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Objectives: Missing data imputation is an important task in cases where it is crucial to use all available
data and not discard records with missing values. This work evaluates the performance of several
statistical and machine learning imputation methods that were used to predict recurrence in patients in
an extensive real breast cancer data set.
Materials and methods: Imputation methods based on statistical techniques, e.g., mean, hot-deck and
multiple imputation, and machine learning techniques, e.g., multi-layer perceptron (MLP), self-
organisation maps (SOM) and k-nearest neighbour (KNN), were applied to data collected through the “El
Alamo-1" project, and the results were then compared to those obtained from the listwise deletion (LD)
imputation method. The database includes demographic, therapeutic and recurrence-survival
information from 3679 women with operable invasive breast cancer diagnosed in 32 different hospitals
belonging to the Spanish Breast Cancer Research Group (GEICAM). The accuracies of predictions on early
cancer relapse were measured using artificial neural networks (ANNs), in which different ANNs were
estimated using the data sets with imputed missing values.
Results: The imputation methods based on machine learning algorithms outperformed imputation
statistical methods in the prediction of patient outcome. Friedman'’s test revealed a significant difference
(p =0.0091) in the observed area under the ROC curve (AUC) values, and the pairwise comparison test
showed that the AUCs for MLP, KNN and SOM were significantly higher (p = 0.0053, p = 0.0048 and
p = 0.0071, respectively) than the AUC from the LD-based prognosis model.
Conclusion: The methods based on machine learning techniques were the most suited for the imputation
of missing values and led to a significant enhancement of prognosis accuracy compared to imputation
methods based on statistical procedures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

studied, and many works have demonstrated their utility in
prognosis prediction. In many cases, they perform better than

Decisions about how to treat breast cancer patients after
surgery have been contingent on the accuracy of estimating the
behaviour and outcome of the disease. Different techniques have
been used to aid clinicians in the estimation of the prognosis of
different diseases. Standard statistical tools, like the Cox regression
model or logistic regression [1], are normally used. However, more
sophisticated models, based on machine learning methods, have
been applied in recent years. Within these machine learning
methods, artificial neural networks (ANNs) have been widely
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standard statistical tools [2-9]. One of the advantages of the use of
machine learning models is that they are usually much more
flexible than the standard statistical models and can capture
higher-order interactions between the data, which results in better
predictions. On the other hand, the predictions are made based on
complex relationships between the data, and as a result the
interpretability of the results is sometimes more difficult, even if
there are tools to extract the knowledge acquired by these models.
Thus, these alternative models are often criticised [10].
Prognosis models in breast cancer survival analysis are usually
constructed from records that include clinical and histopatholog-
ical information. However, clinical information databases com-
monly contain missing values or incomplete data that reduce the
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number of available cases for analysis or might distort the analysis
by introducing a bias into the estimation and/or prediction process.
This drawback is particularly important in survival analysis, where
an inadequate treatment can lead to adverse secondary effects or
even death in the patient. Nevertheless, in many cases the simple
and common strategy to deal with absent values continues to
involve directly ignoring them. Several works [11,12] have
demonstrated the dangers of simply removing cases using the
listwise deletion method (LD) on the original data set. Such
deletion can introduce substantial biases in the study, especially
when missing data are not randomly distributed. In this sense,
missing data imputation is an area of statistics that has attracted
much attention in recent decades [11,13-17]. Several strategies
inspired in statistics and machine learning have been developed to
address this problem. A review of the literature reveals that the
efficacy of the proposed methods depends strongly on the problem
domain (e.g., number of cases, number of variables, missingness
patterns), and thus there is no clear indication that favours one
method over the others. Within statistics-based imputation
methods, Pérez et al. [18] presented single, hot-deck and multiple
imputation (MI) methods to impute missing data in the construc-
tion of a scoring system for predicting death in ICU patients.
Results showed that differences in areas under the ROC curve
(AUC) were statistically significant but not clinically relevant. The
hot-deck method (with distance-based donor selection) was also
used in an MI scheme [19], and it was found that inferences from
depression treatment trial data were not sensitive to most
definitions of distance. In another study [20], six popular
imputation procedures (i.e., LD, item mean substitution, person
mean substitution at two levels, regression imputation and hot-
deck imputation) were compared in different data sets, with better
performance observed for the hot-deck imputation technique.
Software packages that implement MI (SOLAS, SAS, S-Plus and
MICE) were compared in another study [21], and no advantages in
performance were presented by any of them. Several imputation
methods (hot-deck and MI) were also recently used in still another
study [22] to handle missing predictor values in a risk model, and
the best results in terms of prognosis accuracy and biased
estimates were obtained by the MI algorithm using MICE software
[23]. Finally, Kenward and Carpenter [24] provide an overview of
MI and current perspectives on its use in medical research. The
authors explore the problem of obtaining proper imputations and
raise questions that have emerged from the increasing use of MI,
which point to future research directions.

Imputation methods inspired by machine learning are based on
the construction of a predictive model to estimate absent values
from the information available in the data set. Well-known
learning algorithms such as multi-layer perceptron (MLP), k-
nearest neighbours (KNN), self-organising maps (SOM) and
decision tree (DT) construction algorithms have been commonly
used as imputation methods in different problem domains and in

Table 1

emerging disciplines such as bioinformatics [25-27]. MLP out-
performed imputation induction methods in a thyroid disease
database collected in a clinical situation [28]. MLP was also useful
for imputing individual values for survey attributes utilising
available administrative census data [29]. Experimental results
[30] also show that MLP consistently outperforms other methods
for reconstructing missing values in multivariate analysis. DT
algorithms were successfully used to impute data in industrial
databases [31]. Additionally, missing data imputation based on the
KNN algorithm outperformed internal methods used by C4.5 and
CN2 to treat missing data [32]. A clustering approach based on KNN
was proposed for dealing with incomplete data [33]. KNN has been
also used [34] to process missing information from DNA micro-
arrays. Finally, SOM-based imputation techniques [35-37] were
also successfully used in a number of problems, including
modelling of intelligent tutoring systems and a real-size transport
survey database.

