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Abstract—A two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in a Field Programmable

Gate Array (FPGA) board. Extensive Monte Carlo simulations were carried out using an efficient hardware representation of individual

spins and a combined global-local LFSR random number generator. Consistent results regarding the descriptive properties of magnetic

systems, like energy, magnetization and susceptibility are obtained while a speed-up factor of approximately six times is achieved in

comparison to previous FPGA-based published works and almost 104 times in comparison to a standard CPU simulation. A detailed

description of the logic design used is given together with a careful analysis of the quality of the random number generator used. The

obtained results confirm the potential of FPGAs for analyzing the statistical mechanics of magnetic systems.

Index Terms—Hardware implementation, LFSR random number generator, Monte Carlo simulations, Ising model
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1 INTRODUCTION

IN recent years several advances in microelectronics have
permitted the utilization of new devices for carrying out

parallel numerical simulations in order to speed up the
computational times involved. Among the most used hard-
ware devices we can mention multi-core processors [1],
GPU cards [2] and FPGA boards [3]. As it is usually the
case, there is no one system better than other for all situa-
tions, as the answer is very much dependent on the prob-
lem under analysis together with the circumstances of the
developers in relationship to budget, programming exper-
tise, development time, etc. [4] In this work a FPGA based
implementation of the two-dimensional ferromagnetic
Ising model is carried out using Monte Carlo simulations.
Field programmable gate arrays (FPGA) are reconfigurable
hardware devices that can be reprogrammed to implement
different combinational and sequential logic created with
the aim of prototyping digital circuits as they offer flexibil-
ity and speed. In recent years advances in technology have
permitted to construct FPGAs with considerable large
amounts of processing power and memory storage, and as
a consequence they have been applied in an ever increas-
ing range of domain, like telecommunications, robotics,
pattern recognition tasks, and infrastructure monitoring,
among others [5], [6], [7].

The Ising model is a paradigm of the statistical physics
approach to the study of finite temperature equilibrium
properties of many body systems, by reducing complex
interactions to their minimal expression (for a short review
see [8] and references therein). The model assigns a set of
binary variables, called spins, to every site of a regular grid
or lattice. Every spin represents the component of the local
magnetic moment in a crystalline solid, respect to the direc-
tion of an external magnetic field. The model is completed
by defining an energy function that depends on the values
of all spins in the lattice. Statistical Mechanics provides then
a recipe to derive from the energy function the equilibrium
probability distribution of the microscopic configurations of
the system (i.e., any combination of spin values), from
which macroscopic properties—like, the total magnetization
or mean energy—are obtained by averaging the appropriate
variables.

Despite its relative simplicity, Ising-type models and their
generalizations (e.g., Potts model, see [9] and references
therein) are extensively used to analyze properties of a large
variety of systems exhibiting cooperative phenomena, rang-
ing from simple ferromagnetism to complex disorderedmate-
rials (e.g., spin glasses) [10]. Moreover, being originally
restricted to the realm of solid state physics, they have been
shown to be extremely useful in other disciplines, such as soft
condensed matter (e.g., soap bubbles and foam [11], [12]),
biology (e.g., biological cells [13]) and neural networks [14].

The cooperative phenomena those models intend to
describe are a synergistic result of the interaction among a
very large (macroscopic) number of relatively simple units.
Statistical Mechanics theory seeks then to describe the
asymptotic behavior of averaged macroscopic quantities—
like energy or magnetization—in the limit of an infinite
number of units (the so called thermodynamic limit). How-
ever, in most cases it is extremely difficult to obtain such
limiting behavior analytically. Thus, the usual approach is
to perform numerical simulations for an increasing number
of units and then extrapolate the results to the limit of
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infinite number of units. This raises the question about the
minimum number of units needed to obtain an accurate
extrapolation to the thermodynamic limit. While for the esti-
mation of some quantities up to �104 units may be enough
(and attainable in a CPU code in a few hours), others may

require at least �106 or more units to get reliable results (see
[9] and references therein). Such calculations are only
achievable in reasonable time scales with the use of parallel
computing. Therefore, it is of critical importance to develop
and assess massively parallel implementations of statistical
physics models. In that respect, the Ising model has become
one of the most common benchmarks for testing novel sta-
tistical mechanics simulation algorithms and parallel com-
puting implementations. The most simple version (namely,
that in which only nearest neighbors spins interact ferro-
magnetically) constitutes one of the few examples of an
interacting many body system for which non trivial equilib-
rium properties are known exactly in two spatial dimen-
sions [15]. This is not true in general for systems with more
complicated interactions. Hence, theoretical analysis is usu-
ally limited to approximated methods whose ultimate valid-
ity strongly relies on Monte Carlo numerical simulations.

