
1306 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

Generalization Properties of Modular Networks:
Implementing the Parity Function

Leonardo Franco and Sergio Alejandro Cannas

Abstract—The parity function is one of the most used Boolean
function for testing learning algorithms because both of its simple
definition and its great complexity. Being one of the hardest prob-
lems, many different architectures have been constructed to com-
pute parity, essentially by adding neurons in the hidden layer in
order to reduce the number of local minima where gradient-de-
scent learning algorithms could get stuck. We construct a family of
modular architectures that implement the parity function in which,
every member of the family can be characterized by the fan-in max
of the network, i.e., the maximum number of connections that a
neuron can receive. We analyze the generalization ability of the
modular networks first by computing analytically the minimum
number of examples needed for perfect generalization and second
by numerical simulations. Both results show that the generaliza-
tion ability of these networks is systematically improved by the de-
gree of modularity of the network. We also analyze the influence of
the selection of examples in the emergence of generalization ability,
by comparing the learning curves obtained through a random se-
lection of examples to those obtained through examples selected
accordingly to a general algorithm we recently proposed.

Index Terms—Circuit complexity, generalization, learning from
examples, modular neural networks, parity function.

I. INTRODUCTION

ONE central theme in neural networks is the design of op-
timal architectures to solve specific problems. The im-

plementation of an optimal feedforward network for a given
problem involves several aspects, such as complexity of the
problem, depth of the network (i.e., number of hidden layers),
number of neurons in the hidden layers, convergence of the
learning algorithms, ability to generalize, etc.

In this work we consider networks that solve the parity
function using feedforward neural networks composed of linear
threshold units: neurons whose activity is determined by
computing a linear threshold function of the form

(1)

Manuscript received December 3, 1999; revised March 21, 2001. This work
was supported by SeCyTUNC, CONICOR and CONICET.

L. Franco was with the Condensed Matter Group, Facultad de Matemática,
Astronomía y Física, Universidad Nacional de Córdoba, (5000), Córdoba, Ar-
gentina. He is now with the Cognitive Neuroscience Sector at Scuola Inter-
nazionale Superiore di Studi Avanzati (SISSA), Trieste 34014, Italy (e-mail:
lfranco@sissa.it).

S. A. Cannas is with the Condensed Matter Group, Facultad de Matemática,
Astronomía y Física, Universidad Nacional de Córdoba, Córdoba 5000, Ar-
gentina (e-mail: cannas@famaf.unc.edu.ar).

Publisher Item Identifier S 1045-9227(01)09511-X.

where
1 if and 0 otherwise;
synaptic weights;
activities of neurons in a previous layer;
activation threshold of the neuron.

Different complexity measures as order of predicate, entropy
decreasing criteria, size of the network, etc., (see [2], [5], and
[13]) together with the fact that every change of a single input bit
produces a change in the output make the parity function a hard
problem among Boolean functions. The parity function is thus
one of the most used functions for testing learning algorithms,
because of its simple definition but great complexity.

From the vast literature where the parity function is analyzed
and compared to another functions we could cite [5], [9], [10],
[12], [16], and [18].

The question about what is the minimal size network needed
to compute parity has been addressed from the point of view of
circuit complexity, see [13]. Impagliazzoet al. [11] have found
that the bit parity function with a single hidden layer needs at
least hidden neurons, while the best known construction
has neurons. Recently in [8], it was demonstrated up to

, that the minimum size of the hidden layer required to
solve the -bit parity is .

This network, that we shall refer to as the basic structure, is
the simplest and most studied architecture to compute the parity
function (see [10], and [12], [16]). It has input bits, fully
connected neurons in a single hidden layer, and a single output
that has to beONwhenever an odd number of input bit areONand
OFFotherwise. Gradient-descent learning algorithms face prob-
lems with this architecture as they get trapped in local minima,
so other solutions have been designed by adding neurons in the
hidden layer to obtain an improvement in the performance of
the learning procedure [17].

In this work we construct a family of modular architectures
that implement the parity function. Every member of the family
can be characterized by the fan-in max () of the network,
i.e., the maximum number of connections that a neuron can
receive. This parameter controls the degree of modularity, the
number of hidden layers, which increases logarithmically with

and the total number of synaptic weights . An inter-
esting fact is that diminishes as increases.

