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The techniques currently developed for updating software in sensor nodes located in changing environments
require usually the use of reprogramming procedures, which clearly increments the costs in terms of time
and energy consumption. This work presents an alternative to the traditional reprogramming approach
based on an on-chip learning scheme in order to adapt the node behaviour to the environment conditions.
The proposed learning scheme is based on C-Mantec, a novel constructive neural network algorithm
especially suitable for microcontroller implementations as it generates very compact size architectures. The
Arduino UNO board was selected to implement this learning algorithm as it is a popular, economic and
efficient open source single-board microcontroller. C-Mantec has been successfully implemented in a
microcontroller board by adapting it in order to overcome the limitations imposed by the limited resources of
memory and computing speed of the hardware device. Also, this work brings an in-depth analysis of the
solutions adopted to overcome hardware resource limitations in the learning algorithm implementation (e.g.,
data type), together with an efficiency assessment of this approach when the algorithm is tested on a set of
circuit design benchmark functions. Finally, the utility, efficiency and versatility of the system is tested in
three different-nature case studies in which the environmental conditions change its behaviour over time.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sensors (or detectors) are devices that permit the measurement
of chemical or physical variables, transforming them into electrical
signals, in order to interpret the signals from various sensors and
send the sensed data or make a decision according to them.
Microcontroller boards are an economic, small and flexible solution,
and thus are the most common controller used in a sensor node, also
known as a Mote, commonly used in Wireless sensor network (Yick
et al.,, 2008; Sengupta et al., 2013), but also used in other important
technologies such as Embedded systems (Marwedel, 2006;
Mamdoohi et al, 2012) and Real-time systems (Kopetz, 1997;
Wang et al., 2010). Motes are nowadays widely employed in all kind
of industrial applications, in several of them, the problem requires an
action upon the environmental conditions, in this case a sensor/
actuator node is required.

In cases when the environmental conditions evolve over time, the
original sensor/actuator programming can lead to incorrect decisions,
and thus it is necessary to change or adapt the decision-making
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process to the new conditions (Sayed-Mouchaweh and Lughofer,
2012). The traditional option to solve this problem has been to send
the sensed data to a central unit, where a person interprets the data
and reprogram the microcontroller with the new set of rules (Han
et al, 2005; Wang et al., 2006; Shaikh et al, 2010). Different
reprogramming techniques have been proposed as a way of dyna-
mically changing the behaviour of the sensors without having to
manually reprogram them, because traditional reprogramming
requires in most cases the interruption of the process for loading
the new binary code, with the consequent loss of time and energy,
involved in the communication process to the central unit (Rassam
et al, 2013; Aiello et al, 2011). A first step towards reducing the
previous effects has been to incorporate machine learning systems in
the decision-making process, automating the response of the micro-
controller without interrupting its execution and sending just a small
fraction of code to the microcontroller (Urda et al., 2012; Canete et al.,
2012; Farooq et al., 2010). However, recent advances in the comput-
ing power of sensors permit the inclusion of learning systems in the
microcontroller (“on-chip” learning), adapting the sensor/actuator
behaviour dynamically according to the sensed data (Aleksendri¢
et al,, 2012; Mahmoud et al., 2013).

Artificial Neural Networks (ANNs) (Haykin, 1994) are a kind of
machine learning models, inspired on the functioning of the brain,
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that can be utilised in clustering and classification problems,
having been applied successfully in several fields, including
pattern recognition (Dhanalakshmi et al., 2011), stock market
prediction (Park and Shin, 2013), control tasks (Zhai and Yu,
2009), medical diagnosis and prognosis (Kodogiannis et al.,
2007), and so on. Despite years of research in the field of ANN,
selecting a proper architecture for a given problem remains a
difficult task (Gémez et al., 2009; Hunter et al., 2012; Lakshmi and
Subadra, 2013), and several strategies have been proposed for
solving or alleviating this issue. In particular, Constructive Neural
Networks (CoNNs) offer the possibility of generating networks
that grows as input information is received, matching the com-
plexity of the data (Franco et al., 2009). Moreover, the training
procedure in CoNN, considered a computationally expensive
problem in standard feedforward neural networks, can be done
on-line and relatively fast. C-Mantec is a recently introduced CoNN
algorithm that implements competition between neurons, also
incorporating a built-in filtering scheme to avoid overfitting
problems. These two characteristics permit the algorithm to
generate compact neural architectures with very good general-
isation capabilities, making the algorithm suitable for its applica-
tion to devices with limited resources like microcontrollers. The
main limitations of these devices are memory size and computing
speed, and thus an efficient implementation of the algorithm is
needed. Despite the existence of alternative evolving models
(Lughofer, 2011; Angelov, 2010; Huang et al., 2005), C-Mantec
has been selected based mainly on the three following features:
dynamic generation of compact architectures, good prediction
ability and robustness to parameter setting.