One of the most common ways to simulate the behavior
of Ising-type models is the Metropolis-Hastings algorithm
[16], which works by generating a sequence of sample con-
figurations of the system that converges to the equilibrium
finite temperature distribution. The Metropolis-Hastings
algorithm requires the use of random numbers and as such
is considered a Monte Carlo type simulation [17]. Monte
Carlo simulations depend strongly on the generation of
pseudo random numbers and for this reason an efficient
simulation normally adapts the algorithms used to the hard-
ware utilized. In particular, in FPGA boards the standard
random number generators are based on linear feedback
shift registers (LFSR) schemes [18]

FPGA boards can be used as hardware accelerators sys-
tems in several domains of applications. For example in life
sciences, several recent works have benefitted from the use
of FPGA boards for speeding up Monte Carlo simulations
[19], [20]. The use of FPGA boards to study Ising type sys-
tems is relatively recent and thus just very few works have
been published so far. Among these, the approach taken by
the Janus consortium is worthmentioning as they are using a
cluster of FPGA boards [21], [22]. Lin et al. have studied the
two-dimensional Ising model [23], and more recently Gil-
man have analyzed the 3-D Ising model [24]. In this work,
further optimization of the parallel updating of spin blocks is
achieved by combining a global 32 bit LFSR with a smaller
12-bit local LFSR to get random numbers for the individual
spin updates. Based on that strategy, we developed a highly
efficient FPGA implementation of the Metropolis-Hastings
algorithm for Ising type models, which was checked against
the exact results for the two dimensional ferromagnetic near-
est-neighbor models. The present implementation shows a
considerable performance improvement with respect to
previous ones.

2 THE TWO DIMENSIONAL ISING MODEL

The Ising model was originally devised to represent a ferro-
magnetic solid. It assigns a binary variable Si ¼ �1, called

spin, to each site of a regular lattice in d dimensions, where
i labels the site. Si represents the component of the mag-
netic moment at site i respect to the direction of an external
magnetic field of intensity B. In this work we have ana-
lyzed the two-dimensional Ising model with interactions
between nearest neighboring spins, in a square lattice with
N ¼ L� L sites, For this case, the energy of the system
(Hamiltonian) is defined as:

H ¼ �J
X

< i;j>

SiSj �B
XN

i¼1

Si; (1)

where <i; j> denotes a sum over all pairs of nearest neigh-
bor sites of the lattice and J > 0 is the ferromagnetic inter-
action constant or also called exchange constant. In the
absence of a magnetic field B ¼ 0, the energy is minimized
in the ferromagnetic state, i.e., when all spins take the same
value. In this work we considered J ¼ 1 and B ¼ 0, and
used periodic boundary conditions.

The spin dynamics is governed by the Metropolis-Hast-
ings algorithm, which essentially consists in the update of
the present state of a given spin according to the change in
the energy DE produced by the flipping of the spin. The
spin value is changed if its flip reduces the energy, i.e. if
DE < 0. If DE > 0 the spin flip can be accepted, provided
that a generated random number r is smaller than the
Boltzmann factor

r < e�bDE (2)

where b ¼ 1=kBT , T being the temperature and kB is the
Boltzmann constant (in this work we use kB ¼ 1). In a
sequential implementation the algorithm proceeds by pick-
ing spins one by one according to some protocol (usually
randomly) until all spins (on the average in the case of ran-
dom picking) have been updated (an update means a single
trial; the spin can remain in its previous value after the
update). Once all spins have been updated, this is called a
Monte Carlo Step (MCS) and constitutes the basic iteration
time unit.

Parallel implementations of the Metropolis algorithm
in the square lattice make use of the nearest-neighbor
interactions as follows. Let S0 the spin to be updated.
Then it is easy to see that the change in energy (1) (with
B ¼ 0) produced by a single spin flip S0 ! �S0 is given
by DE ¼ 2�, where

� ¼ ðS1 þ S2 þ S3 þ S4Þ � S0; (3)

and S1; . . . ; S4 denote the four nearest neighbors spins of S0.
The square lattice can be divided into two square sublattices
with a checkerboard structure, in such a way that the near-
est neighbors of any spin in a given sublattice belongs to the
other (see section for details). Hence, all spins in a sublattice
can be updated simultaneously without risk of concurrency
issues. A MCS is then completed by one updating of the
two sublattices.