In this work, six well-known methods, i.e., mean, hot-deck, MI,
MLP, SOM and KNN, are used to impute absent values in the “El
Alamo I” breast cancer data set, which contains 3679 records; we
then use ANN models to predict early breast cancer relapse, and
compare the performance of predictions from the different
methods. We used neural network-based models to predict early
breast cancer recurrence because these models are currently being
used in the clinical environment, and several works have
demonstrated their utility [2-4,6,5,8,7,9]. Moreover, ANN behav-
iour has been shown to be robust with data that include missing
values, and this is also part of the scope of this work. In this paper,
we analyse the prediction of early breast cancer relapse, as there is
growing evidence that early and late breast cancer relapse can be
caused by different factors. Studies using data sets from different
countries have shown the existence of a two-peak hazard function
with an early peak related to early breast cancer recurrence. This
peak is centred at about 14-24 months after surgery and might be
related to the tumour dormancy hypothesis. A second peak
appears a couple of years later, for which the dynamic and time of
appearance are less clear.

The paper is structured as follows: we give details of the breast
cancer data set in Section 2, followed by a detailed review of the
methods used for the imputation of missing values in Section 3.
Section 3 also includes a description of the ANN model used for
obtaining the prognosis prediction and the statistical tests used for
analysing the significance of the results. The results are presented
in Section 4 and discussed in Section 5.

2. The “El Alamo-I” breast cancer dataset

Data were collected from the “El Alamo-I" project [38,39], one
of the largest databases on breast cancer in Spain. The data set
analysed in this study includes demographic, therapeutic and
recurrence-survival information from 3679 women with operable

Characterization of the “El Alamo I” breast cancer data set containing records from 3679 patients. Range, mean or mode, and missingness percentage are shown for the eight
covariates considered relevant in the prognosis (age, tumour size, number of axillary lymph nodes, histological grade, histological type, hormonal receptors, type of treatment
and survival time). The survival status is the variable to be predicted by the system.

Prognostic factors Range Mean or mode Type/scale Missingness (%)
Age (AG) 20-90 56.22 Quantitative/ratio 0.19
Tumour size (TS) 0.1-16 2.87 Quantitative/ratio 4.02
Axillary lymph nodes (AN) 0-35 2.49 Quantitative/ratio 2.83
Histological grade (HG) 1,2,3 2 Qualitative/ordinal 42.84
Histological type (HT) 1,2,3,4 1 Qualitative/nominal 0.60
Hormonal receptors (HR) 0,1 1 Qualitative/nominal 0.0
Type of treatment (TT) 1,2,3,4,5,6,7,8,9 3 Qualitative/nominal 0.0
Survival time (ST) 1.12-128.88 69.74 Quantitative/ratio 0.0
Survival status (SS) 0,1 0 Qualitative/nominal 0.0
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invasive breast cancer diagnosed in 32 hospitals belonging to the
Spanish Breast Cancer Research Group (GEICAM) between the
years 1990 and 1993. This study uses a set of eight clinical and
pathological covariates selected by clinicians as more significant
prognostic factors in the prediction of patient outcomes: age,
tumour size, axillary lymph nodes, tumour histological grade,
histological type, hormonal receptors, type of treatment and
survival time. Table 1 shows ranges, statistics (mean or mode,
depending upon the type of the variable) and missing data
distribution for the set of covariates. Of these, four quantitative
variables are all ratio-scaled. The remaining covariates are
qualitative (or categorical) variables that use numeric values to
represent each category. It should be noted that the variable
histological grade can be considered ordinal because there is a
positive correlation between the numeric value of the covariate
and the real histological grade of the tumour malignancy.
Nevertheless, in this work, this covariate is treated as a pure
nominal variable because not all imputation methods used have
models for this type of data.

The missing data (considering every attribute for every
patient case as data) represent 5.61% of the overall data set. If
we count the number of cases with at least one missing value, as
considered by the listwise procedure that discards all instances
containing missing values, then 1678 cases contain missing data,
representing 45.61% of the 3679 patients. Of these, there are
1511 patient cases where one value is missing (41.07% of the
total), 155 with two values missing (4.21%) and only 12 cases
(0.33%) with three values missing. There are no cases with more
than three values missing. The last column in Table 1 (under the
heading of missingness) shows that missingness mainly affects
the variable histological grade (42.84%). The remaining covari-
ates exhibit much lower percentages, with no missing data in the
covariates hormonal receptors, type of treatment and survival
time.

3. Methods

In this section, we introduce and describe the methods applied
to impute the original incomplete data set and describe the
prediction method used based on ANN. The subsequent subsec-
tions are organised as follows. First, several general considerations
are made to explain how the imputation methods have been
implemented. Then, the six imputation techniques applied are
described:

o the statistical methods, which include mean, hot-deck, and MI,
e the machine learning based methods, which include MLP, SOM
and KNN.

Finally, the ANN model to predict survival probabilities is
described together with statistical methods commonly used in
model accuracy evaluation.