In the present work, we have fully implemented the C-Mantec
(Subirats et al., 2012) constructive neural network model in an
Arduino UNO board, including the whole learning process to
implement the automatic reprogramming process for decision-
making into the sensor/actuator in changing environments, avoid-
ing communication to other devices.

The Arduino UNO board was used (Oxer and Blemings, 2009) as
it is a popular, economic and efficient open source single-board
microcontroller that allows easy project development (Lian et al.,
2013; Cela et al., 2013; Ortega-Zamorano et al., 2013; Kornuta et al.,
2013). We have also proposed three case studies of different nature
which require reprogramming to the decision-making process,
demonstrating that the time involved in the sensor reprogramming
is significantly lower than in the traditional case, without the need
to send any information to another device (as a control unit), saving
a large fraction of the required energy resources.

The paper is structured as follows: first, we briefly describe in
Section 2 the C-Mantec constructive neural network algorithm
used, followed by a description of the Arduino UNO microcon-
troller board in Section 3. Section 4 includes the details of the
implementation with the results obtained shown in Section 5.
Thereafter, three case studies are evaluated in Section 6, checking
the efficiency of the system in them, to finally extract the
conclusions in Section 7.

2. C-Mantec, constructive neural network algorithm

C-Mantec (Subirats et al, 2012) (Competitive Majority Network
Trained by Error Correction) is a novel neural network constructive
algorithm that utilises competition between neurons and a modified
perceptron learning rule (thermal perceptron Frean, 1990) to build
single hidden layer compact architectures with good prediction
capabilities for supervised classification problems. As a CoNN algo-
rithm, C-Mantec generates the network topology on-line during the
learning phase, avoiding the complex problem of selecting an ade-
quate neural architecture. The novelty of C-Mantec in comparison to

previous proposed constructive algorithms is that the neurons in the
single hidden layer compete for learning the incoming data, and this
process permits the creation of very compact neural architectures. The
binary activation state (S) of the neurons in the hidden layer depends
on N input signals, y;, and on the actual value of the N synaptic
weights (@;) and bias (b) as follows:

10ON) ifh=0 :
~ ) O(OFF) otherwise M

where h is the synaptic potential of the neuron defined as
N
h= 'Zo wy; )
iz

In the thermal perceptron rule, the modification of the synaptic
weights, Aw;, is done on-line (after the presentation of a single input
pattern) according to the following equation:

Aw;=(t =SV iTfac 3)

where t is the target value of the presented input, and y represents
the value of input unit i connected to the output by weight ;. The
difference in the standard perceptron learning rule is that the thermal
perceptron incorporates the Ty, factor. This factor, whose value is
computed as shown in Eq. (4), depends on the value of the synaptic
potential and on an artificially introduced temperature (T).

T
Te ="/, 4)

The value of T decreases as the learning process advances
according to Eq. (5), similar to a simulated annealing process.

I
T=To- <1—I—>, (5)

max

where I is a cycle counter that defines an iteration of the algorithm
on one learning cycle, and I is the maximum number of
iterations allowed. One learning cycle of the algorithm is the
process that starts when a random chosen pattern is presented to
the network and finishes after checking that the output of the
network is equal to the target for this pattern, or when a chosen
neuron (the neuron with largest Ty, value or a new added neuron)
modifies its synaptic weights to learn the actual presented pattern.