In a typical simulation a sequence of random spins con-
figurations is generated from some initial one, by successive
application of the above algorithm. For a long enough
sequence (measured in MCS) it can be shown that the
probability distribution for spins configurations becomes
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stationary [17]. Further application of the algorithm pro-
vides a sample set of configurations over which averages of
quantities of interest can be calculated. A typical quantity is
the average magnetization per spin:

m ¼ hMi=N; (4)

where M ¼ P
i Si and h� � �i stands for an average over a sin-

gle equilibrated MC sequence of spins configurations.
Another quantity of interest is the zero field magnetic sus-
ceptibility, which characterizes the linear response of the
system to an externally applied magnetic field. The mag-
netic susceptibility can be computed form the fluctuations
in the magnetization as follows:

x ¼ 1

kBTN
ðhM2i � hMi2Þ : (5)

In the thermodynamic limit (infinite lattice size) when B ¼ 0
and d � 2, this model undergoes a second order phase tran-
sition at a very well defined critical temperature Tc, namely,
the magnetization becomes zero for t � Tc and different
from zero for T < Tc. Also the susceptibility diverges at
T ¼ Tc as x � jT � Tcjg , where g > 0 is a critical exponent
that depends only on the dimensionality d [25].

3 FPGA

FPGAs [26] are reprogrammable silicon chips, using pre-
built logic blocks and programmable routing resources.
They can be configured to implement custom hardware
functionality, and in this sense, FPGAs are completely
reconfigurable and can almost instantly change its behavior
by recompiling a new circuitry configuration.

The board used for the current implementation is the
Virtex-5 OpenSPARC Evaluation Platform (ML509). This
device includes a Xilinx Virtex-5 XC5VLX110T FPGA that
provides different connector devices: 2 USBports, 2 PS/2
ports, RJ-45 and RS-232 connectors, 2 Audio Inputs, 2
Audio Outputs, Video Input, Video Output, Single-Ended
and Differential I/O Expansion. Table 1 shows some char-
acteristics of the Virtex-5 XC5VLX110T FPGA, indicating
its main logic resources.

All computations have been performed using fixed
point arithmetic, which is the standard way to work
with FPGA boards. Even if floating point operations can
be codified efficiently in FPGA boards without signifi-
cant additional resources [27], [28], they tend to be less
efficient than fixed point arithmetic, as it is also the case
for most digital circuits.

4 IMPLEMENTATION

The FPGA implementation parallelizes the spin updates in
order to compute faster the system evolution. The actual
value of the spins �1 are stored as Boolean values using
memory blocks while the spin dynamics is implemented
using groups of LUTs. For larger lattice sizes, the number
of LUTs available is not enough to simulate the dynamics of
the whole lattice so the process is carried out in a number of
steps in which a group of spin rows is updated.

Fig. 1 shows the hardware implementation of a spin. On
the left side of the figure, six different inputs and two clock
signals are shown. From top to bottom, we see the first input
(“Spin”) that gets the spin value from the register. The fol-
lowing four inputs correspond to the adjacent nearest-
neighbor spins of the one under consideration, and they are
indicated by ‘L’ (left), ‘T’ (top), ‘R’ (right) and ‘B’ (bottom).
The current spin value is taken from the grey block of regis-
ters, while the four adjacent spin values are taken from the
white one (See Fig. 3). The input indicated by LFSR32 is a
generic (pseudo) random signal that will be combined with
a local LFSR through a XOR gate for obtaining a local ran-
dom value (see details of this process in Section 5). Two
clock signals are used, one corresponding to the system
clock signal (Clk_A), and another with double frequency

TABLE 1
Main Specifications of the Virtex-5 XC5VLX110T FPGA

Related to Its Available Slice Logic

Device Slice Slice Bonded Block

Registers LUTs IOBs RAM

Virtex-5 69,120 69,120 34 148
XC5VLX110T

Fig. 1. Logic circuit representation used for the dynamic simulation of an Ising spin (see text for details).
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(Clk_B) obtained using a PLL in order to read the values of
the Lookup table. The frequency of Clk_B is twice that of
Clk_A to allow the whole updating process to be completed
in one system clock cycle.