Besides several computational advantages (see for example
[3], [9] and references therein) modular architectures are of par-
ticular interest from the biological point of view. Modularity
seems to be an important principle in the architecture of ver-
tebrate nervous systems, while fully connected networks are
rarely found in nature. Moreover, modular networks have been

1045–9227/01$10.00 © 2001 IEEE

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1307

Fig. 1. Neural-network structure that computes the parity function of four
input bits using the simplest architecture with only one fully connected hidden
layer with four neurons. The threshold values are indicated inside the neurons
while the synapsis values are 1 for the solid lines and�1 for dash lines.

used succesfully in several tasks as speaker recognition, face
recognition, prediction of time series, etc. [1], [4], [15].

The family of networks and its general properties are pre-
sented in Section II.

In Section III, we analyze the generalization ability of the
modular networks introduced in Section II, first by computing
analytically the minimum number of examples needed for full
generalization and second by numerical simulations. Both ana-
lytical and numerical results show that the generalization ability
of these networks is systematically improved by the degree of
modularity of the network. We also detect the existence of a
phase transition from memorization to perfect learning (gener-
alization) as the number of input bits is increased while the
is reduced, as first suggested by Patarnello and Carnevali [14].

Some conclusions and remarks are presented in Section IV.

II. A FAMILY OF ARCHITECTURESTHAT SOLVE THE PARITY

PROBLEM

The simplest known solution (see [16]) for the-bit parity
function using linear threshold units has one hidden layer with
a number of neurons equal to the number of inputs. The
network is fully connected and the value of the weights that
solve the problem is very simple: all the weights connecting
the input to the hidden layer are set to 1, the thresholds of the
hidden neurons are the semi-integers numbers ranging from
to , the connections from the hidden neurons to the
output are alternatively set to 1 and1 and the threshold output
is set to . From now on we will refer to this architecture as
the “basic architecture.” In Fig. 1, we show an example of this
architecture for .

The network functions is as follows: whenof the input
neurons areON, of the hidden neurons, those with thresholds
less than, areON. Since the synaptic weights connecting hidden

Fig. 2. Modular network structure to compute the parity function of four input
bits with af = 2. The parity of pairs of input bits is computed and later the
parity of the results is calculated using the same procedure.

neurons to the output have alternate values 1 and1, only when
an odd number of inputs neurons areON is the sum of the acti-
vated weights onto the output unit able to exceed its threshold
of so as to activate the output neuron. An even number of
active input neurons results in an even number of active hidden
units, the sum of the activated weights onto the output unit is
zero and the output unit remains inactive.

We now introduce a family of architectures that generalize
this previous basic architecture and exactly solves the parity
function.

The architectures are constructed from a very simple and
well-known property: the addition of two odd or even numbers
gives an even number, while the addition of one odd and
one even number is odd. The parity of an arbitrary number
of bits can thus be computed by dividing them into groups
and computing the parity of every group independently. This
procedure can be repeated recursively until we obtain a single
output result. The parity computation at every step can be
performed by a neural network with the basic architecture.
There are several options for grouping the bits at every step,
each one of them associated with a particular architecture.
One particular way is to build (when possible) all groups with
the same number of bits. This choice generates a modular
structure where the basic architecture that solves the parity of

bits is repeated recursively.
Let us illustrate the idea with a simple example. Con-

sider for simplicity that is (); we then divide the
input into pairs and compute the parity of every pair (an
exclusiveXOR function) with the well-known basic architecture
(See Fig. 2). We obtain binary outputs that we group in

pairs and so on. This architecture computes the parity of
the -bit input in steps and involves a total number
of hidden layers. An example for is shown in
Fig. 2.

The generalization to the case is straightforward:
every time we need to compute the parity of an odd number of
bits, either at the input or in one of the intermediate steps, we

1308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

leave one bit out compute the parity of the remaining bits with
the previous procedure and include the remaining bit in a further
computation. If we write (with), the corre-
sponding parity problem can thus been solved by an architecture
with hidden layers. The structure will involve synapsis
between neurons separated by more than one layer which can
be visualized as mediated by subsequent neutral hidden neurons
that just propagate their activity to the next layer without alter-
ation. This structure has a fan-in max of .

