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Genetic algorithms are widely used in the estimation of expression profiles from microarrays data. How-
ever, these techniques are unable to produce stable and robust solutions suitable to use in clinical and bio-
medical studies. This paper presents a novel two-stage evolutionary strategy for gene feature selection
combining the genetic algorithm with biological information extracted from the KEGG database. A com-
parative study is carried out over public data from three different types of cancer (leukemia, lung cancer
and prostate cancer). Even though the analyses only use features having KEGG information, the results
demonstrate that this two-stage evolutionary strategy increased the consistency, robustness and accuracy
of a blind discrimination among relapsed and healthy individuals. Therefore, this approach could facilitate
the definition of gene signatures for the clinical prognosis and diagnostic of cancer diseases in a near
future. Additionally, it could also be used for biological knowledge discovery about the studied disease.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The term cancer encompasses more than 100 potentially life-
threatening diseases affecting nearly every part of the body. Cancer
is a complex, multifactorial, genetic disease involving structural
and expression abnormalities of both coding and non-coding
genes. In this sense, gene expression profiling plays an important
role in a wide range of areas in biological science for handling can-
cer diseases [1–4]. The analysis of DNA microarray data requires a
selection of features (genes) due to the small number of samples
available (mostly less than a hundred) and the large number of
features (in the order of thousands). This problem is well-known
in the literature as the ‘‘large-p-small-n’’ paradigm or the curse
of dimensionality [5].

Evolutionary models have been proposed in several works
[6–12] and constitute one of the most widely used techniques for
feature selection and prognosis analysis in microarray datasets.
Despite all the variety of feature selection techniques proposed
in the literature, it still remains a problematic intrinsic to the
domain of DNA microarrays. Genetic algorithms (GAs) [13–18],
as a particular case of evolutionary models, use classification tech-
niques within the algorithm to evaluate and evolve the population.
Producing stable or robust solutions is a desired property of feature
selection algorithms, in particular for clinical and biomedical stud-
ies. Nevertheless, robustness is a property difficult to be analyzed
and is often overlooked. In [19–21] different approaches are pro-
posed, addressing the main drawbacks related to overfitting and
robustness, through a modified GA that includes an early-stopping
criteria and establishing a feature ranking method that leads to
more robust solutions. Although some proposals use biological
information to analyze DNA microarray data [22], none of them in-
cludes it into the mechanisms that guide the searching procedure
in the GA. In our opinion, this strategy would, on one hand, pro-
duce more robust feature subset selections and, on the other hand,
permit to obtain signatures more relevant for clinicians and bio-
medical researchers.

In this approach, a two-stage procedure is proposed in order to
obtain robust feature subset selections with good performance
rates in test future data. Bootstrap Cross-Validation (BCV) is used
since its good behavior related to misclassification error with small
samples has been previously demonstrated [23,24], including DNA
microarray datasets. A novel feature scoring method within the GA
is also proposed, taking into account biological information related
to the studied disorders. One widely used source of biological
information is the Gene Ontology (GO) database [25] since it
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provides a controlled vocabulary for the description of cellular
components, molecular functions, and biological processes. How-
ever, GO is sub-classified using a hierarchy of unclear reasoning
with no validation analysis, contains insufficient number of rules
for determining whether a given concept is present or not in GO,
and most importantly, most GO terms have been assigned by se-
quence similarity through an automatic analysis, without labora-
tory validation [26]. Therefore, we have discarded the use of GO
and moved to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [27]. Since many years, this database has been
one of the most important sources for building initial pathway
models because it can be used as a reference knowledge base for
deciphering the genome and linking genes/proteins to biological
systems and also to the environment. Its main strength is that it
is manually drawn and the assignment of a KEGG code to a se-
quence implies experimental evidence support. On the contrary,
if a protein coded by a sequence does not produce enzymatic activ-
ity or is not part of a signaling pathway, it will never have a KEGG
code. Fortunately, most genes involved in cancer have enzyme
activity and belong to signaling pathways. This makes KEGG a
valuable and highly reliable source of pathways and lead us to ob-
tain robust and biologically important feature subset selections. In
fact, KEGG codes 05200 to 05223 are specifically dedicated to can-
cer.1 As an example, KEGG pathways have allowed the generation of
systems biology models [28], the identification of disease virulence
factors [29], the emergence of molecular pathway perturbations in
sporadic amyotrophic lateral sclerosis [30], or the analysis of the lip-
idomic and transcriptomic changes showing the distinct roles of
STAT1 and STAT3 on apoptosis, immunity and lipid metabolism [31].

The rest of the paper is structured as follows. Section 2 presents
the methodology of our approach and Section 3 shows the experi-
mental results over different databases. Section 4 provides the final
conclusions of the work drawn from the analysis of the selected
genes and from the study of the influence of the biological informa-
tion in the performance of the strategy.

2. Materials and methods

2.1. Materials

Three free-public high-dimensional biomedical datasets have
been used within this work. Each of them is related to an specific
cancer study disorder: leukemia,2 prostate3 and lung4 cancer
diseases.

2.1.1. Leukemia dataset
This dataset was taken from a collection of leukemia patient sam-

ples reported in [32] and it often serves as benchmark for microarray
analysis methods. It contains measurements corresponding to acute
lymphoblast leukemia (ALL) and acute myeloid leukemia (AML)
samples from bone marrow and peripheral blood. The dataset con-
sists of 72 samples (25 of them of AML and 47 samples of ALL) and
each one is measured over 7129 genes. The ID for the leukemia
Affymetrix GeneChip HuGeneFL array is hu6800. In particular, the
R package ‘‘hu6800.db’’ [33] has been used to manage and prepro-
cess the biological information related to this microarray.