The C-Mantec algorithm has three parameters to be set at the
time of starting the learning procedure, and several experiments
have shown the robustness of the algorithm that operates fairly
well in a wide range of parameter values. The algorithm has the
following three parameters:

® [.qx: Maximum number of learning iterations allowed for each
neuron in one learning cycle.

® grc: Growing factor that determines when to stop a learning
cycle and includes a new neuron in the hidden layer.

® ¢: Determines in which case an input example is considered as
noise and removed from the training dataset according to the
following condition:

delete(x;)INi1 = (u+ o), (6)

where x; represents an input pattern, N is the total number of
patterns in the dataset, N;7 is the number of times that pattern x;
has been presented to the network on the current learning cycle,
and where y and ¢ correspond to the mean and variance of the
distribution for all patterns on the number of times that the
algorithm has tried to learn each pattern in a learning cycle. The
learning procedure starts with one neuron present in the single
hidden layer of the architecture and an output neuron that
computes the majority function of the responses of the hidden
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neurons (a voting scheme). The process continues by presenting
an input pattern to the network and if it is misclassified, it will be
learned by one of the present neurons whose output did not
match the target pattern value if certain conditions are met,
otherwise a new neuron will be included in the architecture to
learn it. Among all neurons that misclassified the input pattern,
the one with the largest Ty, will learn it but only if this Ty, value is
larger than the gp. parameter of the algorithm, a condition
included to prevent the unlearning of previous stored information.
If no thermal perceptron meeting these criteria are found, a new
neuron is added to the network, starting a new learning cycle that
includes the resetting of all neurons temperature to Ty. Also at the
end of a cycle the noisy patterns filtering procedure (Eq. (6)) is
applied. The algorithm continues its operation iteratively repeat-
ing the previous stages until all patterns in the training set are
correctly classified by the network. During the learning process
catastrophic forgetting is prevented as synaptic weights are only
modified if the change involved is small (controlled by the value of
Zrac and by an annealing process that reduces the temperature as
learning proceeds), as if this is not the case the algorithm
introduces a new neuron in the architecture (Subirats et al., 2012).

The Flowchart of C-Mantec algorithm is shown in Fig. 1, the
most relevant function is represented in boxes, the decision-
making in diamonds and the most important states (start and
finish) in ovals.

3. The Arduino UNO board

Arduino is a single-board microcontroller designed to make
the process of using electronics in multidisciplinary projects

7\
Y
// N
7 Areall training™,  YES
<€ patterns correctly
\\ classified ? ,’
N\, 4
4
\\ 7/
T o

Input a random pattern

U N, YES
(, Output = Target ?\;
N\,
4
\\\ y /
N,/
Y o

i Select neuron with largest
1
L

T, value

1

N\
VAN

 lstheselected™s, NO

I

1 Add a new neuron and
1 restart temperatures
L

1)
[ Modify selected neuron weights 3
according to the thermal perceptron,

rule 1 H
]

Eliminate noisy examples

Fig. 1. Flow diagram of the C-Mantec constructive learning algorithm.

more accessible. The hardware consists of a simple open source
hardware board designed around an 8-bit Atmel AVR microcon-
troller, though a new model has been designed around a 32-bit
Atmel ARM. The software consists of a standard programming
language compiler and a boot loader that executes on the
microcontroller.

Arduino is a descendant of the open-source Wiring platform
and is programmed using a Wiring-based language (syntax and
libraries); similar to C+ + with some slight simplifications and
modifications, and a processing-based integrated development
environment. Arduino boards can be purchased pre-assembled
or do-it-yourself kits, and hardware design information is avail-
able. The maximum length and width of the Arduino UNO board
are 6.8 and 5.3 cm respectively, with the USB connector and power
jack extending beyond the former dimension.

The Arduino UNO is based on the ATmega328 chip (Atmel,
Datasheet 328). It has 14 digital input/output pins, which can be
used as input or outputs, and in addition, has some pins for
specialised functions, for example 6 digital pins can be used as
PWM outputs. It also has 6 analogy inputs, each of which provide
10 bits of resolution, together with a 16 MHz ceramic resonator,
USB connection with serial communication, a power jack, an ICSP
header, and a reset button. The ATmega328 chip has 32 KB of
memory storage (0.5 KB are used for the bootloader). It also has
2 KB of SRAM and 1 KB of EEPROM. A picture of the Arduino UNO
board is shown in Fig. 2.

