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J Neurophysiol 89: 2810–2822, 2003. First published January 15,
2003; 10.1152/jn.01070.2002. To analyze the extent to which popu-
lations of neurons encode information in the numbers of spikes each
neuron emits or in the relative time of firing of the different neurons
that might reflect synchronization, we developed and analyzed the
performance of an information theoretic approach. The formula quan-
tifies the corrections to the instantaneous information rate that result
from correlations in spike emission between pairs of neurons. We
showed how these cross-cell terms can be separated from the corre-
lations that occur between the spikes emitted by each neuron, the
auto-cell terms in the information rate expansion. We also described
a method to test whether the estimate of the amount of information
contributed by stimulus-dependent synchronization is significant.
With simulated data, we show that the approach can separate infor-
mation arising from the number of spikes emitted by each neuron
from the redundancy that can arise if neurons have common inputs
and from the synergy that can arise if cells have stimulus-dependent
synchronization. The usefulness of the approach is also demonstrated
by showing how it helps to interpret the encoding shown by neurons
in the primate inferior temporal visual cortex. When applied to a
sample dataset of simultaneously recorded inferior temporal cortex
neurons, the algorithm showed that most of the information is avail-
able in the number of spikes emitted by each cell; that there is
typically just a small degree (approximately 12%) of redundancy
between simultaneously recorded inferior temporal cortex (IT) neu-
rons; and that there is very little gain of information that arises from
stimulus-dependent synchronization effects in these neurons.

I N T R O D U C T I O N

To analyze how neurons encode information about stimuli or
other events, it is useful to apply information theory, because
this allows the contributions of different possible factors (such
as the number of spikes vs. the relative timing of spikes from
different cells) to be measured quantitatively and with the same
metric (Rolls and Deco 2002). Simultaneously recorded neu-
rons sometimes show cross-correlations in their firing, i.e., the
firing of one cell is systematically related to the firing of the
other cell. One example of this is neuronal response synchro-
nization. The cross-correlation, to be defined below, shows the
time difference between the cells at which the systematic
relation appears. A significant peak or trough in the cross-
correlation function could reveal a synaptic connection from
one cell to the other, a common input to each of the cells, or

any of a considerable number of other possibilities. If the
synchronization occurred for only some of the stimuli, the
presence of the significant cross-correlation for only those
stimuli could provide additional evidence separate from any
information in the firing rate of the neurons about which
stimulus had been shown. Information theory in principle
provides a way of quantitatively assessing the relative contri-
butions from these two types of encoding by expressing what
can be learned from each type of encoding in the same units—
bits of information. An information theory-based approach to
this has been developed by Panzeri et al. (1999).

When applying information theory to the responses of two or
more simultaneously recorded neurons, the number of possible
combinations of the relative times of the spikes of the different
cells becomes very large. That is, the dimensionality of the
space that must be filled adequately with real neurophysiolog-
ical data to obtain reliable estimates of the information be-
comes so large that the information estimates become unreli-
able, and in fact, are biased upward. Even bias correction
measures (Panzeri and Treves 1996; Treves and Panzeri 1995)
cannot completely correct for this amount of undersampling. In
this situation, the dimensionality of the space in which the
neuronal responses are measured must be reduced. A recent
approach to this issue has been to simply count the number of
spikes in a single short time window from the simultaneously
recorded cells and to use these spike counts to estimate the
information that is contributed by different factors, including
factors such as synchronization of the spikes of different cells.
This is the approach taken by Panzeri et al. (1999). The new
contributions of the present paper are as follows. First, we
extended the previous approach by describing a method for
calculating and separating the effects arising from cross-cor-
relations between the spikes of the simultaneously recorded
cells from the effects produced by autocorrelations arising
from the spikes produced by each cell interacting with its own
spikes. Second, we introduced a method that allows the statis-
tical significance of the synchronization-related information
that is measured to be quantified, which has not been available
previously (Panzeri et al. 1999). Third, having shown how
these cross- and auto-cell terms can be separated and calcu-
lated, we tested the whole algorithm with simulated neuronal
data and showed how the different terms can be interpreted.
We note that the cross- or between-cell terms were not sepa-
rated from the auto- or within-cell terms in the simulations
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shown by Panzeri et al. (1999), and that separating these terms
greatly enhances the interpretation of what can be measured
with this approach to neuronal encoding. Fourth, we showed
results of the application of the algorithm to real neuronal data
from the primate inferior temporal visual cortex and showed
how particular effects evident with real neuronal data can arise.

The information theoretic approach used and developed in
this paper measured the different contributions to the total
information that arise from stimulus-dependent and stimulus-
independent cross-cell correlations in contrast to earlier meth-
ods (Gawne and Richmond 1993). Stimulus-dependent cross-
cell information can potentially provide evidence about which
stimulus was presented by reflecting information that can be
extracted from the co-modulation of the spikes of two neurons.
A case of this might be if on a trial by trial basis, for one
stimulus two cells might both give many (or few) spikes,
whereas for another stimulus the spike firings might be uncor-
related. Stimulus-independent cross-cell information might re-
flect for example a correlation between the firing rates of two
cells independently of which stimulus was shown, and would
in this case typically introduce redundancy into the encoding.
In addition, there are within-cell information measures pro-
vided by the approach. One measure, the “stimulus-indepen-
dent auto-term,” reflects the neuronal response variability. If
this term is high, the implication is that each cell encodes little
information about the stimuli.

M E T H O D S

Measuring the information available from simultaneously
recorded cells

It is first necessary to describe the approach taken by Panzeri et al.
(1999), which limits the dimensionality problem by taking short time
epochs for the information analysis, in which low numbers of spikes,
typically 0–2, are likely to occur from each neuron. In this case, in
which at most two spikes are emitted from the population, the re-
sponse probabilities can be calculated in terms of pairwise correla-
tions. These response probabilities are inserted into the Shannon
information formula shown in Eq.1 to obtain expressions quantifying
the impact of the pairwise correlations on the information I(t) trans-
mitted in a short time t by groups of spiking neurons

I�t� � �
s�S

�
r

P�s, r� log2

P�s, r�

P�s�P�r�
(1)

where r is the firing rate response vector comprised of the number of
spikes emitted by each of the simultaneously recorded cells in the
population in the short time t, and P(s, r) refers to the joint probability
distribution of stimuli with their respective neuronal response vectors.
The firing rate response vector r for a single trial consists of the
number of spikes ni emitted by each cell i in a short time t.

The approach consists then, in the short timescale limit, of using the
first (It) and second (Itt) information derivatives to describe the infor-
mation I(t) available in the short time t

I�t� � tIt �
t2

2
Itt (2)

(The 0th order, time-independent term is 0, because no information
can be transmitted by the neurons in a time window of 0 length.

Higher order terms are also excluded because they become negligible
in a short time window.) We develop below the expansion of Eq.2 in
terms of two types of correlation, which we introduce first. These two
correlations are as follows.