2.1.2. Prostate dataset
This dataset was reported in [34]. Prostate tumors are among

the most heterogeneous of cancers, both histologically and with
1 http://www.genome.jp/kegg-bin/get_htext?htext=br08901&query=‘‘Human%20
Diseases’’&option=-s.

2 http://datam.i2r.a-star.edu.sg/datasets/krbd/Leukemia/ALLAML.html.
3 http://datam.i2r.a-star.edu.sg/datasets/krbd/ProstateCancer/ProstateCancer.html.
4 http://cilab.ujn.edu.cn/datasets.htm.
respect to highly divergent clinical outcomes. The dataset consists
of 102 samples (52 of them are tumor samples and 50 samples are
non-tumor ones) and each one is represented by 12,600 genes. The
Affymetrix ID for the prostate cancer microarray is HGU95av2 and
the R package ‘‘hgu95av2.db’’ [35] was used to manage and prepro-
cess biological information related to this microarray.

2.1.3. Lung dataset
This dataset presents a classification between malignant pleural

mesothelioma (MPM) and adenocarcinoma (ADCA) of the lung,
being reported in [36]. It consists of 181 tissue samples (31 corre-
sponds to MPM samples and 150 to ADCA) and each one is de-
scribed by 12,533 genes. The Affymetrix ID for the prostate cancer
microarray is hgu95a and the R package ‘‘hgu95a.db’’ [37] was used
to manage and preprocess biological information related to this
microarray.

2.2. Methodology

In this paper, a novel two-step methodology is applied in a strat-
egy based on the use of GA with the addition of biological informa-
tion, with the aim of obtaining a robust subset of features with high
prediction capabilities. The first stage uses a filtering approach
based on the KEGG database to retain those features representing
enzymes and to establish a ranking for the different pathways avail-
able. The second stage implements the feature selection procedure,
executing a GA for each of the best ranked pathways.

A high level description of our methodology approach is shown
in Fig. 1 as well as a brief pseudocode of the algorithm is described
in Algorithm 1. It is important to highlight the choice of a BCV strat-
egy to obtain an accuracy measure on both stages of our approach
because it has been previously demonstrated in [23,24] its good
behavior under estimating misclassification error with small
samples, as is the particular case of DNA microarray datasets. In
concrete, the developed procedure executes a 50 bootstrap resam-
pling and 5-k-fold validation techniques. Therefore, this approach
tries to, on one hand, discover a robust subset of features with
biological relevance on the studied disorder; on the other hand,
good generalization rates in the prediction stage are essential to
determine the probability of suffering from a specific condition.

Algorithm 1. Pseudocode of the two-step methodology used for
gene feature selection
1: {initialization}
2: ½Train; Test�f1::50g ( BCVðdataset;50Þ
3: ½Pathways�f1::Ng ( KEGGðchipðdatasetÞÞ
4: ½Keywords�f1::Mg ( SetKeywordsðdatasetÞ
5:
6: {first-step: for each pathway, set a prediction ability and

find occurrences of keywords}
7: for i ¼ 1! N do
8: Pi ( Pathways½i�
9: for j ¼ 1! 50 do
10: TRj ( Train½j�
11: Pi TRj PredictionAbility( CrossValidationðTRj;GenesðPiÞÞ
12: end for
13: Pi PredictionAbility( meanðPi TRj PredictionAbilityÞ
14: Pi DetectedKeywords( TextMiningðPi;KeywordsÞ
15: end for
16:
17: {second-step: for the most promising pathways, make a

feature selection using a GA}

(continued o(continued on next page)
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18: ½SelectedPathways�f1; . . . ;KjK < Ng ( ChoosePathways
ðPi PredictionAbility; Pi DetectedKeywordsÞ

19: for i ¼ 1! K do
20: SPi ( SelectedPathways½i�
21: for j ¼ 1! 50 do
22: TRj ( Train½j�
23: Tj ( Test½j�
24: SPi TRj SelectedFeatures( GeneticAlgorithmðTRj; SPiÞÞ
25: SPi Tj Prediction( AccuracyðTj; SPi TRj SelectedFeaturesÞ
26: end for
27: SPi Prediction( meanðSPi Tj PredictionÞ
28: end for
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2.2.1. Pathway prediction ability

Several pathways involved in the studied disorder are repre-
sented in a DNA Affymetrix chip. On this stage, our approach sets
a prediction ability for each pathway on two ways: first, by obtain-
ing an accuracy measure representing the capability of the genes of
every pathway to generalize the problem; and second, by doing a
text mining procedure searching for some keywords that may ap-
pear on the description of a pathway.

Statistical analysis were performed using R,5 in particular those
R packages mentioned in [38,35,37] have been used to obtain the
pathways related to the studied diseases (Leukemia, Prostate and
Lung). Each pathway is scored by the generalization rate after filter-
ing features of the dataset keeping only those genes that are con-
tained in the pathway and giving them as input to a classifying
model. Furthermore, a text mining procedure is executed for each
pathway in order to localize those pathways that may be more cor-
related to the studied disorder. Table 1 shows the keywords used
within this procedure that have been obtain through biological sup-
port tools using Ingenuity Pathways Analysis (IPA

�
.6) Then, the main

purpose of the text mining process is to analyze the content of the
webpages of each pathway and to search on it for some keywords.
As a result, those pathways containing a higher number of keywords
would lead us to think that are more correlated to the studied
disease.