3.1. Missing data imputation of the incomplete data set

Prior to describing the methods used for data imputation,
several key remarks concerning all the imputation methods should
be clearly presented:

e Missing data pattern: Our data set can be considered missing at
random (MAR), i.e., the probability that an observation is missing
can depend on the observed set but not on the missing set. This
assumption is satisfied because the probability that a record is
missing depends exclusively on the availability of the clinical
data, which were recorded from 32 hospitals in the considered
data set.

e Treatment of categorical variables using dummies: A coding
scheme based on dummy variables was utilised for categorical
inputs, which was necessary to implement some of the
imputation methods. For example, in our data set, each of the
three categories of the histological grade, i.e., 1, 2 and 3, were
coded as 00, 01 and 10, respectively. In addition, another
consideration that was addressed when using dummies was
rounding of the resulting imputed values. If a binary dummy
variable with values 0 and 1 is treated as an individual normal
variate, imputation methods will then impute a continuous value
to it. Different approaches can be used to produce the final
dummy code from the imputed dummies, but following the
conclusions of a previous study [40], we did not round the
imputed dummy variable.

o Dependent variable: The binary variable ‘survival status’ (SS) is
completely observed and represents the value that should be
predicted for test cases after the imputation stage; thus it is not
accounted for by imputation. The resulting imputed variables are
independent of the dependent variable, making it possible to
study the relationship between SS and the remaining variables in
posterior stages.

3.2. Statistical methods

The statistical imputation methods used in this work include
mean imputation, hot-deck, and MI methods based on regression
and the expectation maximisation (EM) algorithm.

Mean and hot-decking imputations are simple imputation
methods in which missing data are replaced by plausible estimates
(one estimate per missing value) before applying standard
complete-data methods to the filled-in data. Mean imputation,
which can be considered the simplest approach [13], imputes the
mean values of each variable on the respective missing variables as
an estimate of the missing value. Because of its simplicity, mean
imputation is commonly used in the social sciences as a fast
alternative to LD. In our work, this approach is analysed because it
can be used as a simple reference method. On the other hand, hot-
deck imputation is an intuitively simple method for accommodat-
ing incomplete data. For this reason, it has been successfully
applied to missing values in large data sets [11,41]. In hot-deck
imputation, a missing value of a receptor instance is generally
taken from a similar donor case that has complete data, although
other alternatives exist. Hot-deck imputation produces unbiased
estimates of population means [42], and in fact, it is asymptotically
equivalent to the mean-score method for the estimation of a
regression model parameter.

Up to now, we have introduced simple imputation approaches,
where a single missing value is replaced by a unique value,
obtained from the complete data portion. Conversely, MI replaces
an unknown value with a set of plausible data and uses an
appropriate model that incorporates random variation. MI has
several desirable features: (1) an appropriate random error is
introduced into the imputation process to obtain approximately
unbiased estimates of all parameters; (2) good estimates of
standard errors are obtained from repeated imputation; and (3) MI
can be used for any kind of data and any kind of analysis without
specialised software.

According to a previous report [43], three steps in MI are carried
out to estimate incomplete data regression models. First, various
plausible values (typically 5-10 imputations) for missing values
are obtained that reflect uncertainty about the non-response
model. These multiple missing values result in the creation of a
number of complete data sets. Second, each of these data sets is
analysed using complete-data methods. Finally, the results are
combined, allowing the uncertainty regarding the imputation to be
taken into account.
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3.2.1. Mean imputation

In the general approach to mean imputation, which can be viewed
as a simple application of regression imputation, the mean value of
each non-missing variable is used to fill in missing values for all
observations. In our case, the two categorical incomplete variables,
histological grade (treated as pure ordinal as explained in previous
sections) and histological type, are imputed using the mode instead
of the mean, as this ensures that no values different from those
within the range are generated. In Table 1, the third column gives the
value of the mean or mode for each of the covariates.

3.2.2. Hot-deck imputation

We apply nearest neighbour hot-deck imputation, where a non-
respondent is assigned the value of the nearest neighbour record
according to a similarity criterion. As in the case of mean
imputation, this approach does not make use of dummies to code
categorical variables. Instead, each category is named using a
natural number according to Table 1.

Obviously, one key aspect of hot-decking is the selection of an
adequate dissimilarity measurement (distance function) between
pairs of patient cases. A simple way to account for both
quantitative and qualitative variables is to use a heterogeneous
distance function with different distance metrics that depend upon
the nature of the variable. In Ref. [44], a heterogeneous Euclidean-
overlap metric (HEOM) distance function is presented and
analysed, which uses the so-called overlap metric for categorical
attributes and a normalised city-block distance (Manhattan, L1, or
Minkowski function) for linear numeric quantitative attributes.
The overlap metric is a normalised Hamming distance given as the
percentage of coordinates that differ. The HEOM distance is
intended to remove the effects of the arbitrary ordering of
categorical values, and it constitutes an overly simplistic approach
to handling these kinds of attributes.