CORRELATIONS IN THE NEURONAL RESPONSE VARIABILITY FROM
THE AVERAGE TO EACH STIMULUS (SOMETIMES CALLED “NOISE”
CORRELATIONS) �. This type of correlation is high if on one trial for
a given stimulus S the spike rates of two neurons being considered are
higher than the average to that stimulus, whereas on another trial to
the same stimulus the rates of both neurons are lower than the average
to that stimulus. Neurophysiologically, this type of effect could be
produced by cross-coupling between the neurons. It is called a “noise”
correlation (Gawne and Richmond 1993; Shadlen and Newsome
1994, 1998) because it reflects the trial by trial co-variation in the
responses of the neurons, but it is also called the “scaled cross-
correlation density” (Aertsen et al. 1989; Panzeri et al. 1999). More
formally, where the two cells are indexed by i and j, �ij(s) (for i � j)
is the fraction of coincidences above (or below) that expected from
uncorrelated responses, relative to the number of coincidences in the
uncorrelated case [which is n� i(s)n� j(s), the bar denoting the average
across-trials belonging to stimulus S, where ni(s) is the number of
spikes emitted by cell i to stimulus s on a given trial]

�ij�s� �
ni�s�nj�s�

�n� i�s�n� j�s��
� 1 (3)

It can vary from –1 to �; negative values of �ij(s) indicate anticorre-
lation, whereas positive values of �ij(s) indicate correlation.1 �ij(s) can
be thought of as the amount of trial by trial concurrent firing of the
cells i and j compared with that expected in the uncorrelated case.

We will be interested to measure the effects of synchronization
between cells in contributing to the information available from simul-
taneously recorded cells in the case where �ij(s) is different for
different stimuli. Cells that are synchronized will tend to have a
positive value of �ij(s), as shown in Fig. 1. Although the �ij(s)
measure utilizes the numbers of spikes from the different neurons and
thus reflects rate co-modulation, this will almost always with real
neurons (as contrasted with possible artificial scenarios) capture any
synchronization that is present. This is because in a sufficiently short
time window (and the information measures are for this reason plotted
in the figures in different time windows in the range 0–100 ms), in the
unlikely event that cell i fires if cell j also fires, this is likely to reflect
synchronization. (We note that in the general case, cells with syn-
chronized spikes will show co-modulation of the number of spikes on
single trials in short time windows. However, if a scenario ever
occurred in which there was stimulus-dependent synchronization but
no co-modulation of the number of spikes obtained in a short time
window, then �ij(s), and the algorithm described here would not detect
it.) An advantage of the measure �ij(s) of the covariation between the
number of spikes of different cells in a short time window is that it can
be positive independently of any particular time lag in the cross-
corrologram and will be negative if the two cells anti-covary (e.g.,
reflecting inhibition of 1 cell by the other).

1 �ij(s) is an alternative, which produces a more compact information anal-
ysis, to the neuronal cross-correlation based on the Pearson correlation coef-
ficient �ij(s), which normalizes the number of coincidences above indepen-
dence to the standard deviation of the number of coincidences expected if the
cells were independent. The normalization used by the Pearson correlation
coefficient has the advantage that it quantifies the strength of correlations
between neurons in a rate-independent way. For the information analysis, it is
more convenient to use the scaled correlation density �ij(s) than the Pearson
correlation coefficient, because of the compactness of the resulting formula-
tion, and because of its scaling properties for small t. �ij(s) remains finite as
t 3 0, thus by using this measure we can keep the t expansion of the
information explicit. Keeping the time-dependence of the resulting information
components explicit greatly increases the amount of insight obtained from the
series expansion (see Panzeri et al, 1999).
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There is also an autocorrelation term �ij(s), which reflects the
variability of the number of spikes emitted by a cell to a given
stimulus s from trial to trial. We measure this by

�ii�s� �
ni�s�ni�s� � ni�s�

�n� i�s�n� i�s��
� 1 (4)

The reasons for defining �ii in this way [including the subtraction of
n� i(s) performed to express the result relative to the variance of the
spike count that is expected in the independent spikes case] are to
quantify correctly the number of spikes from the same cell, as set out
by Panzeri et al. (1999). �ii(s) takes negative values if there is no or
small variability from trial to trial for a particular stimulus, and zero
for a random variation from trial to trial produced by a Poisson
process (in which the variability equals the mean; Panzeri et al. 1999).
�ii(s) can be positive if there is more variability than in an independent
spike generation process, and this can be produced in real neurophys-
iological data if for example there are some trials with exceptionally
few spikes.

CORRELATIONS IN THE MEAN RESPONSES OF THE NEURONS
ACROSS THE SET OF STIMULI (SOMETIMES CALLED “SIGNAL”
CORRELATIONS) �. vij can be thought of as the degree of similarity
in the mean response profiles (averaged across-trials) of the cells i and
j to different stimuli. vij is sometimes called the “signal” correlation
(Gawne and Richmond 1993; Shadlen and Newsome 1994, 1998). It
is defined by

�ij �
�n� i�s�n� j�s��s

�n� i�s��s�n� j�s��s

� 1 �
�r�i�s�r�j�s��s

�r�i�s��s�r�j�s��s

� 1 (5)

where r�i(s) is the mean rate of response of cell i [n� i(s) is the mean
number of spikes of cell i in the interval considered; among C cells in
total] to stimulus s over all the trials in which that stimulus was
present. It can vary from –1 to �. (�. . .�s indicates the ensemble
average over the s stimuli.)

If vij is zero, the cells have uncorrelated response profiles to the
stimuli, and there is no redundancy. If vij is either positive or negative,
it always reflects redundancy between the cells, as both cases mean
that the two cells i and j are conveying the same information about the
stimuli. For example, if the responses of cell 1 to four stimuli a, b, c,

and d are 100, 50, 25, and 1 spikes/s, and of cell 2 are 1, 25, 50, and
100 spikes/s, then vij is negative, and the two cells have redundancy.

The autoterms, vii, reflect the degree to which a single cell i
responds differently to the different stimuli. If the cell responds
equally to all stimuli, vii is 0 (and the cell will contribute nothing by
its firing rate differences to different stimuli to the information about
the stimulus). If the cells respond with very different rates to the
different stimuli, then vii is positive. It is simply the reciprocal (minus
1) of the sparseness a of the representation of the stimuli by a neuron
as defined by Treves (1993), Rolls and Treves (1998), and Rolls and
Deco (2002).2

MEASURING THE INFORMATION IN SHORT TIME PERIODS. As noted
above, in the short timescale limit, the first (It) and second (Itt)
information derivatives describe the information I(t) available in the
short time t

I�t� � tIt �
t2

2
Itt (7)

The instantaneous information rate It is3

It � �
i	1

C �r�i�s� log2

r�i�s�

�r�i�s
��s


�
s

(8)

This term is just a simple sum across-the C cells in the population of
the instantaneous information rate of each single cell (Bialek et al.
1991; Skaggs et al. 1993), and thus this term does not take into
account any interactions (arising from any of the correlations) be-
tween the neurons. Nor does this term reflect the trial by trial vari-

2

a �

��
s	1

S

r�s��S�2

�
s	1

S

r�s�2�S

(6)

where r(s) is the firing rate of the neuron to stimulus s in the set of S stimuli.
3 Note that s
 is used in Equations 8 and 9 just as a dummy variable to stand

for s, as there are two summations performed over s.

