rolls
et al., 1999, 1994). Instead, the top-down feedback process-
ing is implicated in top-down attentional effects, and would
take longer to implement in the dynamical system (Deco &
Rolls, 2004, 2005a, 2005b, 2002).

The linear increase in the information with the number
of neurons (Fig. 4c) is evidence that the neurons convey
independent information. Further evidence for this is that
the same population of neurons was shown to have weakly
ergodic encoding, that is the single cell sparseness aS has
the same value as the population sparseness ap (Franco,
Rolls, Aggelopoulos, & Jerez, 2007). This occurs if the
responses of the neurons to the set of stimuli are uncorre-
lated, that is each neuron is independently tuned to the
set of stimuli (Lehky, Sejnowski, & Desimone, 2005). The
linear increase in information with the number of stimuli
and the weak ergodicity thus both provide evidence that
the neuronal responses are uncorrelated, and this is poten-
tially an important conclusion about the encoding of stim-
uli by these neurons. This linear increase indicates little
redundancy between the spike counts from different neu-
rons, and indicates that this is an efficient code, for the fact
that the information increases linearly with the number of
neurons indicates that the number of stimuli that can be
encoded increases exponentially with the number of neu-
rons. The spike count code described here is thus a power-
ful code. Moreover, much of the information in the type of
code described here can be decoded by neurons that use a
process as simple as producing a synaptically weighted sum
of all their inputs in a short time (i.e. calculating a dot
product between their input firing rate vector and their syn-
aptic weight vector) (Franco et al., 2004; Rolls et al.,
1997a).

In conclusion, the results described in this paper add to
our developing understanding of how information is
encoded in the visual system by showing that in the infe-
rior temporal visual cortex considerable information is
available from the first spike to arrive in response to a
stimulus though this is especially when the first spike of
a population of neurons is considered; that the order in
which the spikes arrive from the different neurons does
not appear to add significant information to that available
from knowing that a spike has arrived from some but not
other neurons; and that more information is available if
all the spikes in a short time window are taken into
account. The results thus provide evidence that is consis-
tent with the number of spikes from different neurons in a
short time being the way in which the major part of the
information about which stimulus has been shown is pres-
ent in neuronal activity in the inferior temporal visual
cortex. It will be of interest if these approaches can be
extended to other cortical areas.
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