Consider that a patient case is represented by an n-dimensional
input vector!, X = [x1,X3, ... ,xn}T. Moreover, in our notation, m is a
vector of binary variables such that m; = 1 if x; is unknown and
m; = 0if x; is present. Given a pair of patient cases, represented by
X, and x;,, the HEOM distance between them is:

d(Xq,Xp) =

n
> "d;(Xaj, x5))°
=

where d;(xqj,Xyj) is the distance between X, and X, on its jth
attribute:

1 lf(l —maj)(l —mbj):O,

do(Xqj,Xpj) if x;is a categorical attribute, (2)
dn(Xqj,Xpj) if x;is a quantitative attribute.

d;j(Xaj, Xpj) =

Unknown data are handled by returning a distance value of 1
(i.e., maximal distance) if either of the input values is unknown.
The overlap distance function dp assigns a value of 0 if the discrete
attributes are the same; otherwise, the value is 1. The range
normalised difference distance function dy is given by:

[Xaj — Xbj|

dN(Xajaij) —M (3)
where max(x;) and min(x;) are the maximum and minimum
values, respectively, observed in the training set for the numerical
attribute x;; thus, the normalisation attempts to scale the attribute
down to the point where differences are almost always less than
one, and the resulting distance matrix is set to range between 0 and
1. The difference |xq; — xp;] is the city-block distance.

1 In the following, the terms case, observation, instance, and example are used as
synonyms.

3.2.3. Multiple imputation

There are several programs and routines available that
implement different algorithms and techniques for MI. For
instance, the stand-alone Windows program NORM or the S-PLUS
libraries NORM, CAT, MIX, PAN, and MICE are all data augmenta-
tion algorithms. MICE and IVEware (a free SAS-callable applica-
tion) are flexible tools for generating multivariate imputations for
different kinds of variables using chained equations. Moreover, the
commercial SAS procedures MI and MIANALYZE provide a
parametric and a nonparametric regression imputation approach,
as well as the multivariate normal model. The free Windows
software packages Amelia and Amelia II, which implement EM-
based imputation, are also available. Finally, it should be
mentioned LogXact by Cytel implements logistic regression
analysis.

In this work, we consider three different implementations
based on SAS, Amelia Il and WinMICE to generate multiple imputed
values. In all cases, 5 imputations for each missing value were
obtained, and dummy variables were used for categorical variables
as described in Section 3.1. The details of each of the three
implementations are given next:

e Amelia II: This software implements a bootstrapping-based EM
algorithm [45]. It includes features for imputing cross-sectional
surveys, time series data, and time series cross-sectional data.
The package allows users to set priors on individual missing
values in the observations when that knowledge is available.
Amelia Il performs the imputation step, while separate analyses
and combination of results can be undertaken in R or in a
separate statistics package (i.e., SAS or Stata). In our study, the
five imputations are carried out in Amelia Il with no options for
individual variables and no prior beliefs about the data.
Categorical variables were replaced by the corresponding
dummies, as described in Section 3.1. After these considerations
are settled, running Amelia II is straightforward.

WinMICE: The package MICE (Multiple Imputation by Chained
Equations) is available from the Comprehensive R Archive
Network and is a library for S-Plus and R. WinMICE is a stand-
alone program under Windows that implements imputation on a
linear mixed model. In practice, a variety of imputation models
are supported, including forms of predictive mean matching and
regression methods, logistic and polytomous regression, and
discriminant analysis. In addition, WinMICE allows users to
program their own imputation functions. In theory, this could
facilitate sensitivity analyses of different missingness models.
For our data set, we chose regression as the method for
imputation, and thus, dummies (as needed for Amelia II) were
treated as pure numeric quantitative variables. Five imputations
were obtained, and the results were combined by averaging
regression coefficients, as proposed in a previous report [12].
SAS: This software also provides an efficient implementation of
the MI procedure that is used in our work to fill in missing values
and create five complete data sets. Procedure MI assumes that
data have a multivariate normal distribution. However, simula-
tion studies show that MI is moderately robust to violations of
this assumption [16]. Our pattern corresponds to an arbitrary
pattern of missingness, as opposed to monotone patterns.
Regarding categorical data, the use of dummies removes the
need to use CLASS statements, which can be used to impute
categories via logistic (or ordinal logistic) regression. This
method for imputing CLASS variables was introduced into the
procedure MI in SAS version 9.0 on an experimental basis.
However, it is only available for monotonic missing data patterns
and is implemented with the logistic option on the monotone
statement. Each covariate has been dummy-coded according to
the nomenclature and variable types in Table 1. The necessary
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steps to carry out the imputation stage of the data matrix are
accomplished by first computing the covariance matrix using the
CORR procedure. The resulting covariance matrix, covin, is then
used to set a prior parameter on the Markov Chain Monte Carlo
(MCMC) method. The procedure MI uses an MCMC approach that
is similar to EM in its iterative implementation. However, unlike
EM, the results of MI are not a set of maximum likelihood
estimates (MLEs) for parameters; instead, they are a distribution
for the missing data that incorporates the uncertainty about the
parameters. The MCMC statement makes use of some other
parameters, but no description is needed when the default values
are taken. The main input to the MI procedure is the data set to be
imputed. We also set the round, minimum and maximum
parameter options to restrict the imputed values. The number
of imputations was set to the default value of 5. The EM can
produce MLEs of the means and covariances for an incomplete
data set, and these MLEs are used by default in the MCMC
statement in the MI procedure.

3.3. Machine learning methods

Imputation methods based on machine learning are sophisti-
cated procedures that generally consist of creating a predictive
model to estimate values that will substitute the missing items.
These approaches model the missing data estimation based on
information available in the data set. If the observed data contain
useful information for predicting the missing values, an imputa-
tion procedure can make use of this information and maintain high
precision. This section describes three well-known imputation
techniques using machine learning approaches: MLP, SOM and
KNN.