A

B  

 

FIG. 1. Illustration to show that �ij(s) reflects synchronization between cells. Cells have mean rates of 4 spikes per trial to
stimulus 1 (A) and to stimulus 2 (B). For stimulus 1, cell 1 fires “noisily” above its average rate to stimulus s 	 1 on trial 1, at
its average rate on trial 2, and below its average rate on trial 3. Because with stimulus 1 there is a significant synchronization effect
between cell 1 and cell 2, cell 2 also has an above average rate on trial 1, and a below average rate on trial 3. This results in a high
�ij(s) for s 	 1. Synchronization is reflected by a peak in the cross-correlation function (cross-correlogram) between the 2 cells,
as shown on the right. In contrast, for stimulus 2 shown on the bottom, there is no covariation between the spikes of the 2 cells
on a trial by trial basis, �ij(s 	 2)is 0, and the cross-correlogram shows that there is no synchronization (reflected by an absence
of peaks in the cross-correlogram).
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ability in the responses of each cell taken individually (which is
reflected in �ii).

The effect of (pairwise) correlations between the cells begins to be
expressed in the second time derivative of the information. The
expression for the instantaneous information “acceleration” Itt (the
second time derivative of the information) breaks up into three terms
as described by Panzeri et al. (1999)

Itt �
1

ln 2 �
i	1

C �
j	1

C

�r�i�s��s�r�j�s��s��ij � �1 � �ij� ln � 1

1 � �ij
��

� �
i	1

C �
j	1

C

��r�i�s�r�j�s��ij�s��s log2 � 1

1 � �ij
�

� �
i	1

C �
j	1

C �r�i�s�r�j�s��1 � �ij�s�� log2 � �1 � �ij�s���r�i�s
�r�j�s
��s


�r�i�s
�r�j�s
��1 � �ij�s
���s

��

s

(9)

Cross- or between-cells terms

We consider here the case when i � j, which is the interesting case
in terms of interactions between the neurons and could result in
synergy (perhaps reflecting synchronization) and redundancy.

The first of these terms (which we will call Itta) is all that survives
of the cross-cell terms if there is no noise correlation at all [i.e., if
�ij(s) 	 0]. Thus the rate component of the between-cell information
is given by the sum of It (which is always greater than or equal to 0)
and of Itta (which is always less than or equal to 0). Itta is thus less than
zero whenever vij is not equal to 0. Itta thus reflects the redundancy
between the cells introduced by the similarity (or anticorrelation) of
their response profiles to different stimuli. The “rate” component of
the information we note does still not reflect the trial by trial vari-
ability of the responses of each cell to a stimulus (which is reflected
by the �ii to be described below). Nor does it reflect stimulus-
dependent cross-correlations (reflected in nonzero �ij), which are
taken into account in the next two terms in the expansion.

The second term (which we will call Ittb) is nonzero if there is some
“noise” cross-correlation between the cells independently of which
stimulus is present (i.e., if ��ij(s)�s weighted by the average spike
counts, which we denote by ��ij�w and define as �n� i(s)n� j(s)��ij(s)�s, is
not equal to 0. For the case i � j, we call the contribution of this term
the “stimulus-independent cross-term.” One way to think about Ittb is
in terms of synergy versus redundancy with respect to the case in
which the spikes of the two cells vary independently from trial to trial,
which is what is expressed in Itta. Ittb is a term that corrects relative to
the independent spike case for the average stimulus-independent
cross-correlation between two cells. If we consider the case when
vij � 0 (i.e., when the response profiles of the cells to the stimuli have
some positive correlation), then if ��ij�w is � 0 (meaning that on a
trial by trial basis the numbers of spikes from the two cells tend to be
correlated), then this correlation reduces the extent to which the cell
can discriminate between the stimuli. Conversely, if the response
profiles are anticorrelated (vij � 0), then ��ij�w � 0 makes the
responses to different stimuli more separate, and synergy between the
cells arises. For the case when ��ij�w is �0, then this trial by trial
anticorrelation between the spike numbers synergistically increases
the information (reflected in positive Ittb) when the response profiles
are correlated (vij � 0), and decreases the information when the
response profiles are anti-correlated (vij � 0).

Equation 9 shows that the sign of Ittb is the opposite of the product
of the signs of ��ij�w and vij. Ittb is negative, indicating redundancy, if
vij and ��ij�w have the same sign. Conversely, Ittb is positive, indicat-
ing synergy, if vij and ��ij�w have opposite signs. Although when this
term is positive this has been thought of as synergy (Panzeri et al.
1999), for the case of negative ��ij�w, and positive vij, the effect might
better be thought of as less redundancy than the Poisson case. (��ij�w

is negative when there is less variability than Poisson.) We thus think
of synergy related to Ittb as arising in the case when ��ij�w is positive
and vij is negative.

Furthermore, if vij is zero (reflecting uncorrelated response profiles
of the cells to the set of different stimuli), the “stimulus-independent
noise cross-term” will be zero (independently of the value of ��ij�w).

The third component of Itt (which we will call Ittc) represents the
contribution of stimulus-dependent correlation, because it becomes
nonzero only for stimulus-dependent noise correlations, i.e., where
�ij(s) is different for different stimuli. Ittc is the term (and the only
term in this expansion) in which stimulus-dependent synchronization
of neuronal firing would be apparent, if present. In simulated data, this
term is positive if two neurons are selected to receive strong synaptic
inputs for only some stimuli. In a new procedure introduced in this
paper, we provide a method to estimate the statistical significance of
the value of this term. The method involves repeated estimates of the
value of this stimulus-dependent cross-cell term after different shuf-
flings of the trials randomly within a stimulus in a number of Monte
Carlo iterations. Each shuffle removes any stimulus-dependent cross-
correlation information provided that there are more than a few trials.
The mean and SD of the information estimates calculated from many
different shufflings allow a significance test of the actual information
value collected without shuffling from the neuron. The statistical test
implemented is to provide confidence limits for the values that would
be obtained by chance with no possibility for real cross-correlation
effects because the trials have been shuffled within a stimulus. The
confidence limit was set to 2 SD from the mean value, which, as this
is a one-sided test, corresponds to a 97.8% confidence limit. We
checked that the information values from the shuffled data were
sufficiently normally distributed for this to be a good estimate. We
also showed that 30–50 Monte Carlo shufflings and information
estimates were sufficient to provide a good and stable estimate of the
mean and SD of the information value obtained after shuffling. In the
figures in this paper, we show the stimulus-dependent cross-cell
information term with the mean value obtained from 50 Monte Carlo
shufflings subtracted and 2 SD from this mean value (see Figs. 4, 6,
and 7). If the stimulus-dependent information measured without shuf-
fling is greater than the 2 SD limit shown on the figures obtained with
the Monte Carlo procedure, the information measured without shuf-
fling is significant at P � 0.022.

Auto- or within-cell terms

For the first term Itta of the second derivative, if we consider the
within-cell part of this, when vii is positive, this indicates that the cell
discriminates well between the different stimuli. The first term eval-
uates to a negative contribution to the information in the first deriv-
ative, and this reduces the single cell information to what would be
expected with independent trial-by-trial variability [i.e.,
with ��ii(s)�s 	 0, as in a Poisson case). If the trial by trial variability
is different from the Poisson case, the second term corrects for this.