This scenario can be easily generalized to the case
using the basic structure with bits. We now analyze the case
where ; the case can be solved by the ap-
proach discussed in the preceding paragraph. In the case

we obtain a modular structure that solves parity in
steps, with hidden layers, a total number of neu-

rons

(2)

and a total number of synaptic weights

(3)

These architectures have a . This parameter mea-
sures the degree of modularity of the networks; the case
corresponds to the basic architecture with no modularity at all,
while the minimum number corresponds to maximum
modularity.

Note that both and increase linearly with the number
of inputs . For large values of , becomes almost inde-
pendent of while increases linearly with : in networks
with a large number of inputs the number of synaptic weights
can be reduced through smallwith only small increase in the
total number of neurons. These considerations are important for
hardware design.

III. GENERALIZATION ABILITY

A. Minimum Number of Examples for Full Generalization

To analyze the generalization ability of the networks pre-
sented in Section II we first calculate an upper bound for
the minimum number of examples needed to obtain full
generalization in learning the parity function. This number
depends both on the target function (in this work we just study
the parity function) and on the chosen architecture and it can be
obtained analytically by analyzing directly the linear threshold
equations derived by imposing the perfect learning of a set of
examples. We introduced this method in a previous work [7]
to analyze the influence of the selection of examples in the
emergence of generalization ability for several networks with
linear threshold units. In particular, we showed that perfect
generalization can not be achieved with the basic architecture
with continuous weights for the parity problem.

The idea of the method is as follows: the perfect learning of
every one of the possible examples imposes a set of con-
straints on the synaptic weights. In the general case, thecon-
straints will not be independent, but independent subsets exist.
Since every constraint is associated with one particular example,

the size of such subsets determines the minimum number of ex-
amples that ensures perfect generalization.

We now consider the case of “clipped” or “restricted” weights
and suppose that we use some appropriate learning

algorithm that guarantees the zero error learning of the training
examples (for instance, simulated annealing) starting from a
random assignment of the weights.

We first analyze the basic architecture . Let us con-
sider the particular example with showed in Fig. 1,
where are the input bits

(4)

determine the activity of the hidden neurons,are real thresh-
olds and are the input-to-hidden weights. The output

follows from

(5)

where is also real and are the hidden-to-output
weights.

Different choices of the thresholds allow for different
solutions of the parity problem, every one associated with a
different internal representation, i.e., a set of hidden unit ac-
tivities for every input (see [16] and [6]). We choose the
thresholds, as described in the previous section, and

, for . With this choice
and clipped synaptic weights it can be seen (as it will become
clear in our analysis) that there is only one possible internal rep-
resentation except for trivial permutations of the hidden units.
This property also holds for the more general case
and . In order to simplify the analysis we
will keep the thresholds to that values in all our calculations. We
expect our results for the minimum number of examples needed
for full generalization (MNEFG) to be independent of that con-
straint. Fixing the thresholds is equivalent to choose a particular
internal representation for the solution of the target problem and
the MNEFG is expected to scale in the same way withfor
any possible internal representation, as we verified for the parity
problem in a fully connected network with continuous weights
[7]. In the present problem we verified this assumptiona poste-
riori by means of numerical simulations.

We will denote the examples by writing between square
brackets the input values and the correct output separated
by a colon. With our choice of threshold values the example
[0000:0] is automatically solved by the network. Now con-
sider the example [1000:1]. Since all thresholds are positive,

and (5) with requires .
From (4) we, then obtain that . Perfect learning of all
the examples with only one bitON: [1000:1], [0100:1], [0010:1]
and [0001:1] thus implies the following necessary conditions:

, .
We now consider the examples with two bitsON, for instance

[1100:0]. From the previous conditions we have that
and from (5) that , which implies and

. Then from (4) we obtain that . Repeating

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1309

this procedure with the rest of the examples with two bitsON we
obtain that , , but notice that just two of
the six possible examples are needed to ensure the fulfillment of
the above conditions, provided that the active input bits do not
overlap (for instance: [1100:0] and [0011:0]).

We now consider examples that contain three input bitsON;
and two of the four available examples suffice to determine

, . Finally the single example with
all the input bitsON, [1111:0] implies and ,

.
Hence, we see that for it is enough to learn nine

selected examples (slight above half of the total number
of examples) to obtain full generalization.
The generalization of this result to the case ofinput bits is

straightforward: we analyze the complete set ofexamples in
groups formed by the examples that have onlybits ON and we
take from every group the minimum number needed to ensure
that every input bit appears at least once in theON state. The
total number of examples needed to obtain full generalization is
thus given by

Int (6)

where Int equals if is an integer and it equals the closest
integer greater than if is real. For large values , this
number scales as , quite smaller than both the
total number of examples and the total number of synapsis

.
We now analyze the case .
Let us start with a particular case with , .