2.2.2. Evolutionary strategy
GAs are a class of optimization procedure inspired by the bio-

logical mechanisms of reproduction. In this kind of optimization
problems, a fitness function f ðxÞ should be maximized or mini-
mized over a given space X of arbitrary dimension. On this stage
of our approach, the most promising pathways are selected accord-
ing to the prediction ability and the number of keywords found on
the text mining procedure. A GA is executed for each of these path-
ways in order to find a robust feature subset selection taking into
account biological information, preponderating the activation of
genes included in the studied pathway without discarding the
selection of the rest of genes.

2.2.2.1. Encoding and initial population. A simple encoding scheme
to represent as much as possible of the available information was
employed, in which the chromosome is a string of bits whose
length is determined by the total number of genes. Each variable
is associated with one bit in the string. If the ith bit is active (value
1), then the ith gene is selected in the chromosome. Otherwise, a
value of 0 indicates that the corresponding feature is ignored. In
this way, each chromosome represents a different feature subset.
5 http://www.r-project.org/.
6 http://www.ingenuity.com/products/ipa.
e features and the number of them are generated
ll the experiments, the population size of 100 indi-
ed and the number of active features for a certain
mited to 100, thus generating chromosomes repre-
res of few genes.

n, crossover and mutation. A selection strategy based
eel and uniform sampling is applied. Additionally,
mosomes should be retained for the next genera-
ameter is called elite count or sometimes referred
n operator pe (probability of the retained chromo-
population, between 0 and 1), since involves the
opy of a chromosome in the next generation. Scat-

tered crossover, in which each bit of the offspring is chosen ran-
domly, was the choice for combining parents of the previous
generation. The crossover rate pc can be found in the interval
ð0;1Þ, with values close to 1. In addition to that, a traditional muta-
tion operator which flips a specific bit with a probability rate of pm

is considered. Usually, the mutation rate is rather lower than the
crossover rate [39]. A modification which involves mutating a ran-
dom number of bits between 1 and the number of active features
of the individual is introduced. Since it was empirically verified
that the best subsets include few features, this change avoids the
increment on the number of active features in the last generations
of the GA. Furthermore, the activation of those genes included in
the studied pathway is prioritized without discarding the activa-
tion of the rest of genes. On the same way, the deactivation of
genes not included in the pathway is prioritized without discarding
the deactivation of genes that are present on the studied pathway.
The following rule needs to be satisfied: pe þ pc þ pm ¼ 1. A com-
parative study for the selection of these rates is conducted in
Section 3.

2.2.2.3. Fitness function. The fitness function assesses each chromo-
some in the population so that it may be ranked against all the
other chromosomes. The main goal of feature subset selection is
to use less features to achieve the same or better performance that
provides more biological relevance for the studied disease. There-
fore, the fitness function should contain three terms, so for a cer-
tain chromosome x to be analyzed, the function to be minimized
is represented as follows:

fitnessðxÞ ¼ ð1� ACCðxÞÞ þ k
k

100
þ bscoreðxÞ; ð1Þ

where k is the number of selected features, 100 is a normalization
factor due to the limited number of active features in a chromo-
some, and function ‘‘score’’ that estimates the biological relevance
of the selected features according to the number of selected genes
that are included on the studied pathway and how many of them
are not included in it. The ‘‘score’’ function is compute as shown
in next equation:

scoreðxÞ ¼ 1� i
M

� �
þ j

N
; ð2Þ

where M and N are normalization factors representing respectively
the number of genes on the studied pathway and the total number
of genes on the dataset (M � N; i is the number of selected genes
that are included in the pathway, and j the number of selected
genes that are not contained in the studied pathway (iþ j ¼ k).

The accuracy rate (ACC) in Eq. (1) is obtained after the applica-
tion of a classification algorithm to the datasets. We have consid-
ered in this work two standard and well-known classifiers: a low
complexity method named Linear Discriminant Analysis (LDA)
[40], whose aim is to find a linear combination of features which
separates two or more classes of patterns; and Support Vector
Machines (SVM), a more sophisticated method that find the

http://www.r-project.org/
http://www.ingenuity.com/products/ipa


Table 1
Information about the keywords used in the text mining procedure.

Keywords

Common Apoptosis, cancer, tumor, tumorigenesis, carcinoma, malignant, metastasis, infection, hypoplasia, neoplasia
Leukemia Leukemia, lymphocytic, myeloid, lymphoblastic, T-cell, B-cell, myelogenous, leuke, immun, lymph, nodule
Prostate Prostate, prosta, epithelial, psa, kallikrein, urin, erect, hypertrophy
Lung Lung, AT2, interalveolar, pleura, pulmo, alveo, pneumo, epithelial, small-cell, nodule, squamous

Fig. 1. Framework of the proposed approach that includes the two stages related to the ranking of the pre-selected pathways and to the final model selection.
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optimal separation margin between two classes, and which has
been widely used in microarray analysis [41,42].

Furthermore, since determining a robust gene signature to pre-
dict outcome disease can be considered as a feature selection prob-
lem, the authors also include a performance comparative analysis
between the proposed strategy and three filter methods commonly
used to do variable selection: ReliefF [43], extension of the original
Relief algorithm [44] which works by randomly sampling an in-
stance from the data and then locating its nearest neighbor from
the same and opposite class; Consistency-based Filter (Cons)
[45], which evaluates the worth of a subset of features by the level
of consistency in the class values when the training instances are
projected onto the subset of attributes; and Information Gain
(IG) [46], which provides an ordered ranking of all the features
and then a threshold is required.