For the second term, (Ittb), we considered above the case where i �
j, which we can call the contribution of the “stimulus-independent
cross-term” to the information. For the case i 	 j, the contribution can
be called the “stimulus-independent auto-term.” The neuronal re-
sponse variability is captured in part by this stimulus-independent
auto-term. In particular, if the cell has high trial to trial variability, this
is reflected in a high ��ii(s)�s value and becomes a negative contribu-
tion to the total information because it is weighted by the log factor of
the second term, which in fact weights the negative contribution
according to how much the neuron has different mean firing rates to
the different stimuli. (This is because vii is large and positive if the
neuron has different mean firing rates to the different stimuli.) This is
thus the main way in which “noise,” i.e., trial to trial variability of the
neuronal response decreases the total information available from the
cell.

If the data are made more variable by zeroing all the spikes on
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occasional trials, this auto-part of Ittb becomes negative, thus making
a negative contribution to the total information. For Poisson simulated
spike trains, the “stimulus-independent auto-term” may be positive if
just a few trials are utilized. However, for real neuronal data, in some
recordings, this term can be negative, as shown in Table 1. The effect
is due to the fact that on some trials, especially in short time windows,
real neuronal data has no spikes (in cases where this would not be
predicted if the real neuronal firing were Poisson based), as shown by
Treves et al. (1999). Indeed, the “stimulus-independent auto-term”
becomes negative in simulated data if the spikes on occasional trials
are zeroed. We note that vii is generally positive definite for real data,
so that if the “stimulus-independent auto-term” is negative as with real
data, then ��ii(s)�s must be positive, reflecting more trial by trial
variability in the neuronal response than occurs with Poisson data.

Ittc has a “stimulus-dependent auto-term” for the case when i 	 j in
�ij(s). This term is subtracted out by the Monte Carlo procedure, but
it can be estimated by subtracting the sum of the other components of
the information (rate, stimulus-independent, and stimulus-dependent-
cross) from the total information. This term is normally close to zero,
both in simulations and in real data. There is a special case in which
the stimulus-dependent auto-term could be positive. This would arise
for example if the trial by trial variability to a given stimulus, �ii(s),
was different for different stimuli. If the brain could measure this trial
by trial variability and found that it was large, this might give
information about which stimulus was shown. However, it is not clear
how such a measurement could be implemented in the brain.

We note that the “total information” shown on the graphs is the
total information from the full expansion, that is tIt � (t2/2)Itt as
shown in Eq. 2, and that in practice the stimulus-dependent auto-term
generally makes very little contribution to the total information. We
also note that the bias correction procedure described by Panzeri et al.
(1999) was applied as part of the information analysis used throughout
this paper.

Neurophysiological methods

To examine how this approach operates with examples of real
neuronal data, we made recordings from the macaque inferior tem-
poral visual cortex while a set of five visual images (or a set of 20
images in 2 experiments not included in Table 1) was being shown in
a visual fixation task. The images included objects and faces, which
are known to activate some inferior temporal cortex neurons. Twenty
trials of data for each stimulus, presented for 500 ms, were acquired.
The methods and the types of neuron analyzed were similar to those
described by Rolls et al. (1997), except that simultaneous recordings
from small sets of single neurons were made with two to four separate
independently movable microelectrodes (using an Alpha-Omega re-
cording system). Because the images were of objects and faces, the
visual system had to bind together the component features of the

stimuli to produce the normal neuronal response to the stimuli. It has
been shown that spatially rearranging the features in such stimuli
leads the neurons that normally respond to these stimuli to fail to
respond (Rolls et al. 1994). The recording system (Neuralynx) filtered
and amplified the signal and stored spike waveforms that were later
sorted and cluster cut off-line using the Datawave Discovery software.
The neurophysiological methods used here, and the recording region
(in the anterior part of the ventral lip of the superior temporal sulcus
in areas TEa and TEm, in area TE, or in the cortex deep in the superior
temporal sulcus) have been described in detail by Booth and Rolls
(1998). All procedures, including preparative and subsequent ones,
were carried out in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals, the guidelines of
The Society for Neuroscience, and were licensed under the UK
Animals (Scientific Procedures) Act 1986.

R E S U L T S

Validation and analysis of the approach using simulated
neuronal data

To validate and further analyze the approach, we measured
the values of the different terms with simulated data.4 This is
the first description of the performance of the algorithm with
the cross-cell and auto-cell terms separated out on simulated
data.

First, we considered the case of independent spike trains in
two simulated neurons tested with 20 stimuli with 20 trials.
This low number of trials per stimulus was investigated be-
cause this is in the range of what can be obtained when
recording from real neurons in primates (Rolls et al. 2002).
Information in the firing rates was implemented by setting the
average firing rates of the Poisson-based spike generation
process to those obtained for a set of 20 stimuli in a real
neurophysiological experiment when the recordings were from

4 The program used to perform the information theoretic analysis, corrinfo3,
implemented the algorithm described by Panzeri et al. (1999). The original
program used by Panzeri et al. (1999) was written in C, but was rewritten in
Matlab by Drs. S. Panzeri (University of Newcastle, UK) and R. S. Petersen
(SISSA, Trieste, Italy), used for research on the rat somatosensory cortex
(Panzeri, Petersen, Schultz, Lebedev & Diamond 2001, Petersen, Panzeri &
Diamond 2001), and kindly made available to us. We, in the research described
in this paper, developed this Matlab code to separate the auto- and cross-cell
terms (in a different way to that used by Panzeri et al. (2001) and Petersen et
al. (2001)); incorporated the Monte Carlo procedure which allows the statis-
tical significance of the cross-cell stimulus-dependent term to be evaluated;
and evaluated the performance of the algorithm using simulated data, as
described in this paper.

TABLE 1. Contributions to the information encoding

Exper.
Number of

Cells
Max
Rate

Total
Information

Rate
Information

Stim. Dep.
(Cross Correl.)

Stim. Indep
(Cross Correl.)

Stim. Indep
(Auto Correl.)

bj006 2 28.75 0.35 0.16 0.00 0.00 0.16
bj008 2 33.25 0.12 0.08 0.00 0.00 0.06
bj017a 4 15.00 0.55 0.28 0.00 �0.04 �0.03
bj017b 2 12.75 0.34 0.31 0.00 0.00 0.03
bj019 3 12.25 0.32 0.26 0.00 �0.04 0.09
bj022a 3 22.00 0.65 0.40 0.07 0.00 0.05
bj024b 3 30.08 0.55 0.44 0.00 �0.11 0.22
Mean 2.7 22.01 0.41 0.28 0.01 �0.03 0.08

The average contributions (in bits) of different components of Eqs. 8 and 9 to the information available in a 100-ms time window from seven sets of
simultaneously recorded inferior temporal cortex neurons when shown five stimuli effective for the cells. The column labelled “total information” is all of the
information from the Taylor expansion and includes in addition to the other information terms in the Table also the stimulus-dependent auto term. The average
firing rate to the most effective stimulus of the most responsive cell in each experiment is shown in the column labeled “Max Rate.”
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an inferior temporal cortex cell (with the data obtained as
described later). The results are shown in Fig. 2A. The cross-
correlogram confirms that there is no relation between the
firing of the two cells. The algorithm shows that there is
information in the “Rate” term [i.e., the first derivative of the
information (Eq. 8) and the first term of Eq. 9, i.e., Itta], and
correctly, no information contribution is indicated in the cross-
cell parts of Ittb (the “stimulus-independent cross-term” in Fig.
2, or Ittc, the “stimulus-dependent cross-term” in Fig. 2A).
There is some information in the auto-part of the stimulus-
independent term, which although zero with large data sets, can
be positive with small data sets.