3.3.1. Multi-layer perceptron

An MLP [46-48] consists of multiple layers of computational
units interconnected in a feed-forward way. Each unit in one layer
is directly connected to the neurons of the subsequent layer. The
standard MLP architecture is composed of two layers of weights.
Weights of the first layer connect the input data variables to the H
hidden units (neurons), and the second layer weights connect
these hidden neurons to the output units. First, given an n-
dimensional input vector x, the H hidden neuron outputs are
computed in the form:

n
zhn=f (ngj)xj + w;:())) (4)

j=1

where h=1,... H, and the superscript (1) indicates that the
corresponding parameters are in the first layer of the MLP. In our
notation, the parameters z;, denote the hidden neuron outputs, ng)
the first layer weights and w(” the corresponding blases
parameters. The activation quCthl'l f() is generally chosen to
be sigmoidal, e.g., the logistic sigmoid or the hyperbolic tangent
function. Subsequently, z;, are linearly combined and transformed
using the appropriate output activation function, g(-), to give a set
of outputs y;:

Ve = <Zwl<h Zp +Wko> (5)

where k = 1,...,K, and K is the total number of network outputs.
This transformation corresponds to the second layer of the MLP,
th and w . The choice of g(-) is determined by the nature of
the data and the target variables [46]. Thus, if the target variables
are continuous data, the activation function is the identity, such
that g(a) = a. Similarly, for binary classification problems, the
neuron outputs are obtained using the logistic sigmoid, i.e

g(a)=1/(1+exp (-

a)). For
1-of-c coding scheme, a

multi-class problems with a
softmax function is used, i.e.,

g(ay) = (expay)/(>_yexpay). Finally, we can combine the two

processing stages to give the overall network function:

H
=& (ZW( <thl])x1 + Wh0)> + W(z)) : (6)
i

j=1

A fully connected, two-layered MLP architecture was used in
this study. This architecture was used because any continuous
functional mapping can be represented by a network having two
layers of weights and sigmoidal activation functions [46,47]. Once
the MLP architecture has been chosen, the following two issues
must be addressed: the optimal network weights and the optimal
number of hidden neurons.

First, we consider the training process of an MLP with a fixed
architecture (number of hidden neurons). During the training
stage, the network weights are usually obtained by a gradient
optimisation method to minimise the selected error function. In
particular, the scaled conjugate gradient method is used as the
optimisation technique for training the MLP network [46].
Depending on the type of target variables (continuous, binary or
multi-class), different error functions should be considered [46,47 ]
within a maximum likelihood approach. For continuous target
data, the sum of squares error (SSE) is chosen; meanwhile, the
cross-entropy error (CEE) function is suitable for binary and multi-
class target data.

Second, the number of hidden units in an MLP can have a
significant impact on its performance. Various techniques have
been developed for optimising the architecture [49]. This paper
uses a combined growing and pruning algorithm, which uses the
performance results on a validation set as the criterion for adding
(growing) or deleting (pruning) a hidden neuron during the
learning process [50-52]. For a complete description of MLP
properties, training procedures and applications, see Refs. [46-48].

MLP networks can be used to estimate missing values by
training an MLP to learn the incomplete features (used as outputs),
using the remaining complete features as inputs [28-30]. The MLP
imputation scheme developed in this study can be described as
follows:

(1) Given an incomplete data set X, separate the input vectors that
do not contain any missing data (complete set, X¢) from the
ones that have missing values (incomplete set, X).

(2) For each possible combination of incomplete attributes in X/,
construct an MLP scheme using XC. The target variables are the
attributes with missing data, and the input variables are the
other remaining attributes [28]. In this approach, there is one
MLP model per combination of missing variables. Depending
on the nature of the attributes to be imputed (numerical or
discrete), different error functions (SSE or CEE) are minimised
during the training process.

(3) After the optimal MLP architectures are chosen, for each
incomplete pattern in X/, unknown values are predicted using
the corresponding MLP model (according to the attributes to be
imputed).

Given that weight initialisation is critical in the MLP training,
the previous MLP imputation process is repeated 30 times to
obtain a realistic missing data estimation. Imputed values are
obtained by averaging the missing data estimation provided by
each MLP model.

The MLP approach can be a useful tool for reconstructing
missing values [28-30,53]. However, its main disadvantage is that
when missing items appears in several combinations of attributes
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in a high-dimensional problem, many MLP models have to be
constructed.

3.3.2. Self-organisation maps

An SOM is a neural network model made out of a set of nodes (or
neurons) that are organised on a 2D grid and fully connected to the
input layer [54]. Each jth node has a specific topological position in
the grid (r; e R?), as well as a vector of weights (w;eR") of the
same dimension used for the input vectors. Fig. 1 shows an SOM
network of 4 x 4 nodes connected to the input layer.

The training of a basic SOM is performed using an iterative
process. After the weight vectors are initialised, they are
updated using all input training vectors. In the iteration step
T and for the input vector X, the best matching unit (BMU) w, is
obtained as the closest node to x according to a distance metric
(usually the Euclidean distance) [54]. The BMU is defined by the
condition, d(x,w,) < d(x,w;), ¥ j. Thus, each weight vector is
updated by
with = wit 4 hej(x - wy) (7)
where h ; is called the neighbourhood function [54], and is a time-
variable decreasing function of the distance between the jth and ¢
th nodes on the map grid. The neighbourhood function is often
taken to be the Gaussian:

2
hej = a(T)exp <—%) ©)

where 0<«(t)<1 is the learning-rate factor, which decreases
monotonically with the training steps, and o(t) corresponds to the
width of the neighbourhood function, which also decreases
monotonically with the training process [54].

The self-organising process consists of slightly moving the
nodes in the data definition space according to the data
distribution. The weight adjustment is performed while taking
into account the neighbouring relations between nodes in the map.
The mapping between input vectors and nodes is then said to
preserve topological relations insofar as observations that are close
in the original input space will be associated with nodes that are
close on the map. For a complete description of SOM properties and
applications, see Ref. [54].