3. Results

This section shows the results of our approach on three selected
data sets, Leukemia, Lung and Prostate. Table 2 outlines the result of
evaluating and sorting each pathway by its predictive ability, fol-
lowing the scheme shown in Section 2.2.1. The ranking of the path-
ways in terms of this predictive ability (fifth column) is indicated
in the first column. Columns 2, 3 and 4 contain information on
the analyzed pathway, such as its code, description and number
of genes. The last two columns show the number of keywords
and keywords found after the text mining procedure for each
database. This information provides an idea of the relationship
between the pathway and the disease, based on the number of
keywords found. The first ten pathways are listed, although, in
some cases, pathways in lower positions in the ranking are added
due to its influence with the disease, which is measured by the
number of keywords (pathway 04062 in Leukemia and pathway
05215 in Prostate). The list of keywords used can be found in
Table 1. The selected pathways, in bold in Table 2, are analyzed
in the next phase of our methodology described in Section 2.2.2.
This selection is carried out taking into account the predictive
capacity and number of keywords of each pathway.

Before applying our methodology based on genetic algorithms, it
is necessary to estimate the parameters related to the selection,
mutation and crossover operators referred in Section 2.2.2. For this,
the standard genetic algorithm (GA), which is quite common in the
literature, is considered as the reference strategy and use as compar-
ative framework for the parameter estimation procedure. This esti-
mation is carry out by analyzing the Leukemia dataset, and different
combinations of the pe; pc and pm parameters together with the accu-
racy results and number of selected genes are shown in Table 3.

It is possible to observe that the differences in the accuracy
rates for each parameter combination are not statistically signifi-
cant, which implies that, for these cancer datasets, any combina-
tion of parameters can be chosen. Specifically, the authors have
selected the parameters pc ¼ 0:72; pe ¼ 0:18 and pm ¼ 0:1 (Table 3,
in italic), since they lead to the obtention of the largest success rate
(Table 3, in bold).



Table 2
Pathways ranked by their predictive ability for each data set. The selected pathways to be analyzed and integrated in the genetic algorithm are shown in bold.

Rank Code Pathway Name #Genes Predictive Ability #Keys Keywords

Leukemia dataset
1 04640 Hematopoietic cell lineage 105 0.945 ± 0.024 3 Myeloid, Immune, lymphoid
2 04614 Renin-angiotensin system 16 0.911 ± 0.028 0
3 00480 Glutathione metabolism 31 0.899 ± 0.033 0
4 05340 Primary immunodeficiency 31 0.899 ± 0.027 4 B-cell, immunodeficiency, lymphocyte, infection
5 04662 B cell receptor signaling pathway 68 0.894 ± 0.030 5 B-cell, immunity, lymphedema, tumorigenesis
6 00590 Arachidonic acid metabolism 32 0.891 ± 0.026 0
7 01100 Metabolic pathways 658 0.881 ± 0.025 0
8 04670 Leukocyte transendothelial migration 90 0.878 ± 0.029 2 Immune, lymphocyte
9 00030 Pentose phosphate pathway 21 0.876 ± 0.034 0
10 04145 Phagosome 124 0.874 ± 0.031 2 Immune, lymphocyte
11 04666 Fc gamma R-mediated phagocytosis 67 0.869 ± 0.027 1 Immune
12 05200 Pathways in cancer 319 0.867 ± 0.024 13 Leukemia, myeloid, myelogenous,

immunohistochemical, apoptosis, cancer, tumor,
tumorigenesis, carcinoma, malignant, metastasis,
neoplasia

13 05146 Amoebiasis 116 0.864 ± 0.027 3 Immune, apoptosis, infection
14 04141 Protein processing in endoplasmic reticulum 88 0.863 ± 0.031 1 apoptosis
15 04970 Salivary secretion 77 0.863 ± 0.027 0
26 04062 Chemokine signaling pathway 161 0.845 ± 0.029 6 Leukemia, lymphocytic, immune, lymphedema, tumor

Lung dataset
1 04144 Endocytosis 244 0.988 ± 0.009 0
2 01100 Metabolic pathways 970 0.977 ± 0.012 0
3 04530 Tight junction 158 0.977 ± 0.009 1 Epithelial
4 04514 Cell adhesion molecules (CAMs) 154 0.975 ± 0.010 0
5 04360 Axon guidance 166 0.974 ± 0.008 0
6 04610 Complement and coagulation cascades 73 0.971 ± 0.009 3 Cancer, tumor, metastasis
7 04010 MAPK signaling pathway 423 0.971 ± 0.010 2 AT2, tumor
8 00240 Pyrimidine metabolism 83 0.970 ± 0.010 0
9 04062 Chemokine signaling pathway 254 0.969 ± 0.013 1 tumor
10 05200 Pathways in cancer 557 0.969 ± 0.012 11 Lung, small-cell, squamous, apoptosis, cancer, tumor,