Second, we consider the case when common input is added
to the case shown in Fig. 2A. (The spike trains were generated
with integrate-and-fire neurons using a procedure similar to
that of Shadlen and Newsome (1998) and as described by
Panzeri et al. (1999). In brief, each cell received 300 excitatory
and 300 inhibitory inputs, each a Poisson process in itself,
whose (possibly stimulus-dependent) mean rate was constant
across-the set of inputs for any specific stimulus condition and
contributed a fixed quantity to the membrane potential. When
the membrane potential exceeded a threshold, it was reset to a
baseline value. The common input was added by connecting
66% of the inputs of both cells to the same input source. This
common input is expected to produce redundancy. The results
are shown in Fig. 2B. The algorithm shows that there is again
information in the “Rate” term and that there is a negative
contribution to the total information that is made explicit in the
stimulus-independent cross-term. This latter term thus reflects

the common input to the neurons that is provided in a stimulus-
independent way. The common input is reflected in the cross-
correlogram shown in Fig. 2B. The stimulus-independent auto-
term is similar to that in the Poisson case, because it reflects the
within-cell distribution of responses to the set of stimuli.

Third, we show in Fig. 2C the operation for the algorithm
when the firing rates to the different stimuli are identical, but
when different pairs of cells become correlated (or synchro-
nized) for only some of the stimuli. The spike trains were
generated by an integrate-and-fire simulation in which we
simulated a correlational assembly with a constant firing rate of
20 spikes/s to all stimuli, and a percentage of shared connec-
tions of either 0 or 90% for different stimuli. There were five
cells in the assembly, and for each of the five stimuli, one pair
of cells had common connections. An example of the cross-
correlogram is shown in Fig. 2C, and the information plot
below correctly shows “stimulus-dependent cross” information
(i.e., a positive value of Ittc for i � j), and that this is the only
contributor to the total information.

To assess the power efficiency of the method, i.e., how many
trials of neuronal data are needed for the different aspects of
the information to be estimated accurately, we performed sim-
ulations similar to those shown in Fig. 2 with different numbers
of trials. The numbers of trials required were obtained as
follows. For the stimulus-dependent cross-correlation term, we
used the integrate-and-fire simulation described above to gen-
erate multiple datasets of spike trains each with for example 20
trials for each stimulus. Then we calculated the value of the
information that was available in each of 20 independent

     

  

 
 

 
 

B CA

FIG. 2. Analysis of the performance of corrinfo3 using simulated test data with 20 trials per stimulus. A: independent
Poisson-generated spike trains were used for each of 2 neurons. The cross-correlogram (shown above) is flat. (Abscissa is in
milliseconds) Bottom graph: output of corrinfo3 as a function of the width of the time window between 0 and 100 ms. Separate
plots show the total information from the sum of the 1st and 2nd derivatives shown in Eq. 2 and the contributions of the cross-cell
and auto-(within-cell) stimulus-independent and cross-cell stimulus-dependent terms. Dashed vertical lines at � and 3� show 1
and 3 times the mean interspike interval of the fastest firing neuron to its most effective stimulus. It is expected that the Taylor
expansion shown in Eq. 2 will work at least as far as � and may start to become inaccurate by 3�. B: spike trains generated by
an integrate-and-fire simulation with 66% of common input to the 2 neurons. Rate information is the same as in A, but there is a
negative contribution of the stimulus-independent cross-term. C: spike trains generated by an integrate-and-fire simulation to
produce stimulus-dependent correlational information. We simulated a correlational assembly with a constant firing rate of 20
spikes/s to all stimuli and a percentage of shared connections of either 0% or 90% for different stimuli. There were 5 cells in the
assembly, and for each of the 5 stimuli, 1 pair of cells had common connections. Results are plotted for 1 pair of cells (which had
common connections for 1 of the stimuli). The only contributor to the total information was the stimulus-dependent cross-term.
(The stimulus-dependent plot is almost hidden, because it is essentially identical to the total information plot in this case.)
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datasets. (Each dataset consisted of the equivalent of a neuro-
physiological experiment with a number of simultaneously
recorded neurons.) This showed how, if short spike trains of
neuronal firing are available from neurons, the statistics of
those spike trains reflect any underlying cross-correlation that
may be generated between the firing of neurons because they
have for example stimulus-dependent common input. The de-
tails of these integrate-and-fire simulations were that two neu-
rons with two stimuli shared 90% of their connections for one
of the stimuli and none for the other stimulus. Each neuron had
300 excitatory inputs and 300 inhibitory inputs as described
earlier, and the spike trains of each of the neurons were
approximately Poisson-distributed, reflecting the Poisson in-
puts received through the excitatory inputs and the underlying
spike generation process. With 20 trials of data for each stim-
ulus, stimulus-dependent information was detected in most of
the cases (75%). (This compares with only 8% of false posi-
tives obtained from a different simulation where there was no
stimulus-dependent common input.) Furthermore, the mean
stimulus-dependent cross-cell information across-the 20 repe-
titions of the experiment was 0.040 � 0.015 (SE) bits. Thus in
20 neurophysiological experiments performed with different
neurons and 20 trials for each stimulus, the stimulus-dependent
cross-cell information could be detected very reliably (P 	
0.001 by t-test compared with the datasets with no stimulus-
dependent common input). We also showed that in 10 neuro-
physiological experiments performed with different neurons
and 20 trials for each stimulus, the stimulus-dependent cross-
cell information could be detected reliably (P � 0.022 by t-test
compared with the datasets with no stimulus-dependent com-
mon input). For comparison, we analyzed the case with 200
trials per stimulus, which provides approximately the asymp-
totic values, and found that the information was detected in
100% of the experiments (with no false positives), and the
mean stimulus-dependent cross-cell information was 0.041 �
0.003 bits. To assess the power efficiency of the rate informa-
tion measurements, we performed simulations with Poisson
spike trains for a case in which two cells fired at 45 and 35 Hz
to one stimulus and at 37 and 25 Hz to a second stimulus. From
20 repetitions of the experiment and 20 trials for each stimulus,
we obtained 0.07 � 0.01 bits (0.074 � 0.002 bits with 200
trials per stimulus). Thus the rate information can also be
detected with approximately 20 trials of data for each stimulus
in 20 experiments. In summary, in the equivalent of 20 neu-
rophysiological experiments, the rate information, the stimu-
lus-independent cross-cell contribution to the information, and
the stimulus-dependent cross-cell contribution to the informa-
tion can all be highly reliably detected by this approach to
information measurement. Furthermore, the most difficult term
to detect, the stimulus-dependent cross-cell term, can be reli-
ably detected in as few as 10 experiments with just 20 trials for
each stimulus.