When an incomplete input vector is used as input to an SOM
[35-37], the missing observations are simply ignored when
calculating distances between observations and nodes:
Z?:] (1 —mj)(x; — w]-)z. This principle is applied for selecting
the image node and also for updating weights [54]. Because the
same variables are ignored in each distance calculation (over
which the minimum is taken for obtaining the BMU), it is a valid
solution.

After the SOM model has been trained, it can be used to
estimate missing values [35-37]. When an incomplete observation
is presented to the SOM, the missing input variables are ignored
during the selection of the BMU. The incomplete data are imputed
by the feature values of the BMU in the missing dimensions. The
imputation process can be described as follows:

(1) Presentation of an incomplete observation in the input layer.

(2) Selection of the BMU by minimising the distance between the
observation and nodes. Missing components are handled by
simply excluding them from the distance calculation.

(3) The replacement value for a missing item in the input vector is
taken as the value for that item in the corresponding BMU.

The SOM imputation approach is implemented in this study
using the SOM toolbox available at http://www.cis.hut.fi/projects/
somtoolbox/.

SOM network (4 x 4 units)

b

IIM:M\\
‘\\'{: /At\\\\\\\ /[
W

U7 \\\\\\.1/

inputs

Fig. 1. Architecture of an SOM network of 4 x 4 units. Weights are represented by
links between nodes and input layer units.

3.3.3. K-nearest neighbours

Rather than using all available instances in the data, the KNN
imputation algorithm uses only similar cases with the incomplete
pattern [32-34,55]. Given an incomplete pattern x, this method
selects the K closest cases that are not missing values in the
attributes to be imputed (i.e., features with missing values in x),
such that they minimise some distance measure [32]. In our
notation, V = {vk}ff:] represents the set of K nearest neighbours of
x arranged in increasing order of distance. Although the K nearest
neighbours can be selected for instances without any missing
values, it is also recommended for cases with an incomplete
pattern [32,34]. The optimal value of K is usually chosen by cross-
validation.

Once the K nearest neighbours have been found, a replacement
value for the missing attribute value must be estimated [32]. How
the replacement value is calculated depends on the type of data;
for example, the mode is frequently selected for discrete data,
while the mean is used for numerical data.

As in hot-deck, the KNN method is based on the use of a distance
metric to compute the nearest neighbours. For this purpose, we
make use of the HEOM distance given by Eqs. (1) and (2).

To estimate missing values with KNN, consider that x
represents a missing value on the jth input feature (i.e., m] =1).
Once its K nearest neighbours have been chosen, V = {Uk},( ;, the
unknown value is estimated using the corresponding jth feature
values of V.

If the jth input feature is a continuous variable, different
estimation procedures can be implemented in the KNN
approach:

e Mean estimation: The imputed value (X;) is obtained by the mean
value of its K nearest neighbours, i.e.,

o1&
Xj=2> Vi (9)
K =

o Weighted mean estimation: One obvious refinement is to weight
the contribution of each v, according to its distance to x, i.e.,
d(x, 1), giving greater weight to closer neighbours:

. 1
Xj :7ZW7<vkj (10)
Kk k=1
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where w;, denotes the weight associated to the k th neighbour.
An appropriate choice for wj is the inverse square of the
distance:

Wi = (11)

d(x,v;)?

When the jth input feature is a discrete variable, the most
popular choice is to use the mode of {vkj}ff:1. Another option is to
consider a weighted decision scheme, where a weight A; is
assigned to each v. One suitable way to obtain A is

d(vk,X) — d(Vy,X) .
M= i) —dimyxy AR # AWK
1, otherwise.

(12)

Thus, %; is imputed by the category (each possible discrete value
of the jth input feature) for which the weights of the representa-
tives among the K nearest neighbours sum to the largest value. In
this paper, we use this weighted approach to estimate missing
values in numerical and discrete variables. It has been shown that
this method provides a robust procedure for missing data
estimation [32-34,55]. Its major drawback is that whenever the
KNN method looks for the most similar instances, the algorithm
has to search the entire the data set. This limitation is especially
problematic for large databases.

3.4. The ANN prognosis model

We performed numerical simulations on the data imputed by
the methods described above on neural networks comprising a
single hidden layer with the number of neurons between 2 and 50.
For each size of the neural networks and set of parameters, a 10-
fold complete cross-validation scheme was used. Each 10-fold
cross-validation was set up by iteratively choosing a test fold, then
a random validation fold, and then using the remaining 8 folds for
training. The cross-validation process was repeated 50 times with a
different random seed value. To avoid over-fitting, an early
stopping procedure was implemented in which the generalisation
error was monitored on a validation set, and the generalisation
value on a different test set was measured at the minimum of the
validation error.

The simulations were conducted using Matlab code under the
Linux operating system on a cluster of 25 Pentium IV 2.0 Mhz PCs
interconnected by Openmosix. The scaled conjugate gradient
back propagation algorithm was used for the learning algorithm
[56], which combines the model-trust region approach (used in
the Levenberg-Marquardt algorithm) with the conjugated
gradient approach. This algorithm has shown superlinear
convergence properties on most problems and works well with
the early stopping procedure applied to avoid over-fitting. A brief
description of the parameters and their values used for
simulations with the neural network toolbox in Matlab [57]
are given below:

o Starting learning rate: 0.001. Regulates the change in synaptic
weights (the rate is later adjusted automatically during the
training process).

e Maximum number of epochs for training: 15,000. Stop the
training after this maximum number of iterations.

e Minimum performance gradient: 1e — 6. Stop the training if the
magnitude of the gradient drops below this value.

e Maximum validation failures: 50. Parameter related to the early
stopping procedure.