tumorigenesis, carcinoma, malignant,metastasis,
neoplasia

Prostate dataset
1 00480 Glutathione metabolism 41 0.754 ± 0.029 0
2 00750 Vitamin B6 metabolism 2 0.741 ± 0.032 0
3 00040 Pentose and glucuronate interconversions 18 0.740 ± 0.054 1 Tumoral
4 04974 Protein digestion and absorption 80 0.739 ± 0.038 0
5 00330 Arginine and proline metabolism 62 0.726 ± 0.032 0
6 04610 Complement and coagulation cascades 73 0.724 ± 0.036 3 Cancer, tumor, metastasis
7 00340 Histidine metabolism 22 0.722 ± 0.044 0
8 04964 Proximal tubule bicarbonate reclamation 24 0.721 ± 0.029 0
9 00270 Cysteine and methionine metabolism 33 0.721 ± 0.028 0
10 00071 Fatty acid metabolism 45 0.720 ± 0.032 0
11 00380 Tryptophan metabolism 45 0.719 ± 0.046 0
12 00350 Tyrosine metabolism 44 0.716 ± 0.032 0
13 00640 Propanoate metabolism 29 0.716 ± 0.044 0
14 00010 Glycolysis/gluconeogenesis 65 0.713 ± 0.036 0
15 00980 Metabolism of xenobiotics by cytochrome P450 65 0.713 ± 0.025 1 Cancer
16 00982 Drug metabolism – cytochrome P450 75 0.712 ± 0.028 1 Cancer
17 04512 ECM-receptor interaction 123 0.712 ± 0.043 3 Apoptosis, cancer, tumor
53 05215 Prostate cancer 166 0.654 ± 0.027 7 Prostate, apoptosis, cancer, tumor,metastasis, neoplasia

Table 3
Parameter estimation for the crossover, reproduction and mutation operators of the GA for the Leukemia dataset.

Crossover rate (pc) Reproduction rate (pe) Mutation rate (pm) Accuracy #Genes

0.375 0.375 0.25 0.9523 ± 0.0155 4.49 ± 0.61
0.45 0.45 0.1 0.9489 ± 0.0156 4.37 ± 0.66
0.49 0.49 0.02 0.9529 ± 0.0169 4.18 ± 0.62
0.6 0.15 0.25 0.9500 ± 0.0144 4.52 ± 0.64
0.7125 0.0375 0.25 0.9510 ± 0.0137 4.58 ± 0.73
0.72 0.18 0.1 0.9539 ± 0.0162 4.54 ± 0.76
0.784 0.196 0.02 0.9495 ± 0.0134 4.41 ± 0.63
0.855 0.045 0.1 0.9487 ± 0.0157 4.74 ± 0.64
0.931 0.049 0.02 0.9485 ± 0.0138 4.48 ± 0.52
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Different evolutionary strategies are considered for comparing
the results. The first one, the standard GA, whose objective is to
minimize the number of genes and training error of the classifica-
tion model for each combination of genes. As a second strategy a
two-stage approach named (Filter + GA) is included. Initially, a
filter based on biological information which selects those genes



Table 4
Performance comparison among different feature selection strategies for each cancer dataset for LDA and SVM classifiers. On average, columns three and five present the number
of genes and the accuracy for each framework in the format of mean ± standard deviation. Additionally, the four column shows a robustness measure in terms of low variability of
the selected genes when the strategy is executed repeatedly. The starred values indicate that the results are statistically significant.

Classifier Database Strategy #Genes Robustness Accuracy

LDA Leukemia GA 4.54 ± 0.76 0.0773 0.9539 ± 0.0162
Filter + GA 4.48 ± 0.56 0.0954 0.9531 ± 0.014
Filter + GA + Pathway 04640 4.47 ± 0.71 0.1753 ⁄0.9638 ± 0.0126
Filter + GA + Pathway 05340 31.83 ± 1.36 0.7022 ⁄0.9713 ± 0.0116
Filter + GA + Pathway 04662 5.40 ± 0.95 0.1900 ⁄0.9606 ± 0.0145
Filter + GA + Pathway 04670 4.97 ± 0.80 0.1171 0.9521 ± 0.0142
Filter + GA + Pathway 05200 4.80 ± 0.54 0.0877 0.9491 ± 0.0156
Filter + GA + Pathway 04062 4.70 ± 0.70 0.0926 0.9463 ± 0.0159

Lung GA 3.53 ± 0.35 0.0826 0.9753 ± 0.0048
Filter + GA 3.88 ± 0.55 0.0706 0.9772 ± 0.0058
Filter + GA + Pathway 04144 4.29 ± 0.53 0.1397 ⁄0.9809 ± 0.0068
Filter + GA + Pathway 04530 3.84 ± 0.46 0.1797 ⁄0.9826 ± 0.0046
Filter + GA + Pathway 04514 4.41 ± 0.56 0.1274 0.9767 ± 0.0069
Filter + GA + Pathway 04610 5.69 ± 0.93 0.1453 0.9759 ± 0.0088
Filter + GA + Pathway 04010 4.04 ± 0.55 0.0981 0.9785 ± 0.0055
Filter + GA + Pathway 05200 4.03 ± 0.62 0.0790 0.9754 ± 0.0062

Prostate GA 6.10 ± 0.68 0.0836 0.9120 ± 0.0139
Filter + GA 5.91 ± 0.86 0.0916 0.9060 ± 0.0130
Filter + GA + Pathway 00480 14.30 ± 2.63 0.3022 0.9080 ± 0.0136
Filter + GA + Pathway 00040 23.24 ± 1.52 0.4851 0.9107 ± 0.0153
Filter + GA + Pathway 04610 6.97 ± 1.15 0.1701 0.9103 ± 0.0128
Filter + GA + Pathway 00980 8.27 ± 0.83 0.1636 0.9137 ± 0.0115
Filter + GA + Pathway 04512 7.62 ± 0.96 0.1228 0.9001 ± 0.0181
Filter + GA + Pathway 05215 6.96 ± 0.95 0.1474 0.9122 ± 0.0136