We emphasize that the point being made here is about
whether spike data generated with biologically relevant param-
eters is likely to reflect information that could be produced by
stimulus-dependent inputs to neurons, and the point is not
about the sensitivity of the information measurement algorithm
itself. The sensitivity of the algorithm, with respect to whether
stimulus-dependent cross-cell information is present in the
particular spike trains provided to the algorithm, was assessed
as described above using the trial shuffling Monte Carlo pro-

cedure. What we are addressing here is whether the actual
spike trains generated probabilistically by the neurons would
reflect stimulus-dependent inputs if only a limited number of
trials was selected to test. The conclusion is that, provided that
there are 20 trials per stimulus, stimulus-dependent common
input to cells is likely to lead to spike trains that show stimulus-
dependent cross-cell information, although there are strong
benefits to having more trials of data for each stimulus. The
underlying reason for this is that with short trains of Poisson-
like spike firing, there is so much variability with just a few
spikes available on any one trial for each neuron that the
randomness prevents, on some trials, the effects of the cross-
correlation being present in the actual spike trains. We note
that if only limited numbers of trials of data for each stimulus
are available, using an algorithm that can utilize more than a
few spikes per trial will be potentially advantageous. One such
approach to this is being developed, in which rather than a
Taylor expansion approach, a decoding approach is used
(Franco et al. 2003).

Application of the approach to real neuronal data

In Fig. 4, the information values obtained for three simulta-
neously recorded cells in experiment bj288 are shown. Figure
4A shows the total information and the different contributors to
it. The development of the components in a time window
starting at 100-ms poststimulus and increasing up to a value
that is 100 ms long is shown. The cross-correlogram for one
pair of the cells shows (Fig. 3) that there is a significant
cross-correlation between the firing of the two cells (recorded
on 2 separate microelectrodes) with a lag centered close to 0
ms. The algorithm shows that the contribution of the “Rate”
term [i.e., the first derivative of the information (Eq. 8) and the
first term of Eq. 9, i.e., Itta) is approximately (after 100 ms)
0.38 bits. There is a small negative contribution of the cross-
cell part of Ittb (the “stimulus-independent cross” term in Fig.
4), although this appears only toward the end on the time
window (beyond approximately 2� as defined in Fig. 2) and is
�0.04 bits. This term reflects a small amount of redundancy
that is produced because the cross-cell signal correlations vij
and noise correlations � �ij(s) � s were both positive. The
stimulus-independent auto-term is close to zero, indicating that
the trial by trial variability of each cell (averaged across-
stimuli) is close to the variability expected for a Poisson
process (i.e., the variance is close to the mean).

A feature of the data shown in Fig. 4 is that the stimulus-
dependent cross-term contribution is positive and appears quite
large (at 0.13 bits). To analyze the extent to which this is a
statistically significant contribution to the total information, we
performed a Monte Carlo test in which the degree of variability
of this term was measured with repeated different random
re-pairings (i.e., re-assortment or scrambling) of the trials
within each stimulus. For each rearrangement of the data from
individual cells between different trials (which also breaks any
synchronization between the spikes of the simultaneously re-
corded neurons), the algorithm calculates the apparent cross-
cell stimulus-dependent information. From this, the SD of this
contributor to the information can be obtained. We show twice
this SD in the plot in Fig. 4B. Any value of the cross-cell
stimulus-dependent information from the simultaneously re-
corded neuronal data that lies outside this confidence interval
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would be significant. We see from Fig. 4B that the apparent
information contribution from the stimulus-dependent cross-
cell term is not generally more than 2 SD from the mean. This
shows that there is considerable variability in what can be
extracted in this stimulus-dependent cross-cell term, and in-

deed the estimated contribution is hardly statistically signifi-
cant. This is a very useful feature of the details of the infor-
mation analysis approach described here, because it enables a
test to be performed of whether the stimulus-dependent cross-
cell term, which could reflect stimulus-dependent synchroni-

FIG. 3. Cross-correlogram between cells 1 and
31 for the set of simultaneously recorded cells re-
corded in experiment bj288. The raw cross-correlo-
gram is shown at the top, the “shift predictor” cross-
correlogram in the middle (which is produced by
random re-pairings of the trials), and the corrected
cross-correlogram (obtained by subtracting the shift
predictor from the raw cross-correlogram) is at the
bottom. The cross-correlogram was calculated by,
for every spike that occurred in 1 neuron, adding to
a histogram the relative times of occurrence, or lag,
of all the spikes that occurred for the other neuron.
Dashed lines show the 1% confidence limits, assum-
ing that the counts in the bins of the cross-correlo-
gram are Poisson-distributed. The cross-correlo-
gram is for the period when the cells were respond-
ing to the 500-ms stimulus, namely in the period
100–600 ms after stimulus onset, given the re-
sponse latencies of 100 ms.

BA

FIG. 4. The information analysis applied to real simultaneous recording data from 3 neurons in experiment bj288, in which 20
complex stimuli effective for inferior temporal cortex neurons (objects, faces, and scenes) were shown. A: graphs show the
contributions to the information from the different terms in Eqs. 8 and 9, as a function of the length of the time window, which
started 100 ms after stimulus onset when inferior temporal cortex (IT) neurons start to respond. Rate information is the sum of the
term in Eq. 8 and the 1st term of Eq. 9. Contribution of the stimulus-independent noise correlation to the information is the 2nd
term of Eq. 9 and is separated into components arising from the correlations between cells (the cross-component, for i � j) and
from the autocorrelation within a cell (the auto-component, for i 	 j). This term is not 0 if there is some correlation in the variance
to a given stimulus, even if it is independent of which stimulus is present. Contribution of the stimulus-dependent noise correlation
to the information is the 3rd term of Eq. 9, and only the cross-cell term is shown (for i � j), because this is the term of interest.
B: value of the cross-cell term of the stimulus-dependent information and 2 SD of information obtained from 30 repetitions of the
shuffling of the trials using the Monte Carlo procedure described in the text.
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zation of the simultaneously recorded cells and is reflected in
whether �ij(s) is different for different stimuli, is significant.

The overall conclusion from the data analysis performed on
the set of cells in experiment bj288 is that most of the infor-
mation is contained in the “Rate” term, that there is little
redundancy between the cells in that the stimulus-independent
cross-term is low, and that the stimulus-dependent cross-cell
correlation contributes in a way that is barely statistically
significant. It is also notable in Fig. 4 that the terms apart from
the rate tend to start to contribute relatively far on in the time
window (in this case after 50 ms). The vertical line in Fig. 4
shows the mean value of the interspike interval of the fastest
firing neuron to its most effective stimulus.5 At about this
value, the number of spikes in the time window from each
neuron may on some trials be more than 1, and beyond this
value, the information expansion described in Eq. 2 may tend
to break down. In practice, we find with simulated data (where
the amount of information can be calculated) that the expan-
sion often works reasonably �2–3 times this period. A useful
practical procedure in many cases is to note further that the
region where the Taylor expansion will start to break down is
when Itt becomes as large as It (see Eq. 2). A related check is
for whether there is an inflection in any of the information
curve as time window increases in duration. We applied such
checks to all data presented in the 100-ms time window in this
paper. To show how many spikes were likely to be present for
the most effective stimuli in the 100-ms time window for the
set of neurons tested with five moving stimuli and hence
included in Table 1, we showed in Table 1 the average firing

rate to the most effective stimulus for the most responsive
neuron in each of these experiments.