¢ Sigma parameter: 5.0e — 5. Determines the change in weight for
the calculation of the approximate Hessian matrix in the scaled
conjugate gradient algorithm.

e Lambda: 5.0e — 7. Parameter for regulating the indefiniteness of
the Hessian.

e Neuron transfer function: Sigmoid.

e Weight values initialisation: Random values from the range
[0,0.05].

3.5. Model evaluation

The accuracy of the prognosis models is evaluated by testing
two main properties: discrimination and calibration. Discrimina-
tion is the ability to separate patients with and without a relapse
event, and it is commonly assessed using the AUC value [58].
Calibration is the ability to correctly estimate the risk or
probability of a future event. It measures how well the predicted
probabilities from the model agree with the observed rate of later
relapse. Calibration was assessed by the Hosmer-Lemeshow (HL)
goodness-of-fit test [59]. Under the null hypothesis, the HL statistic
suggests evidence of a lack of the model fitting (p-value much
greater than 0.05 would indicate very good model calibration,
while p <0.05 reveals poor model calibration).

To evaluate more precisely the difference in prognosis accuracy
among the missing data imputation methods, Demsar [60]
suggests using the Friedman test [61] on the averaged results
when 10-fold cross-validation is the sampling method. The
Friedman test is a nonparametric test (similar to the ANOVA
parametric test) that compares the average ranks of N algorithms
(N > 2).Under the null hypothesis, the Friedman test states that the
N algorithms perform equivalently, and the observed difference is
merely random. If the null hypothesis is rejected (means are
significantly different from each other), the Wilcoxon signed-rank
test [62] is used to study exactly which means differ from the
control model (i.e., the LD imputation method).

4. Results

Missing data imputation techniques based on both statistical
and machine learning methods were applied to impute absent
values in data from patients with breast cancer. The goal was to
analyse the improvements in prognosis accuracy when different
algorithms were applied to impute missing data values. A neural
network model was used to predict whether a patient would suffer
an early cancer relapse, and we analysed how the different
imputation techniques affected this prediction.

To compare and study the convenience of imputing data, the
reference model was first estimated by simply removing missing
values from the original data set; this process is usually described
as listwise or case deletion. Then, the methods described in Section
3 were applied to impute absent values, and an ANN-based model
was used to predict early relapse in breast cancer patients

Table 2

Mean, standard deviation and MSE values for the AUC values computed for the control model and for each of the eight imputation methods considered.
AUC LD Mean Hot-deck SAS Amelia Mice MLP KNN SOM
Mean 0.7151 0.7226 0.7111 0.7216 0.7169 0.7250 0.7340 0.7345 0.7331
Std. dev. 0.0387 0.0399 0.0456 0.0296 0.0297 0.0301 0.0305 0.0289 0.0296
MSE 0.0358 0.0235 0.0324 0.0254 0.1119 0.1119 0.0240 0.0195 0.0204
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Fig. 2. Difference in AUC means between the reference model and each imputed
data ANN model.

belonging to a separate test set. An ROC analysis was performed to
compare the results of each of the imputation methods. Table 2
shows means and standard deviations for the AUC values that were
computed using a 10-fold cross-validation procedure.

As seen in Table 2, the prognosis models based on imputation
methods described in Section 3 (except for the hot-deck method)
outperformed the reference model in terms of AUC averaged over
the cross-validation procedure. Fig. 2 depicts the difference in AUC
means between the reference model and each imputed data ANN
model, where the maximum difference (0.0194) was obtained for
the KNN method.

The two-way nonparametric ANOVA Friedman'’s test was then
used to test the overall effects of the algorithms on mean AUC
values. The reference ANN model estimated by removing records
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Fig. 3. Improvement in prognosis accuracy obtained as a percentage of the optimum
(AUCreg), computed using Eq. (13) (see text for more details).

with missing values was selected as the control model. Friedman'’s
test revealed that there was a significant algorithm effect
(p =0.0091) on the observed AUC values. The Wilcoxon signed-
rank test was then employed to determine the statistical
significance of the difference in AUC means across ANN models
based on imputed data and the control model. This pairwise
comparison test showed that the AUCs for MLP, KNN and SOM
were significantly higher (p = 0.0053, p = 0.0048 and p = 0.0071,
respectively) than the AUC from the LD prognosis model.
Differences in AUCs were not statistically significant for mean,
hot-deck and MI methods ( p > 0.01). The calibration of the models
was assessed using the HL statistic, and the LD, SOM, MLP and KNN
methods had good calibration indices (p =0.47, p=0.54, p=
0.63 and p = 0.71 for the HL statistic, respectively).
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Fig. 4. Prognosis accuracies for the LD model and all considered imputation methods as the training data set size is reduced. A progressive decrease in the prognosis accuracy is

clearly observed when fewer data were used.
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Fig. 5. Differences in performance (prognosis accuracy) for each imputation method
with respect to the LD model as the training data set size is reduced.