SVM Leukemia GA 4.88 ± 0.80 0.0858 0.9164 ± 0.0178
Filter + GA 4.94 ± 1.01 0.0931 0.9214 ± 0.0199
Filter + GA + Pathway 04640 4.05 ± 0.80 0.1364 0.9486 ± 0.0113
Filter + GA + Pathway 05340 30.82 ± 1.62 0.9033 0.9387 ± 0.0202
Filter + GA + Pathway 04662 5.41 ± 1.20 0.1141 0.9277 ± 0.0212
Filter + GA + Pathway 04670 5.32 ± 1.03 0.0917 0.9136 ± 0.0281
Filter + GA + Pathway 05200 4.86 ± 0.76 0.0750 0.9153 ± 0.0217
Filter + GA + Pathway 04062 4.98 ± 0.99 0.0847 0.9088 ± 0.0242

Lung GA 3.77 ± 0.87 0.0750 0.9678 ± 0.0069
Filter + GA 3.91 ± 0.65 0.0740 0.9696 ± 0.0068
Filter + GA + Pathway 04144 4.15 ± 0.57 0.1033 0.9625 ± 0.0097
Filter + GA + Pathway 04530 3.55 ± 0.64 0.2085 0.9705 ± 0.0090
Filter + GA + Pathway 04514 3.84 ± 0.78 0.1300 0.9680 ± 0.0073
Filter + GA + Pathway 04610 5.29 ± 1.06 0.1334 0.9625 ± 0.0108
Filter + GA + Pathway 04010 4.00 ± 0.73 0.1070 0.9656 ± 0.0086
Filter + GA + Pathway 05200 4.12 ± 0.63 0.0711 0.9621 ± 0.0091

Prostate GA 7.63 ± 1.24 0.1126 0.8705 ± 0.0310
Filter + GA 8.17 ± 1.46 0.1060 0.8645 ± 0.0250
Filter + GA + Pathway 00480 26.24 ± 4.02 0.4722 0.8890 ± 0.0229
Filter + GA + Pathway 00040 24.54 ± 1.18 0.7890 0.8820 ± 0.0241
Filter + GA + Pathway 04610 9.14 ± 1.32 0.1012 0.8713 ± 0.0210
Filter + GA + Pathway 00980 11.15 ± 2.10 0.1289 0.8796 ± 0.0239
Filter + GA + Pathway 04512 9.02 ± 1.58 0.0903 0.8613 ± 0.0227
Filter + GA + Pathway 05215 8.34 ± 1.30 0.1046 0.8659 ± 0.0232
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considered as enzymes (KEGG database) is applied. It is important
to note that no information about the class (relapse or not) is used
to carry out the filtering process, unlike other statistical techniques
such as CFS (Correlation-based Feature Selection) [47], mRMR
(minimum Redundancy Maximum Relevance) [48] or Relief [44].
Thus, for Leukemia database, we move from 7129 to 3413 genes,
for Lung from 12,533 to 5470 variables, and Prostate from 12,600
to 5489, obtaining a reduction of the 50% of the total. Subse-
quently, over the reduced set of features a standard genetic algo-
rithm is applied. The aim is to check if the selection of relevant
information from a biological point of view can guide the search
for solutions with greater predictive capacity. Finally, we have
many strategies as pathways selected in the first phase of the
methodology, naming the strategies (Filter + GA + Pathway code).
In this case, the standard genetic algorithm is modified to give
advantage to the genes of the pathway analyzed, using the tech-
niques discussed in Section 2.2.2.

According to the classification models to be used in the fitness
function of the proposed strategies, the authors have considered
to carry out the simulations by applying both LDA and SVM classi-
fiers. Since LDA has no parameters, no adjustment has been re-
quired. On the other hand, for the SVM method, a grid search
strategy is applied for finding optimal parameter values for each
of the fifty resampling for each cancer dataset, and is performed
before the genetic algorithm. The tentative parameters to be se-
lected are, namely: the kernel type, t = {linear, polynomial, radial
base function, sigmoid}, cost, Co = {1, 3, 5, 7, 9, 10, 12, 15}, degree,
d = {1, 2, 3, 4, 5}, gamma, g = {0.001, 0.005, 0.1, 0.15, 0.2, 0.4, 0.6,



Table 5
Performance comparison among the ‘‘Filter + GA + Pathway’’ combined strategy and three well-known filtering methods (Cons, IG and ReliefF). ACC and number of genes
(mean ± std) are reported for LDA and SVM classifiers on the three analyzed datasets.

Strategy Leukemia

LDA SVM

ACC #Genes ACC #Genes

Filter + GA + Pathway 05340 97.13 ± 1.16 31.83 ± 1.86 93.87 ± 2.02 30.82 ± 1.62
Filter + GA + Pathway 04640 96.38 ± 1.26 4.47 ± 0.71 94.86 ± 1.13 4.05 ± 0.80
Cons 85.85 ± 8.55 1.84 ± 0.51 88.24 ± 5.95 1.84 ± 0.51
IG 93.13 ± 4.40 9 ± 0 93.36 ± 4.33 9 ± 0
ReliefF 93.31 ± 4.37 9 ± 0 90.48 ± 5.15 9 ± 0