The Arduino UNO has a communication protocol for its inter-
action with a computer, with another Arduino board or other
microcontrollers. The ATmega328 provides serial communication
(UART) which is available on digital pins 0 (RX) and 1 (Tx), also has
[2C and SPI communication.

4. Implementation of the C-Mantec algorithm

The neural network model comprises two phases (learning and
execution). In the learning phase, the synaptic weights for the
neural network are computed from a set of patterns stored in the
memory of the microcontroller, while in the execution phase, the
microcontroller obtains the response to sensed input data accord-
ing to the previously learned model. The learning phase comprises
two different states (loading of input patterns and neural network
learning). Data can be loaded into the microcontroller EEPROM
memory on-line by I/O pins or by a serial communication USB
port, but in both cases, the patterns have to be stored into the
EEPROM memory, after, the neural network learning state starts.

Fig. 2. Picture of an Arduino UNO board used for the implementation of the
C-Mantec algorithm.
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We explain next, the main technical issues considered for the
implementation of the algorithm according to the two learning
modes mentioned before:

4.1. Loading of patterns

The patterns have to be stored in the memory microcontroller
because the learning process works in cycles and uses the pattern set
repeatedly. For Boolean functions, it is only necessary to
store the true value function outputs because the inputs are repre-
sented by the memory position. For example, for the pattern
“01101001” - ‘0, the input “01101001” corresponds to the decimal
number 105 and thus the value ‘0’ is stored in the position of memory
105. The microcontroller has 1 KB of EPROM memory, i.e., 8192 bits
(2'3) limiting the number of Boolean inputs to 13. For the case of using
an incomplete truth table, because the noisy pattern elimination stage
is used or because of the nature of the function, the memory is divided
into two parts, a first one that corresponds to the function outputs and
a second part to indicate the inclusion or not of a given pattern in the
learning set. In the case of using an incomplete truth table the
maximum size of the input dimension is reduced to 12.

For the case of using real-value patterns is necessary to know in
advance the actual number of bits that are used to represent each
input variable. Eight bits have been used to represent each
variable, taking into account that these values have to be normal-
ised between 0 and 255. The following equation permits to
compute the maximum number of input patterns:

Np-N;+Np/8 <1024, (7)

where N; is the number of inputs and Np is the number of patterns. Np
depends on the number of entries and the number of bits used for
each entry.

4.2. Neural network learning

C-Mantec is an algorithm which adds neurons when they are
become necessary, action that is not easily implemented in
microcontroller, because the use of memory is static so the
maximum number of neurons, which are stored in SRAM, must
be previously defined. From this memory, with a capacity of 2 KB,
we will employ less than 1 KB for storing the variables of the
program; and thus saving at least 1 KB of free memory for saving
the variables related to the neurons.

The microcontrollers are devices with limited computing speed so
for obtaining more velocity in the learning process we have changed
the data type of the variables associated to neurons. The floating point
representation is the usual data type used in this kind of algorithm to
represent all variables but this representation is not the most
efficiency. We have selected fixed point to represent the variables
associated to neurons for this we have to change the data type of these
variables to integer. This paradigm shift has incited to essential
changes in the way to program this algorithm but in return a higher
learning speed and a smaller size of each variable has been obtained.

Regarding the variables associated to neurons, it is given next
some details about the representation used:

® Ty.: Represented as a float type and occupying 4 bytes.

® Number of iterations: An integer value with a range between
1000 and 65,535 iterations, so a 2 bytes integer variable
was used.

® Synaptic weights: Almost all calculations are based on these
variables, so to speed up the computations an integer variable
of 2 bytes long was used.

® Synaptic potential (h): It is calculated as a result of a summa-
tion of the synaptic weights, so not to saturate this value a type
long of 4 bytes in length is used.

According to the previous definitions, the maximum number of
neurons (Ny) that can be implemented should verify the following
constraint:

4. Ny+2-Ny+2-Ny-(Nj+1)+4- Ny <1024, ®)

where N; is the number of inputs. For a worst case (maximum
number of inputs is 13), the maximum number of neurons is 28. If
during the learning process, the architecture reaches this max-
imum number of neurons, the algorithm finishes and the sensor
outputs an error message.