This network has a modular structure derived from the basic
architecture with . The thresholds in every module
are fixed as before.

As we explained in the previous section, the three input mod-
ules have to compute independently the parity of the corre-
sponding input bits, while the output module has to compute
the parity of the previous results. Hence, a natural choice is to
start with all the examples needed to learn the parity in every
one of the three input modules, that is, examples containing dif-
ferent combinations of zeros and ones in the input of one partic-
ular module and zero in the rest of them (for instance, [xxx 000
000:y], where [xxx:y] is one of the examples needed for a basic
architecture with). In this case the outputs of the
input modules will have at most one bitON. Therefore, this set
of Int examples will fix all the synaptic
weights associated with the first hidden neuron of the output
module (that is, the neuron with threshold) together with
all the internal synaptic weights of the input modules.

Once this learning task is performed, every input module
acts as a single unit, as far as the output module is concerned.
Hence, we need another set of Int appropri-
ated chosen examples in order to fix the rest of the synaptic
weights of the basic output architecture. These examples have
to contain two of them giving different combinations of module
outputs with two bitsON (for instance [111 111 000:0] and
[111 000 111:0]) and the example with all the input bitsON.
Then, we see that a number over possible

examples is enough to learn the parity problem. This number
has to be compared with derived from (6) for a basic
architecture with .

The generalization of the argument to the general case
is straightforward. The number of examples needed to learn

the parity in the input modules is

Int Int

Once this learning task is performed, the input modules act as
single units for the next layer of modules. For this layer,
all the examples with only one input bitON have already been
learned. We only needed another set of

Int

appropriately chosen examples to fix the rest of the synaptic
weights of this layer. Repeating this procedure for the remaining

layers of modules leads to

Int

Int (7)

for . Notice that for large values of and strong
modularity , scales linearly with instead of
the scaling for .

The analysis is more complex for , with
. This case can be solved by constructing a modular net-

work with input units and training it with examples where
the extra input bits are always set to zero. An upper bound to
the number of examples needed to train this network is given by

, where is given by (7) and the
equality holds for .

Consider now the case ofcontinuous weights . Again, the
modular structure of the networks allows us to carry out the anal-
ysis recursively from the properties of the constituting modules.

For continuous weights the restrictions imposed by the
learning of examples appear in the form of a set of
simultaneous inequalities. In a previous work [7] we showed
that, for a basic architecture of input bits with the choice of
the thresholds adopted here, full generalization implies the ful-
fillment of independentinequalities: only the learning
of the whole set of possible examples (except for the trivial
one with all the input bits set to zero, which is automatically
fulfilled) ensures full generalization with this architecture.

We now repeat the procedure used in the case of clipped
synaptic weights for and . In a first step we
teach the network all the examples with only one bit . This
lead to a set of independent inequalities for all the weights
associated with hidden neurons with threshold equal to.
To obtain the inequalities related to the rest of the weights of
the input modules, we have to teach in a second step all the

1310 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

TABLE I
SOME FEATURES OF THENETWORKS USED TO COMPUTE THEN -BIT PARITY FUNCTION WITH A f = m. SEE TEXT FOR THE

DEFINITION OF THE Int (x) FUNCTION

examples containing more than one bit

ON in every of the input modules and zero in the rest of them

(being the binomial coefficient). But, for the successive

layers of modules, all the inequalities associated with just one
input bit ON in every module have already been set in the first
step. Hence, to impose the rest of the synaptic weights of the
layer the appropriated inequalities we need only another set

of examples. Then, the total number of

examples is

(8)

for a modular network with continuous weights and .
We note that it is the same result obtained for the clipped case,

(7) but changing the term Int by . For the

result is recovered. As before, in (8) gives
an upper bound for the case . Note that for

and , scales linearly with for continuous
weights. The features obtained for the modular architectures are
summarized in Table I.

B. Numerical Results

We performed numerical simulations for networks
with clipped weights, using simulated annealing as the learning
algorithm and parity as the target function. The parameters of
the simulated annealing algorithm (i.e., initial temperature, rates
of temperature decay, etc.) were kept constant in all simulations.
The threshold values were fixed to those mentioned in the pre-
vious section. We performed severala posteriorichecks without
fixing the thresholds obtaining similar results; however, a slower
convergence rate of the algorithms was obtained for the case of
variable thresholds.