Lung
Filter + GA + Pathway 04144 98.09 ± 0.68 4.29 ± 0.53 96.25 ± 0.97 4.15 ± 0.57
Filter + GA + Pathway 04530 98.26 ± 0.46 3.84 ± 0.46 97.05 ± 0.90 3.55 ± 0.64
Cons 94.08 ± 3.36 1.84 ± 0.42 94.57 ± 2.55 1.84 ± 0.42
IG 98.68 ± 1.51 22 ± 0 98.88 ± 1.39 22 ± 0
ReliefF 97.89 ± 1.81 22 ± 0 98.47 ± 1.43 22 ± 0

Prostate
Filter + GA + Pathway 00980 91.37 ± 1.15 8.27 ± 0.83 87.96 ± 2.39 11.15 ± 2.10
Filter + GA + Pathway 00480 90.80 ± 1.36 14.30 ± 2.63 88.90 ± 2.29 26.24 ± 4.02
Cons 81.51 ± 7.57 3.20 ± 0.67 82.49 ± 6.72 3.20 ± 0.67
IG 91.66 ± 4.07 12 ± 0 85.86 ± 4.86 12 ± 0
ReliefF 90.22 ± 4.53 12 ± 0 88.50 ± 5.17 12 ± 0

Fig. 2. Proportion of the final selected genes which belong to the analyzed pathway for the databases Leukemia, Lung and Prostate.
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0.8, 1, 2, 3, 5} and coef0, r = {0, 1, 2}. It should be noted that not all
the parameters are required for each kernel type. For further infor-
mation please visit [49].

Table 4 shows a comparison of the results after applying differ-
ent strategies. The first three columns show the classification
method, the dataset and the strategy used. The fourth column rep-
resents the number of genes, on average, after executing the meth-
od fifty resamplings and five repetitions for each resampling.
Robustness column in Table 2 indicates the average frequency of
the most selected genes, which are those that appear more than
5% of the time in any of the solutions. The last column shows the
result of prediction of the disease over a test set not used during
all the process.

The accuracy results for the LDA method are, in general, slightly
better than those obtained by applying SVM, although LDA has low-
er complexity. This is not surprising since it has been shown before
that simpler classification techniques can lead to competitive or
even better results [50]. Therefore, the following analysis done to



Table 6
The ten most selected features for the Leukemia database. Frequency selection is represented by an horizontal bar,
where blue color indicates that the gene belong to the pathway, cyan color which belong to other of the selected
pathways and gray color means that this gene do not belong to any of them. The index, gene symbol and probe set ID of
each gene are shown in columns one to three. (Note that the axes of the bar graphs are different for different pathways).
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extract the most significant genes for each cancer dataset is con-
ducted only with the LDA classifier, since it provides a better accu-
racy rate, does not require any parameter setting, and is a simple
and fast classification method. Additionally, note that the objective
of the present work is not the comparison of different classification
algorithms, but the extraction of robust feature subsets with poten-
tial biological relevance. It is remarkable that the use of biological
knowledge by means of the pathways (information obtained from
the KEGG database) more related to the analyzed diseases improves
the GA strategy in all three data sets, being this improvement statis-
tically significant in two of them (Leukemia and Lung).
The statistical test used to determine this significant difference
involves a balanced two-way ANOVA followed by a multiple com-
parison procedure with a Bonferroni correction (p-value = 0.05).
Thus, for Leukemia dataset, selected genes with the strategies based
on the pathways 04640, 05340 and 04662 provide a better predic-
tion than the reference strategy (GA). Furthermore, the incorpora-
tion of biological information improves the robustness, in the
sense that there is less variability in the final subset of selected
genes after executing several times the algorithm. In the case of
the Lung database the strategies with pathways 04144 and 04530
also improve the forecast of the standard genetic algorithm.



Table 7
The ten most selected features for the Lung database.
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The authors also compared the performance of some well-
known methods to do feature selection (Cons, IG and ReliefF) re-
gards to the ‘‘Filter + GA + Pathway’’ combined strategy. Table 5
shows the ACC for the best solution obtained by the combined
strategy and the methods Cons, IG and ReliefF, all of them by using
LDA and SVM classifiers on the three analyzed datasets. The ‘‘Fil-
ter + GA + Pathway’’ strategy equalizes or outperforms the feature
selection methods in terms of prediction accuracy, but with the
advantage of incorporating some biological knowledge about the
dynamic of the disease. Regarding the number of selected genes,
the Cons method behaves very aggressive and extracts a very small
set as significant genes, whereas IG and ReliefF, as ranked methods,
provide sorted solutions with a higher number of genes that makes
necessary to establish a cut-off criteria (N=8 with N as the sample
size to retain a similar number of genes regarding to the other
strategies).
Not only is it important to analyze the robustness and predic-
tion of the solutions for each strategy. Another aspect to consider
is the choice of genes in the selected feature subsets. So, those
strategies whose solutions include more genes of the pathway ana-
lyzed indicate that this pathway may have a greater influence on
the disease. This information is shown in Fig. 2 for the selected
pathways for each dataset as a ratio, where the closer to one the
greater number of genes in the pathway are in the solutions ob-
tained. Thus, in the Leukemia dataset the strategies of pathways
05340 (Primary immunodeficiency) and 04640 (Hematopoietic cell
lineage) include many of those genes from these pathways, which
may imply that its relationship with Leukemia disease could be
significant. In fact, the biological meaning of both pathways seems
to be highly related to leukemia. Other important pathways in rela-
tion to the disease are found in the same Fig. 2, such as the 04610
and 04530 for Lung database and the 00480 pathway for Prostate.