The synaptic weights and synaptic potential have been imple-
mented with 10 bits precision for the decimal part, so that the
value of the weights will be between 32 and —32. Integer data
types with values between —32,768 and 32,767 were used. The
representation of the synaptic potential is done in a similar way,
except that for this value 4 bits were used, allowing values
between 2,097,152 and —2,097,152. The computation of Tp, is
done using a float data type because it involves an exponential
operation that can only be done with this type of data, but as its
computation involves integer values, two different conversions
must be done. The first conversion is done in Eq. (3), where T,
values must be converted to fixed point representation, operation
done by multiplying the T, value by 1024. The second conversion
is performed in Eq. (4) where the synaptic potential (h) has to be
converted to floating point representation for the calculation of an
exponential function. In this case, ten right logical shifts were used
in the synaptic potential, to then convert its data type to floating
point for the final calculation of the Tfc. In order to avoid the
saturation of the synaptic weights value, when any of these values
are larger than 32 or lower than —32, all weights are divided by
two (a right logical shift) when any of them reach an absolute
value of 30. This change does not affect the algorithm execution
because neural networks are invariant to this kind of scaling.

5. Results

We first tested the correct functioning of the microcontroller
implementation of the C-Mantec algorithm comparing to the
original published results (Subirats et al., 2012) in terms of the
number of neurons generated in the neural network architectures,
analysing as well the execution time for the microcontroller using
floating point and integer representation. A set of 14 Boolean
functions have been used for the comparison, including 12 single
output functions from the MCNC circuits testing benchmark plus
two XOR functions with two and three inputs. The C-Mantec
algorithm was run with the following parameter configuration:
8ac=0.05 and I,qx=1000. The results are shown in Table 1 where
the first two columns indicate the function reference name and its
number of inputs, and the third, fourth and fifth columns show
that the number of neurons obtained in the original C-Mantec
publication (Subirats et al., 2012), and the integer and floating
point microcontroller implementation, respectively. Two last col-
umns in Table 1 show the learning times in seconds (s) for the
integer and floating point implementation of the microcontroller.
The displayed values (mean + standard deviation) are computed
from 50 random samples.

Fig. 3 shows the learning time for all 14 benchmark functions
included in Table 1 both for the integer and floating point
implementation. The top graph in the figure shows on a logarith-
mic scale for the y-axis the learning time while the bottom graph
shows the comparative speed between both representations used
(integer and floating point).

Further, Fig. 4 shows the temporal evolution for the most
complex analysed function (Alu2k), where the top graph shows
the execution times related to the addition of a new neuron in the
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Table 1

Number of neurons and learning time of the synthesis of a set of functions for
fixed-point (integer) and floating point implementations compared with the
original paper.
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Fig. 3. Learning time (in seconds, logarithmic scale) for each function of the
Boolean function benchmark data set with the two data type representation (top
graph) and the relative speed between them (bottom graph).

constructive network architecture while Fig. 4 bottom shows the
relative speed between the two implementations (integer and
floating point). The time shown in the top graph of Fig. 4 includes
several learning cycles until an input pattern wrongly classified by
the network is presented and there is no neuron in the architec-
ture that can be selected to learn it (according to the values of Tg,
and gc).

The C-Mantec algorithm includes three procedures that are
modified depending on the data type (floating or integer) repre-
sentation used. These three functions that can be observed in Fig. 1
are the following: Input a random pattern, Select neuron with largest
Trac value, and Modify selected neuron weights. The algorithm

Fig. 4. Temporal evolution for the function Alu2k related to the addition of a new
neuron to the network architecture. Absolute time (top graph) and relative time
(bottom graph) for both representations (integer and floating point) used.

includes other two procedures (Add a new neuron and Eliminate
noisy examples) that are not altered if the data representation is
changed.