In order to investigate the effect of the modularity we com-
pared three different networks with (, max-
imum modularity), (, basic archi-
tecture) and the intermediate case . The last case
consists of a mixed architecture with two input mod-
ules and an output module. We calculated the learning
curves: the average generalization errorversusthe fraction

Fig. 3. Generalization error versus fraction of random selected examples for
three networks implementing the parity function of eight bits using different
architectures. In dark the results correspond to the case of a single hidden
architecture withf = 8, in dark gray those corresponding to an architecture
with three hidden layer with af = 4 and in light gray a five-hidden layer
architecture withf = 2.

, being the number of examples used in the
training. The results were averaged over different sets ofex-
amples and over different initial realizations of random weights

. Typical sample sizes run from 50 to 100. The
training for every initial condition and set of examples was con-
tinued until zero learning error was achieved. The generalization
error was then calculated over the whole set ofexamples.

In Fig. 3, we compare the learning curves for the three net-
works. For , the generalization error decays very
slowly and approaches asymptotically as approaches
to 1, showing a lack of generalization that it is sometimes
encountered in neural-network applications. A systematic
improvement is observed as the modularity is increased. A
dramatic change of behavior occurs for , where
remains almost constant for and decays
suddenly to zero with a few more examples, suggesting a phase
transition from memorization to perfect learning for large
lattices. This effect has been pointed out before by Patarnello
and Carnevali [14], for neural networks composed of Boolean
gates with of two. This transition seems to be an effect
associated to the extreme modularity. For the
decays smoothly to zero.

To gain an insight about the relationship between the above
mentioned transition and the modularity we analyzed how the
learning procedure affects the different modules as we increase

for . For the resulting network has three

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1311

Fig. 4. Probability of generalization versus fraction of examples calculated
for the different modules (input, hidden, and output) of a modular network with
N = 8 andf = 2.

layers of modules: input, intermediate and output. We calcu-
late the probability of learning correct synaptic weights in a
given module which implement the target function (remember
that, since the thresholds are fixed there is just one correct set
of weights). The numerical calculations were carried out over
samples of size 1000. We first verified that these probabilities
are the same for all modules in the same layer, as expected
from the symmetry of the network. In Fig. 4, we compare such
probabilities versus for modules in different layers. We see
that learning occurs from bottom to top: as we increasethe
learning probabilities for the input and hidden modules remain
at very low values () while the probability for the output
module steadily increases. When reaches the value

, where the output probability is around 40%,
the input and hidden probabilities experience a sudden growth,
they become very similar and converge rapidly to one.

In order to establish the practical advantage of modular net-
works, we measure the average CPU time needed to learn a
number of examples needed to achieve . More
precisely, we run simulations with fixed up to a predeter-
mined maximum number of simulated annealing iterations. We
repeat this procedure starting from different initial conditions
and for different sets of examples of size. In many runs the
learning is not successful: the algorithm does not converge to
zero learning error. We compute the total CPU time (in ms)
needed to obtain successful learning sessions (including the
CPU time wasted in the cases where the network does not learn)
and divide it by (was enough to stabilize the av-
erage).

In Fig. 5 we compare the average CPU time for the three
modular networks considered here for , for both selected
and random training sets. While for the former the improvement
is very impressive and monotonic as decreases, for the
latter we see that the high generalization ability for
is obtained with very poor efficiency (note the logarithmic scale
in the ordinates of the plot), but the CPU time does not increase
monotonically as increases and is optimal .

Next, we analyzed the influence of example selection on the
learning ability of the modular networks. In Fig. 6 we com-
pare versus for a random choice of the

Fig. 5. Learning CPU time for the parity function using three different
architectures withf = 2; 4 and eight using random and selected training
sets.

Fig. 6. Generalization error versus fraction of examples in the training set for
random and selected examples for networks solving the parity funcion with
N = 8 andf = 2; 4 and eight.

training set over all the possible examples and a random selec-
tion only over the subset that ensures full generalization (see
the preceding section). Results for and eight are
shown in Fig. 6(a)–(c), respectively. We see that for
the influence of modularity is so strong that little is gained from
example selection. On the other hand, we observe that example
selection can lead to a remarkable improvement in the general-
ization ability of nonmodular networks () but, at
the cost of poor efficiency (see Fig. 5).