Another type of effect of correlation that leads to stimulus-
independent synergy contributions is illustrated in Fig. 6 from
experiment bj229. (The cross-correlogram is shown in Fig. 5.
Figure 6A shows that a considerable proportion of the infor-
mation available in a 100-ms time period was available in the
rates. In addition, there was a small positive value for the
cross-cell stimulus-independent term, which reflected some
anti-correlation between the response profiles of the cells to the
set of stimuli. This is produced by a small negative value for vij

(evident after approximately 50 ms into the time window, and
indicating anticorrelated neuronal response profiles to the set of
stimuli; shown in Fig. 6C) together with a positive value for
��ij�w [which is defined as �n� i(s)n� j(s)�ij(s)�s; shown in Fig. 6D].
(��ij�w is just �ij(s) for each stimulus weighted by the number
of spikes and averaged across-stimuli.) Figure 6A shows that
there is a small positive contribution to the information from
the stimulus-dependent cross-cell term, and Fig. 6B shows that
this is less than 2 SD from what is produced by random
reassortment of the trials within those available for each stim-
ulus, and therefore is not significant. We note that the cells
were recorded on two different electrodes so that cells 1–3 mm
apart can show these effects. The conclusion from the appli-
cation of the information theoretic approach utilized in this
paper is that the total information available from the cell is
greater than that from the “Rate” term and that this is due to a
stimulus-independent cross-cell term.

Another type of effect of correlation, which leads to stimu-
lus-independent redundancy contributions, is illustrated in Fig.
7 from experiment bj024b. Figure 7A shows that a considerable5 3x on some of the Figures indicates 3 times this value.

FIG. 5. Cross-correlogram between the responses
of simultaneously recorded inferior temporal cortex
neurons from an experiment in which 20 stimuli of
the type that activate inferior temporal cortex neu-
rons were shown in random sequence from experi-
ment 229. Top: raw cross-correlogram. Middle: shift
predictor data, showing values obtained for the cross-
correlation coefficients when data for each cell were
shuffled between trials. Bottom: cross-correlogram
corrected by subtracting the shift predictor, with the
P � 0.01 confidence limits indicated.
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proportion of the information available in a 100-ms time period
was available in the rates. In addition, there was a small
negative value for the cross-cell stimulus-independent term,
which reflected some correlation between the response profiles
of the cells to the set of stimuli. This is produced by a small
positive value for vij (as shown in Fig. 7C), together with a
positive value for ��ij�w (as shown in Fig. 7D). Although there
was some redundancy related to the negative cross-cell stim-
ulus-independent contribution to the information, the total in-
formation was in fact higher than the rate information because
the total information included a positive stimulus-independent
auto-cell contribution. The positive stimulus-independent auto-
contribution reflects less variability in the neuronal responses
than would be the case for independent spikes, generated by for
example a Poisson process.

We now summarize a dataset of seven experiments the type
of result that was obtained in a set of recordings from the
macaque inferior temporal visual cortex when a set of five

moving visual stimuli were being shown in a visual fixation
task. The images included moving faces and objects, which are
known to activate some inferior temporal cortex neurons (Rolls
2000). Part of the interest of these data are that when stimulus-
dependent synchronization effects have been described in early
cortical visual areas, moving stimuli have often been used
(Singer 1999, 2000). A total of 10–25 trials of data for each
stimulus, presented for 500 ms, were acquired. The methods
were similar to those described by Rolls et al. (1997), except
that simultaneous recordings from small populations of single
neurons were made with two to four separate movable micro-
electrodes, and the stimuli were moving against complex back-
grounds so that segmentation and motion, which potentially
enhance the need for binding and thus perhaps for synchrony
(Singer 1999, 2000), were involved.

The results for the seven experiments that were completed
with groups of two to four simultaneously recorded inferior
temporal cortex neurons are shown in Table 1. The total

FIG. 6. Results of the information analysis on a set of 2 simultaneously recorded inferior temporal cortex neurons in experiment
229 in which 20 complex stimuli effective for IT neurons (objects, faces, and scenes) were shown. A: graphs show the contributions
to the information from the different terms in Eqs. 8 and 9, as a function of the length of the time window, which started 100 ms
after stimulus onset, when IT neurons start to respond. Rate information is the sum of the term in Eq. 8 and the 1st term of Eq.
9. Contribution of the stimulus-independent noise correlation to the information is the 2nd term of Eq. 9 and is separated into
components arising from the correlations between cells (the cross-component, for i � j) and from the autocorrelation within a cell
(the auto-component, for i 	 j). This term is not 0 if there is some correlation in the variance to a given stimulus, even if it is
independent of which stimulus is present. Contribution of the stimulus-dependent noise correlation to the information is the 3rd
term of Eq. 9, and only the cross-term is shown (for i � j), because this is the term of interest. B: value of the cross-cell term of
the stimulus-dependent information and 2 SD of its variation as estimated by the Monte Carlo method described in the text. C: value
of vij, the signal correlations, measured both across-cell pairs (cross-, dashed lines) and within cells (auto-, i.e., i 	 j, shown by a
solid line for each cell). D: time course of the �ij term weighted by the firing rates of the neurons (in particular, �n� i(s)n� j(s)�ij(s)�s,
where ni is the number of spikes in time t from cell i, which corresponds to �r�i(s)r�j(s)�ij(s)t2�s, where ri is the firing rate of cell i
in time t. This term is defined as ��ij�w in the text.
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information is the total from Eqs. 8 and 9 in a 100-ms time
window and is not expected to be the sum of the contribu-
tions shown in Table 1 because the stimulus-dependent
auto-term is not shown in Table 1. (The latter term includes
terms produced in the algorithm we used from the Monte
Carlo correction procedure.) The results show that the great-
est contribution to the information is that from the rates
(0.28 bits on average in each experiment), i.e., from the
numbers of spikes from each neuron in the time window of
100 ms. The average value of �0.03 bits for the cross-term
of the stimulus-independent “noise” correlation-related con-
tribution is consistent with a small amount of common input
to neurons in the inferior temporal visual cortex, producing
redundancy. The cross-term of the stimulus-dependent con-
tribution was on average very close to zero, and in no case
was statistically significant. Thus stimulus-dependent syn-
chronization made no contribution to the information re-
flected in the responses of this set of neurons. Table 1 also
shows some positive contribution averaged across-the data-
sets of the stimulus-independent auto-term. This reflects the
fact that for this set of cells, the spike trains of each neuron
taken individually were less variable than if they were
generated by an independent process such as a Poisson
process.

D I S C U S S I O N

We have shown in this paper how different aspects of the
firing of simultaneously recorded neurons might contribute to
the total information that could be extracted from the firing.
We now consider what use different decoding procedures
might make of these different sources of contribution and to
what extent neurons might implement particular decoding pro-
cedures. The “rate” information plotted in the graphs does not
include the trial-by-trial variability of the neuronal responses.
However, this is reflected in the stimulus-independent cross-
cell term and auto-term (of Ittb). Let us consider the cross-cell
term. If, for example, positive values for vij, reflecting some
correlation in the firing rate response profiles of the cells to the
set of stimuli, are combined multiplicatively with a contribu-
tion from the �ij terms, which indicates that the cells tend to
respond in the same way on any given trial (reflecting stimulus-
independent synchronization produced by common input), then
redundancy arises. Now consider the auto-cell term of the
stimulus-independent contribution. If this term is large, it re-
flects, calculated separately for each stimulus, the variability of
the neuronal responses to that stimulus [measured by �ij(s)]
weighted by the firing rate to that stimulus and then averaged
across-stimuli (see Eq. 9, second term). This term is simply
added for different cells in a simultaneously recorded set. Let