For each of the procedures that change according to the
representation used we computed the mean execution time
averaged across 50 samples for both cases. Fig. 5 shows the results
for each procedure for integer and floating point representations.
Fig. 5a shows the whole network execution time as the number of
neurons increases from 1 to 20 for different input pattern dimen-
sions (2, 5, 10, 15), while Fig. 5b shows a comparison between both
implementations, where it can be appreciated the number of times
that the integer representation is faster than the floating point
one. Fig. 5¢ and d shows the execution time and relative compar-
ison (respectively) for the computation of the maximum value of
the Ty, for both representations as the number of neurons present
in the architecture increases from 1 to 20. Fig. 5e and f shows the
same as the previously described case but for the procedure
Modify selected neuron weights.

6. Case studies

In this section, in order to test the efficiency of using neural
networks in applications where microcontrollers for sense and/or
act on the environment might be required, three case studies of
different nature have been considered. The first case deals with
detecting fires by an alarm system that can be reprogrammed
according to the security level required. The second analysed case
is a control system for the activation of a solenoid valve that
depends on environmental variables, while the third case corre-
sponds to a person fall detection problem with the constraint of
using only a limited set of data patterns. The parameter settings of
the C-Mantec algorithm were the same for all analysed cases:
8rac=0.05, [;n¢x=1000 and ¢ =2. We verified that changes on these
values did not improve significantly the performance on each of
the problems and then decided to use this set of parameter in all
three cases. We note that it has been previously verified that
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Fig. 5. Execution times of the three procedures included in the C-Mantec algorithm that changed depending on the data type representation used. Graphs in the first column
show the absolute times measured in ps while the graphs in the second column show a comparison between both execution times (see the text for more details).

C-Mantec is very robust against changes on the parameter values
(Subirats et al., 2012, 2013; Urda et al., 2013; Luque-Baena et al.,
2013).

6.1. Fire alarm system

Fire alarm systems are widely used in inhabited premises.
We analyse the case of a system whose security levels can be
reprogrammed according to the user convenience, by defining
activation thresholds as a function of the sensed environmental
variables (temperature, smoke and gas). A schematic drawing of a
room where a fire alarm is installed is shown in Fig. 6 including
the three typical variables that can affect the system.

We have represented the different states of the fire alarm
system using a truth table which is shown in Table 2.

Each different sensor (Gas, Smoke and Temperature) can be
active (‘1’) or not (‘0’), and these levels determine the Alarm state
in the range from 1 to 8. As C-Mantec is a binary classifier, the
alarm levels were codified in binary notation, as indicated in the
last column of the table. A given functioning state of the alarm
system includes setting the alarm levels for each of the detectors
states, i.e., choosing the alarm level for a given sensor inputs.

Fig. 6. Schematic representation of a room in which is installed a fire alarm.

Table 2 corresponds to a case in which each alarm level is different
for every different input, as this is the worst possible case.

We first checked the time employed by the system to learn the
initial state, measuring also the number of neurons included by
the C-Mantec constructive algorithm and the energy consumption.
Table 3 shows the results averaged across 50 samples, where
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Table 2
Truth table of the initial state of the system for fire detection.

Gas Smoke Temperature Alarm Representation
0 0 0 1 000
0 0 1 2 001
0 1 0 3 010
0 1 1 4 011
1 0 0 5 100
1 0 1 6 101
1 1 0 7 110
1 1 1 8 111
Table 3

Time, energy consumption and number of neurons in the constructed neural
network architecture for learning the initial state of a reprogrammable alarm
system.

# Neurons Time (ms) Consumption (nAh)

3.0+ 0.0 82+ 48 731+ 434

execution time is measured in milliseconds (ms) while energy
consumption is measured in nano Amperes per hour (nAh).

Next, we have tested the time needed to relearn a modification
of the state of the alarm, that corresponds to a change of values in
the fourth column in Table 2. The results are shown in Table 4
where mean, maximum and minimum reprogramming time are
displayed together with the measured consumption.

6.2. Weather prediction

Weather prediction is a relevant issue in human daily life,
related for example for making good decisions in agriculture
(moment of harvest, time of watering and crop type). Weather
prediction is a very complex problem and neural network based
system has been widely used for this task (Taylor and Buizza,
2002; Chakraborty et al., 2004).