Finally, we analyze how the minimum number of examples
needed for full generalization scales with the number of
synapses . From Table I we see that for modular networks

1312 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 6, NOVEMBER 2001

() scales linearly with , , both
for restricted and continuous weights. In the first case
decreases slowly with . This linear behavior has been ob-
served in the number ofrandomexamples needed for gener-
alization in fully connected networks [9]. On the other hand for
nonmodular networks () very different scaling behav-
iors are observed. For restricted weights we see that

while for continuous weights we obtain
.

IV. CONCLUSION AND DISCUSSION

We have constructed a family of architectures capable of im-
plement the parity function in a simple way, either with re-
stricted (discrete) or continuous synaptic weights. We showed
that several properties of these networks, like depth, number of
synapses, generalization ability, etc., are controlled by a single
parameter, namely, the fan-in max (). We analyzed, both
analytically and numerically, several of these properties as
is varied, comparing the different behaviors observed in net-
works with restricted and continuous weights.

The study of learning properties of the parity function in dif-
ferent architectures is of importance by several reasons. First of
all, being it a standard for testing learning algorithms, it is al-
ways of interest to know general properties of different types
of implementations. Conversely, knowing how well a given ar-
chitecture deals with the parity may serve as a benchmark for
the learning capability of the network. In other words, being
the parity one of the most difficult learning tasks, we may think
its learning properties as “bounds” for the learning properties
of “easier” functions. Hence, it may also serve for comparing
learning performances of different architectures. In this sense,
the present study indicates that generalization can be highly im-
proved as the degree of modularity of the network increases.
Moreover, we found that a high degree of modularity can lead
to a phase transition from memorization to perfect learning. This
transition occurs when the fraction of training examples reaches
the minimum number of examples needed for full generaliza-
tion . This result supports our previous proposal (see [7]) of

as a combined measure of target function and architecture
complexities. One standard measure (function independent) of
the learning capacity of an architecture is the Vapnik–Chervo-
nenkis (VC) dimension (see, for example, [9], for its definition).
Generalization starts at the VC dimension, that is, no generaliza-
tion at all is possible if the number of training examples is below
it, for any target function. Now, for a particular target function,
perfect generalization is only possible is the number of training
examples exceeds , which of course is always greater than the
VC dimension. Numerical evidence have shown that the gen-
eralization properties seem to be directly related to the scaling
properties of with the number of input neurons ([7]). The
present work shows that generalization becomes optimal in the
learning of the parity using a random sampling of examples with
an extremely modular network (at least as far as the gen-
eralization error is concerned), since when .
This result should be compared with the efficiency in terms of
the average CPU time wasted by the learning algorithm to find
a solution with a given generalization error and fixed number

of training examples by the different architectures. Our results
show that the very good performance for the generalization error
in the case is obtained at the cost of a very poor efficiency
(see Fig. 5). Moreover, the minimum observed in the CPU time
for suggests that an adequate tradeoff between general-
ization and efficiency can be obtained by using modular struc-
tures with intermediate values of .

We have also shown that for structures with a high degree of
modularity () the ratio between and the number of
synapses is constant both for restricted and continuous
weights. This linear scaling of with is always of interest
to hardware design. On the other hand, for networks with a low
degree of modularity () very different scaling behaviors
are observed, depending on the type of weights. For continuous
weights the ratio increases exponentiallywith , while
for restricted weights such ratiodecreaseswith . Although
this result seems to indicate the general convenience of using
restricted instead of continuous weights, care must be taken con-
cerning the computability (that is, the number of different target
functions that the architecture is capable of implement) of every
type of network. This result may be very particular of the parity;
in general it is expected a much more lower computability using
discrete instead of continuous weights. Of course the question of
computability arises for all the results here presented. However,
we believe that, though more restricted than fully connected net-
works, the modular structures here presented are capable to im-
plement a great variety of target functions, at least those sharing
with the parity what we can call the “self-similarity” property:
that is, problems which can be divided into subproblems similar
to the original one. Examples of these kind of problems are the
arithmetic ones: addition, subtraction, multiplication, etc.

ACKNOWLEDGMENT

The authors acknowledge S. Solla for fruitful discussions and
for a critical reading of the manuscript.