FIG. 7. Results of the information analysis on a set of 3 simultaneously recorded inferior temporal cortex neurons in experiment
bj024b in which 5 moving stimuli effective for IT neurons (objects and faces) were shown against a complex natural background.
Conventions as in Fig. 6.
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us now consider a decoding procedure that operates on the
average responses of each cell to each stimulus, as illustrated in
Fig. 10.17 of Rolls and Treves (1998), in Fig. 5.9 of Rolls and
Deco (2002), and in Fig. 9 of Franco et al. (2003). If we take
a single test trial of the number of spikes available from each
cell, as shown at the bottom of these figures, we can ask how
much information can be obtained about which stimulus was
present. If the decoding procedure takes just the dot product of
the cell firing rate response vector on the single trial with the
average response vectors to each stimulus, then this decoding
will reflect what is described by the “Rate” term and by the
stimulus-independent term (Ittb), including both the cross- and
auto-cell parts. This is one of the decoding procedures de-
scribed by Rolls et al. (1997) and is used to calculate the
information available from populations of neurons. We might
call the combined contribution of the “Rate” and stimulus-
independent contributions as described here the “average spike
count information,” because it is available simply by counting
the number of spikes from each of the cells on a given trial and
comparing it to the average of the spike counts to each stim-
ulus. What this does not take into account is the stimulus-
dependent correlations between the spikes that occur. Such
stimulus-dependent synchronization effects are not reflected in
the dot product decoding procedure, because to detect the
effects of synchronization would entail storing the correlation
between the firing of every pair of cells for every stimulus, and
this is reflected in the stimulus-dependent cross-cell term de-
scribed in this paper.

We now discuss what this approach and the analyses of
simulated data sets and of a small number of simultaneously
recorded neuronal datasets reveal about redundancy. The base-
line condition considered is independent spike generation of
the simultaneously recorded neurons such as would be gener-
ated by Poisson processes operating in each neuron but where
there are significant differences in the average number of
spikes to each stimulus. If the signal correlations (vij) are zero,
there is information in the “Rate” terms as labeled in the
diagrams in this paper of each cell [i.e., the first derivative of
the information (Eq. 8) and the first term of Eq. 9, i.e., Itta), and
the “Rate” terms of simultaneously recorded cells add linearly.
If the signal correlations (vij) are different from zero, there is
still information in the “Rate” terms of each single cell, but the
cross-cell part of Itta is negative, and the “Rate” terms of
simultaneously recorded cells add sub-linearly, that is there is
redundancy. Shuffling the trials makes no difference to this
redundancy, because trial by trial correlations (reflected in �
terms) do not contribute to Itta. This factor can only produce
redundancy and not synergy. We note also that this “Rate”
term does not include any reduction in the information that
arises from the variability in the neuronal responses from trial
to trial for a given stimulus.

We note that the redundancy arising from nonzero signal
correlations can in principle be compensated for by the “noise”
correlations averaged across stimuli. As described earlier, this
compensation occurs when the signs of the signal and noise
correlations are opposite and is reflected in Ittb, the stimulus-
independent contribution to the total information that depends
on the noise correlations. In practice, with most cell popula-
tions we have analyzed in the inferior temporal visual cortex,
the signal correlations vij tend to be weakly positive or zero, the
noise correlations averaged across stimuli, ��ij(s)�s, tend to be

zero or weakly positive, and the result is a small negative value
for the cross-cell stimulus-independent term, reflecting a small
amount of redundancy (see examples above, the data in Table
1, and the data in Rolls et al. (2003)).

The variability in the neuronal responses from trial to trial
for a given stimulus, then averaged across-stimuli, is reflected
in the auto-part of Ittb. This term is negative if the variability is
greater than would be generated by a Poisson-like spike gen-
eration process.

Adding together the “Rate” contribution with both the cross-
cell and auto-parts of Ittb gives what is generally thought of as
the information that is present in the firing rates of cells (Rolls
and Treves 1998; Rolls et al. 1997). As noted above, this
information is available in a simple neuronally plausible dot
product decoding.

The third way in which this approach identifies contributions
to redundancy versus synergy is in the stimulus-dependent
cross-cell term that is made explicit in Ittc. This term measures
the effects of stimulus-dependent “noise” cross-correlations in
the firing of different cells. This is not included in what is
generally thought of as the information available from the
firing rates of the cells. This term shows considerable variabil-
ity in real data in realistic time epochs in the order of 100 ms
that contain zero to several spikes from each cell. This vari-
ability means that, at least in our datasets, cross-correlations
that may be evident when thousands of spikes are used to make
the cross-correlogram (see e.g., Fig. 3) actually may in a short
temporal epoch on a single trial make a relatively little, and
only rarely a statistically significant, contribution to the infor-
mation available from the spikes. One might argue that if there
was an enormous pool of neurons showing these weak stimu-
lus-dependent noise correlation effects, then overall this might
become more important (Salinas and Sejnowski 2000). How-
ever, we note that by making the neuronal pool much larger,
the information from the firing rates would also become much
larger, leaving the relative contribution of spike timing be-
tween neurons small. (It is also possible that cross-cell tempo-
ral structure might contribute to encoding, and if present with
different lags on different trials, might not be apparent in a
cross-correlogram based on thousands of spikes. Such tempo-
ral encoding could in principle be detected by the methods
described here, but in practice in the real neuronal dataset
analyzed, no evidence for this type of encoding was found.)

The overall effect of correlations on the information avail-
able from simultaneously recorded cells can be estimated by
comparing the “total information” for the cells recorded simul-
taneously with the sum across the cells for the “total informa-
tion” measured separately for each cell. For the dataset shown
in Table 1, this shows that any synergy from stimulus-depen-
dent cross-correlations is smaller than the redundancy arising
from stimulus-independent cross-correlations, resulting in a
mean redundancy of 12% for these groups of two to four
simultaneously recorded cells. This is smaller than the value of
20% for pairs of cells recorded from the same electrode in
macaque inferior temporal cortex by Gawne and Richmond
(1993), probably reflecting the fact that we recorded with
several electrodes and thus were able to measure the informa-
tion from neurons that were not adjacent in the cortex. As
noted in the Introduction, the method described in this paper is
able to show how this overall redundancy is contributed to by
the stimulus-dependent and stimulus-independent correlations.
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In conclusion, in this paper we have shown how to apply and
statistically evaluate the Taylor expansion approach of the
Shannon mutual information (Panzeri et al. 1999) to datasets
from simultaneously recorded neurons. We have shown how
the different terms in the expansion reflect stimulus-dependent
and stimulus-independent covariation in the spike trains of the
simultaneously recorded neurons, have shown how each of the
terms can be statistically evaluated, and have performed a
power efficiency analysis of the approach. The conclusion is
that the approach can provide with 20 experiments statistically
reliable estimates of the different contributions with as few as
20 trials of data for each stimulus in each experiment. We note
that, even when steps are taken in the simulations to provide
large amounts of stimulus-dependent input to pairs of neurons,
that the resulting stimulus-dependent gain of information is
typically low relative to the rate information term across the set
of stimuli. We also found that, at least in the real neuronal
datasets we examined from the inferior temporal visual cortex,
the amount of information in the correlations is typically low
relative to that in the rates. Moreover, the approach taken in
this paper shows that the encoding of evidence available in
neuronal firing about which stimulus is present must be as-
sessed quantitatively using information theoretic measures,
such as those described here.
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