Fig. 2 depicts absolute values of the difference in prognosis
accuracies, which does not seem relevant in terms of model
performance, e.g., AUCxny —AUC;p is just 0.0194. In clinical
applications of pattern classification methods, the following
question is the most important: what percentage of improvement
does the generalisation ability present over the value obtained
using the optimal model? In this experiment, an upper bound for
prognosis accuracy (possible optimal model) was obtained using
logistic regression with the test data set. The prognosis accuracy
for the logistic regression model was 0.7795; based on this figure, it
is possible to compute the difference in generalisation ability, as a
percentage, relative to the maximum that could be obtained. Fig. 3
shows the improvement, I, as a function of the prognosis accuracy
obtained from the LD model over that obtained from imputation
methods. This figure is expressed as a percentage of the optimum
(AUCreg) and computed using the following equation:

AUC;,, — AUC1p

I= AUCreg — AUCp

x 100 (13)

where AUC;, and AUC;p are the prognosis accuracies for the
imputation method and the LD model, respectively. As seen in
Fig. 3, in spite of low values for the absolute difference in prognosis
accuracies, the percentage in improvement reaches the 30% when
machine learning methods were used to impute missing data.
Up to this point, the results indicate that imputation methods
based on machine learning algorithms (MLP, SOM and KNN)
outperformed statistical imputation methods in the prediction of
patient outcome in breast cancer early relapse. However, as noted
in Section 1, many works in the literature have demonstrated that
the benefits of imputation methods depend mainly on the problem
domain, the size of the available data set and missingness patterns.
We explored the dependency between the size of the available data
set and the performance of the imputation methods. To accomplish
this, an experiment was carried out to analyse the performance of
the imputation methods when the size of the training data set was
reduced in the split-sample validation scheme. The size of the
training set was successively reduced in steps; in each step, 10% of
the original data was eliminated. The prognosis accuracies were
then newly tested for the LD model and imputation methods over
the same original test data set. Fig. 4 depicts progressive decreases
in the prognosis accuracy, where prognosis models performed
more poorly when fewer data were used. The effect became more
pronounced when the training set was reduced by 60%.

However, in general, higher differences in prognosis accuracy
occur in Fig. 4 as the percentage of reduction is increased. Fig. 5
more specifically shows the differences in performance for each
imputation method with respect to the LD model. The prognosis
accuracy increased for almost every imputation method as the
training set size was gradually reduced. This general improvement
was even higher when the size of the training set was further
reduced, and the differences in prognosis accuracies became
statistically significant for mean, SAS and MICE imputation
methods when the size decreased from 30% through 90%.

5. Conclusions and discussion

We applied six imputation methods to treat the problem of
missing data in 3679 records from breast cancer patients in the “El
Alamo-I" data set. First, we reviewed and provided technical
details of the different methods used, which comprised three
methods based on statistical analysis and three methods based on
machine learning. The statistical methods included mean imputa-
tion, hot-deck and three different MI implementations applied
with the software packages SAS, MICE and Amelia, while the
machine learning-based methods included MLP, KNN and SOM.
These approaches to missing data imputation were then applied to
the breast cancer data set, in which 45.61% of observations
contained missing data. Details of the data set are given in Table 1,
where it can be observed that most of the missing values were
present in the covariate histological grade. Once the unknown data
were imputed, a prognostic model was created based on ANN to
predict early breast cancer relapse, and the effectiveness of the
different imputation techniques was compared. Breast cancer
prognosis is important for determining the treatments for different
patients; thus, the key issue in the present analysis was whether
imputation techniques could improve the prognosis accuracy. As
depicted in Table 2 and Fig. 2, all imputation methods except for
the hot-deck method led to an improvement in prediction
accuracy, as measured by the AUC. Statistical tests were conducted
to determine whether the differences observed were significant;
only the results obtained using the three machine learning-based
techniques, MLP, KNN and SOM, were significantly different from
those in which records containing missing values are eliminated
(LD method). The calibration of these 3 methods was further
assessed, and there was no significant difference from the LD case,
for which the obtained model was already calibrated. Thus, there
were no significant differences between the observed prognosis
and the calculated one when the data were split in deciles with
increasing risk. The best predictions were obtained using the KNN
method, in which the AUC was 0.7345 4+ 0.0289 (mean plus or
minus the standard deviation computed using 10-fold cross-
validation); this represents an improvement of 2.71% over the LD
case. To analyse how far these results are from the optimal
prediction, the optimal prediction value was estimated as the value
obtained using a logistic regression model computed over the
observed results, which led to a prognosis accuracy of 0.7795.
Then, we compared the obtained results to this value and to the LD
case using Eq. (13), which measures the percentage improvement
in accuracy from the optimal with the respect to the LD procedure.
The results are shown in Fig. 3. With respect to the statistically
based methods, the MI methods implemented with SAS and
WinMICE led to values higher than the comparison case (LD), but
the difference was not statistically significant. The same occurred
with the very simple method of the mean. In contrast, MI
implementation through Amelia and hot-deck imputation led to
relatively poor prognosis predictions.

Because the size of the data set is known to influence the effect
of the imputation method, we conducted further tests in which the
size of the available training data was reduced while the test set
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remained unaltered. Fig. 4 shows the AUC values obtained as the
training set was reduced by 0-90%, where the performance of the
prediction decreased monotonically as the size of the training data
set was reduced. The results plotted in Fig. 5, which shows the
difference in the observed AUC between the obtained values and
the LD approach, are particularly interesting; from this graph, the
improvement increased until the training data were reduced by
80%. The increase in improvement highlights the importance of
imputation techniques when small data sets are available; this
finding suggests that almost any of the imputation techniques used
in the present work could provide significant improvements when
data sets are small.

We conclude that machine learning techniques may be the best
approach to imputing missing values, as they led to statistically
significant improvements in prediction accuracy. Imputation
techniques depend on the available data and the prediction model
used; thus, the present results might not generalise to different
data sets.
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