REFERENCES

[1] Y. Bennani, “Multiexpert and hybrid connectionist approach for pattern
recognition: Speaker identification task,”Int. J. Neural Syst., vol. 5, pp.
207–216, 1994.

[2] P. Carnevali and S. Patarnello, “Exhaustive thermodynamical analysis
of Boolean learning networks,”Europhys. Lett., vol. 4, no. 10, pp.
1199–1204, 1987.

[3] K. Chen, L. Yang, X. Yu, and H. Chi, “A self-generating modular neural-
network architecture for supervised learning,”Neurocomput., vol. 16,
pp. 33–48, 1997.

[4] M. N. Dailey and G. W. Cottrell, “Organization of face and object recog-
nition in modular neural-network models,”Neural Networks, vol. 12, pp.
1053–1074, 1999.

[5] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and
J. Hopfield, “Large automatic learning, rule extraction and generaliza-
tion,” Complex Syst., vol. 1, pp. 877–922, 1987.

[6] L. Franco and S. A. Cannas, “Solving arithmetic problems using feed-
forward neural networks,”Neurocomput., vol. 18, pp. 61–79, 1998.

[7] , “Generalization and selection of examples in feedforward neural
networks,”Neural Comput., vol. 12, pp. 2405–2426, 2000.

[8] H. Fung and L. K. Li, “Minimal feedforward parity networks using
threshold gates,”Neural Comput., vol. 13, pp. 319–326, 2001.

[9] S. Haykin, Neural Networks: A Comprehensive Foundation. New
York: McMillan, 1994.

[10] J. Hertz, A. Krogh, and R. Palmer,Introduction to the Theory of Neural
Computation. Reading, MA: Addison-Wesley, 1991.

FRANCO AND CANNAS: GENERALIZATION PROPERTIES OF MODULAR NETWORKS 1313

[11] R. Impagliazzo, R. Paturi, and M. E. Saks, “Size-depth tradeoffs for
threshold circuits,”SIAM J. Comput., vol. 26, no. 3, pp. 693–707, 1997.

[12] M. L. Minsky and S. A. Papert,Perceptrons. Cambridge, MA: MIT
Press, 1969.

[13] I. Parberry, “Circuit complexity and feedforward neural networks,”
in Mathematical Perspectives on Neural Networks, P. Smolensky, M.
Mozer, and D. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum,
1996, pp. 85–111.

[14] S. Patarnello and P. Carnevali, “Learning networks of neutrons with
boolean logic,”Europhys. Lett., vol. 4, pp. 503–508, 1987.

[15] V. Petridis and A. Kehagias,Predictive Modular Neural Networks: Ap-
plications to Time Series. Boston, MA: Kluwer, 1998.

[16] D. E. Rumelhart and J. L. McClelland,Parallel Distributed Pro-
cessing. Cambridge, MA: MIT Press, 1986, vol. 1.

[17] G. Tesauro and R. Janssens, “Scaling relationships in backpropagation
learning: Dependence on predicate order,” Center Complex Syst. Res.,
Urbana-Champaign, IL, Tech. Rep. CCSR-88-1, 1988.

[18] C. V. den Broeck and R. Kawai, “Learning in feedforward Boolean net-
works,” Phys. Rev. A, vol. 42, no. 10, pp. 6210–6218, 1990.

Leonardo Franco received the M.Sc. degree in physics in 1995 and the Ph.D.
degree in 2000 with a dissertation on generalization properties of feedforward
neural networks, both from Córdoba National University, Córdoba, Argentina.

In September 2000, he joined the Cognitive Neuroscience Sector at SISSA,
Italy, as a Postdoctoral Fellow, where he is working on computational neuro-
science. His research interests include generalization properties and complexity
of neural networks, information theory, face recognition, and modeling of the
visual system.

Sergio Alejandro Cannaswas born in Córdoba, Argentina, on November 21,
1961. He received the M.Sc. degree from the National University of Córdoba
in 1984 and the Ph.D. degree from the Centro Brasileiro de Pesquísas Físicas,
Brazil, in 1992, both with a thesis and dissertation on statistical physics.

Since 1994, he has been an Assistant Professor of the National University of
Córdoba. In 1995, he became a Researcher of the National Research Council
(CONICET) of Argentina. His research interests include neural networks and
statistical physics of complex systems.