We have consider a system that consists in a sensor/actuator
that measures five environmental variables (Temperature (T),
Wind speed (Ws), Wind direction (W), Humidity (H) and Solar
Irradiance (I)) and takes a decision, which can be to irrigate or not
the surrounding land. Fig. 7 displays a real picture of a constructed
sensor/actuator node that may be used for the described problem.

To analyse a possible scenario where this node may be used, we
consider the case of determine whether to water or not the
surrounding land according to the value of the five environmental
variables mentioned before. For the implementation these vari-
ables have been discretised using a 12 bits representation where
the number of bits used for each variable can be seen from Table 5
together with the discretisation intervals.

The evaluation of the implementation of the neural network
model for controlling the actuator system has been carried out
starting from a null initial state. Afterwards, random input condi-
tions were considered. An example of a generic instance can be:

if(T=175°C) A (Ws=2m/s) A (Wy= “N")
A (H=55%) » (=900 W/m?) -
solenoid valve “open”.

In the previous case, the indicated instance corresponds to a
input of the truth table of the form “0100 00 00 10 11” with output
‘1’ as it was indicated that the solenoid valve, controlling the
watering system, should open for the indicated condition. The
whole truth table for the current discretisation used comprises
4096 different instances.

Table 4
Mean, maximum and minimum time involved in reprogramming a microcontroller
and its corresponding energy consumption for a fire alarm system.

Max Min Mean
Time (ms) 20.27 3.13 10.97
Consumption (nAh) 180.17 27.82 97.51

7

r'§-
i

Wind Speed

/

Teniperatire /. )
and Fumidity/"}

Fig. 7. Picture of a sensor/actuator system responsible for sensing different
environmental variables and acting accordingly.

Table 5
Environmental variables used in a weather prediction problem, indicating the
number of bits used in their representations and the discretisation intervals used.

Var. # bits Discretisation

T 4 [-25,0,25,5,75,10,12.5, 15, 17.5,
20, 22.5, 25, 27.5, 30, 32.5, 35] °C

Wy 2 [0, 2,5, 9] m/s

Wy 2 N: [335°-45°), E: [45°-135°),
S: [135°-225°), W: [225°-335°)

H 2 [5, 30, 55, 80]%

1 2 [100, 300, 600, 900] W/m?

We measured the evolution of the time needed by the system
as the number of defined instances is increased, together with the
level of accuracy. Fig. 8 top shows time and consumption averaged
across 30 random executions (Mean) and also one randomly
chosen execution of the system in order to appreciate the existing
variability of the learning process. Accuracy, computed as the
fraction of correct responses over the whole truth table is shown
in table Fig. 8 bottom. Note that to compute the accuracy, we
suppose that the final whole truth table is known at every given
time, even if the actuator only gets this information one pattern at
a time, implying that in practice the accuracy (as it is computed)
can be only analysed at the end of the process. If we had computed
the accuracy over the presented pattern, this would have always
been equal to 1.

A singular behaviour in the initial instances can be observed in
Fig. 8, the neural network model has to be modified because
almost all instances are misclassified thus at the beginning of the
process, the learning time is higher and the accuracy increases
because the number of classified instances grows. When the
model has already learned almost all instances the learning time
grows linearly depending on the number of instances as the
results showed, and thus the accuracy is one in practice. In this
moment if a instance are misclassified then the neural network
model have to learn this instances and the learning time is the
largest as Fig. 8 top shows for one execution.
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Learning time depending on the number of learned instances
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Fig. 8. Learning time, consumption (top graph) and accuracy (bottom graph) of a
sensor/actuator used for an automatic watering system. (See text for details).

Fig. 9. A sensor based system attached to a person body for the implementation of
a person fall detection system.

6.3. Fall detection system

Monitoring elderly or disabled people is in growing demand in
modern societies, mainly because these people are dependent and
unable to care for themselves. In particular, one important pro-
blem is to detect efficiently when a person falls. Different ways of
addressing this problem have been proposed, like using a video
surveillance systems, although if such system has the drawback of
a strong sensitivity to light changes. A more efficient system to
detect a person fall can be constructed using a sensor attached to
the person body. The sensor, in this case, should include a 3-axis
accelerometer together with a microcontroller that analyses the
person relative inclination angle and movement, in order to detect
abnormal situations, such as a strong downward movement or any
sudden or violent displacement. Fig. 9 shows a schematic drawing
of the described system.