Table 8
The ten most selected features for the Prostate database.
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Tables 6–8 present the ten most selected genes for the six path-
ways considered for each database, where each pathway is repre-
sented in a row of the table. The selection in our two-step
approach does not take into account up- or down-regulation. This
implies that, after the analysis, the user must look at the original
data to know the sense of regulation. The first three columns show
information about the gene, such as the internal index (ID), the
gene symbol (name of the gene although it is not unique) and
the probe set ID, which is related to the chip where the database
has been extracted (e.g., Affymetrix). The bar graph of the last col-
umn represents the frequency of selection (fourth column) of each
feature in the generated solutions. Blue color indicates that the
gene belongs to the pathway analyzed; cyan color which the gene
belongs to another of the selected pathway; and gray color as-
sumes the gene does not belong to any of the analyzed pathways.
A higher frequency of selection might imply a higher relevance of
the gene in the prognosis of the disease.

It should be highlighted that the genes of the analyzed pathway
are stimulated to be selected. However, they are discarded if its
prediction ability of the disease (together with the remaining se-
lected genes) is poor. Therefore, those genes which are selected
out of the pathway and are rather frequent, could be considered
as relevant genes associated with the prognosis of the disease.

4. Discussion and conclusions

The authors have analyzed in this work three cancer data sets
using a combined approach of genetic algorithms and biological



Fig. 3. Accuracy and robustness obtained for the selected pathways for each considered database (Leukemia, Lung and Prostate). The graphs include the results obtained
when using a strategy based only on genetic algorithms (GA) and on genetic algorithms plus the filtering approach (Filter + GA) (see text for more details).

7 http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZYX.
8 http://www.genecards.org/cgi-bin/carddisp.pl?gene=SEMA3C.
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relevant information, in order to obtain a robust feature subset
selection with good performance rates. The approach incorporates
a novel feature scoring method within the GA, taking into account
biological information about proteins (mostly enzymes) involved
in the pathways of the studied disorders. The most remarkable
finding is that our proposal improves the standard GA strategy
regardless of the classification model used (LDA or SVM) in the
three analyzed data sets (Table 4, Accuracy column), leading to sta-
tistically significant results in two of them (Leukemia and Lung).
Even more important from the biological and clinic point of view,
the robustness, in terms of the most selected genes that can be
used to define gene signatures, is also improved in all three ana-
lyzed databases (Table 4, Robustness column). The main conse-
quence of both facts is that the results of a KEGG-improved GA
can provide more repetitive and consistent results that will facili-
tate the definition of gene signatures for further clinical diagnostic
and prognostic. Moreover, the comparative analysis done among
the KEGG-improved GA (Table 5) and three alternative filter meth-
ods (Cons, IG and ReliefF) demonstrated a similar or higher perfor-
mance of the KEGG-improved GA, with the additional benefit of the
biological information about the disease dynamics provided by this
new GA-based strategy.

Regarding the summarizing results of Fig. 3 it can be seen that
the best placed pathways in Table 4 provide more accurate and ro-
bust results. This opens the possibility of a deeper study of which
KEGG-pathway(s) provide(s) the better results for any disease
dataset. It should be noted that those feature subsets that include
more genes of the analyzed pathways analyzed might indicate that
this particular pathway has a greater biological impact on the
disease.

But the proposed KEGG-improved GA not only can be used
for diagnostic and prognostic, but also for biological knowledge
discovery about the disease. Regarding the most remarkable
genes of Tables 6–8 that even not originally present in the se-
lected pathways, form part of the final selection thus playing
an important role for obtaining robust and accurate prediction
results. For example, in Table 6 (Leukemia set), the gene ZYX7

is repetitively selected in all but one pathways; it codes zyxin, a
adhesion plaque protein that prompts the formation of actin-rich
structures at which signal transduction assemble. In the case of
the lung database (Table 7), several adhesion pathways are in-
volved in this cancer (cf., 04530, 04514) while the ZYX gene does
not seem to be significant. The gene SEMA3C8 corresponds to a
semaphorin, a protein including an inmunoglobulin domain. It

http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZYX
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SEMA3C
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seems to play an important role in the regulation of developmen-
tal processes and axon growing. Its presence suggests that path-
ways 04360 and others should be considered for future analysis.
Also, gene ALDH1A29 is related to an aldehyde dehydrogenase en-
zyme that synthesises retinoic acid (RA) from retinaldehyde. RA is
a hormonal signaling molecule that functions in developing and
adult tissues and has been involved in spina bifida. As a result,
might high levels of RA be involved in lung cancer? Gene GFPT210

corresponds to D-fructose-6-phosphate amidotransferase, an en-
zyme involved in regulating the availability of precursors for N-
and O-linked glycosylation of proteins. Protein glycosilation might
be affected in lung cancer, and thus it deserves further analysis.
PTGIS,11 although selected only in two pathways, is a prostaglan-
din I2 (prostacyclin) synthase, a protein of cytochrome P450
superfamily of enzymes, involved in the synthesis of prostacyclin,
a potent vasodilator and inhibitor of platelet aggregation that is
also related to myocardial infarction, stroke, and atherosclerosis,
and thus could be also involved in lung cancer.

As an overall conclusion, the results obtained suggest the
important role that the incorporation of biological information
might play for carrying out a robust feature selection procedure
for cancer (and may be any other disease) diagnostic. Moreover,
this may open the way to use GA for the prognosis of cancer dis-
eases in a near future, a clinical aspect that is still concerning most
oncologist and cancer patients.
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