Deducing the logic which describes the behaviour of the falls is
a complex and very time consuming task. However, using a neural
network based system simplifies enormously this task as a training
process based on observed patterns can be implemented.

In such a system, the accelerometer senses the position of the
device, acquiring the position in relationship to axes x, y, z. These
coordinates are then sent to the microcontroller, in values normal-
ised between 0 and 255 so they can be stored in a variable of
“byte” type. A movement is considered a fall when in a short
period of time (1 s), the position of the device changes from an
initial state (vertical) to a final state (horizontal). Thus, a pattern to
the system consists in the initial and final position of the move-
ment plus the output that indicates whether the person has
suffered or not a fall ((xo,Yq,Z20,X1,¥1,21)—fall?). The number of
patterns that can be stored on the system is delimited by Eq. (7),
that in the present case leads to a maximum number of patterns to
be stored equal to 167 patterns. As this number is quite small for
such a complex problem, only patterns that a “supervisor” con-
sidered wrong will be used. For example, a pattern is sensed every
second and the system determines whether or not a fall has
occurred. If the supervisor (that during the training of the system
can be the person carrying the device) resolves that the decision of
the neural network model is wrong, this pattern is stored in
memory and a new neural network model is calculated. The
previous description is a modification to the standard C-Mantec
algorithm that includes a more efficient storage of patterns for
maximising the use of the limited memory resources of a micro-
controller. For testing the system, a sensor node has been attached
to a subject producing common movements such as sitting down,
walking and stopping. The microcontroller has periodically gath-
ered accelerometer data every second and 30,000 patterns have
been obtained as data set.

Afterwards, the neural network based systems were checked,
starting the process with no patterns in the memory, to only store
one instance of the problem when the classification obtained does
not match the supervisor output, that in our case, was the person
wearing the system.

Fig. 10 top shows the time evolution of the system as the
number of patterns presented increase. In the figure, the mean of
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Fig. 10. Training time (top) and accuracy (bottom) of a fall detection system as a
function of the number of observed patterns. Each graph includes average results
over 30 independent samples, together with results corresponding to a single case.
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30 executions is displayed together with a single case to observe
the level of variability existing in the problem. Fig. 10 bottom
shows the level of accuracy obtained as the patterns are presented
to the system (the graph also includes the mean and a single
observed case).

It is worth mentioning that the way this problem is treated is
different from the previous two cases, as patterns are stored in the
microcontroller memory only if they are misclassified.

7. Conclusions

The C-Mantec constructive neural network algorithm has been
successfully implemented in a microcontroller board, adapting it to
overcome the limitations imposed by the limited resources of
memory and computing speed of the hardware device. The correct
implementation of the algorithm has been verified in comparison to
the original published results, obtaining that as the number of inputs
is increased, the microcontroller implementation needs a small
number of extra neurons and it is possible to observe a little
reduction in performance accuracy due to rounding effects. Further-
more, a thorough comparison of the differences of using floating
point or fixed precision representations has be carried out, conclud-
ing that better results can be obtained with an 8-bit fix precision
representation leading to computation times approximately five
times faster than using the standard floating point representation.

The implemented algorithm has been employed as a sensor/
actuator system and applied to three case studies in order to
demonstrate the efficiency and versatility of the resulting applica-
tion. The three case studies chosen are problems defined in
changing environments, and thus the decision-making of the
sensor/actuator has to be adapted accordingly to the observed
changes, thus needing a retraining of the neural network model
that controls the decision process.

The observed reprogramming times are significantly low in the
three case studies, being the energy consumption of the device
also quite small, and even if a comparison to the traditional case in
which the new code has to be transmitted from a central control
unit has not been analysed, the results suggest a very important
potential reduction.

As an overall conclusion, we have shown the suitability of C-
Mantec for its application in a dynamic task using an Arduino UNO
microcontroller. Nowadays, given the existence of devices with
much more powerful computing resources than the considered
board, the present study confirms the potential of the proposed
algorithm for its application in real tasks where sensors/actuators
are needed.
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