The spin updating process starts by computing the sum-
mation of the values of the four adjacent spins (this process is
indicated in the left top corner of the Fig. 1), noting that first
the representation of these four spins is changed from the
Boolean one used in the register ð0; 1Þ to a binary one (�1)
used in the dynamics of the system (The representationmodi-
fication is indicated within a dotted circle at the top left of the
figure). The process continueswith the calculation of the local
function � (see Eq. (3)), that is computed multiplexing the
sumvalue of the four adjacent spins the current spin value.

The following step consists in the computation of the
exponential of �bDE, which is done using a lookup table

that stores every possible values of the function e�bDE .
Thus, the number of entries of the look-up table is five as

these are the number of possible different values of DE ¼
ð�4;�2; 0; 2; 4Þ. The values of e�bDE were represented using
a word length of 12. The lookup table was implemented
using configurable logic blocks (CLBs), in order to save
RAM resources for storing spin configurations, as only five
LUTs are needed.

The new value of the spin can be the same as the current
one or its opposite (according to the dynamics of the
model). This last case can be due to a decrease on the energy
associated with the spin (DE � 0) or in case that there is an

energy increase, if the value of e�bDE is larger than a random
number (indicated as r in Fig. 1). These two cases are imple-
mented through an OR gate that receives signals from two
comparison gates that evaluates the procedure previously
described. The output signal of the OR gate (indicated by
S_change) is then XOR with the spin value in order to obtain

the updated one. Finally, the new updated value is regis-
tered in order to synchronize the procedure.

The updating procedure just described requires the logic
resources indicated in Table 2, noting that the whole process
can be executed in one clock cycle with a maximum fre-
quency of 316.156 MHz. Nevertheless, the system frequency
has been set to 300 MHZ, as this is the maximum frequency
that can be obtained using a phase-locked loop (PLL) in
order to optimize the implementation.

The values shown in Table 2 determine the maximum
number of spins that can be updated in one cycle according
to the FPGA board specifications, number that can be
obtained from the following equation:

Max Spin � Available LUTS

LUTs per spin
: (6)

In the present case, the used board contains 69,120 LUTs,
permitting a simultaneous maximum implementation of

b6912030 c2m ¼ 2;048 spin sites, value that is obtained fromEq. (6),

where the obtained number should be a power of two to opti-
mize resource utilization. The previous analysis does not take
into account the whole process as in addition the storage of
the lattice spin values are needed, and this introduces a mem-
ory limiting factor. To analyze both memory and LUTS
requirements we need to analyze the whole updating process
considering the following. The spins are located in a two-
dimensional L� L square lattice that will be divided in two
checkerboard sub-lattices, as the whole system cannot be
updated simultaneously at the risk of a feedback catastrophe
[29]. Fig. 3a) shows an 8� 8 spin lattice inwhich two sub-latti-
ces are shown (white and grey colors are used for differentiat-
ing them), together with two memory modules that will be
used for storing these sub-lattice spin values. In our case the
FPGA BRAM is organized in 148 blocks of 1,024 � 36-bits
long. As each of the two memory modules store only half of
the total spin site, the number of used RAM blocks for differ-
ent lattice sizes is indicated in Fig. 2. It is also shown in this
figure by a horizontal dashed dotted line the maximum num-
ber of BRAM of the board that sets a maximum lattice size of
2,048. Nevertheless, in order to maximize the parallelism of
the procedure and in order to compare with previous works,
we focused out study in the 1,024� 1,024 case.

We describe below the whole updating process that will
be carried simultaneously for a group of rows, with a limit-
ing factor given by the maximum number of spins that can

TABLE 2
Logic Utilization for the Hardware
Implementation of a Single Spin

Logic Utilization Used

# Slice Registers 17
# LUTs 30

Fig. 2. RAM blocks resource utilization and number of spin rows that can
be updated simultaneously as a function of the lattice size.

Fig. 3. Schematic representation of an 8 � 8 lattice showing the checker-
board division into two sub-lattices and the use of two memory modules
to store spin values of each of the sublattices.
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be implemented. The maximum number of rows that can be
updated simultaneously can be computed simply by con-
sidering the total number of spins that can be represented
according to the number of LUTs of the board (2;048 in our
case, see the analysis described above in relationship to
Eq. (6)) divided by half of the lattice size:

# rows ¼ Max Spin

L=2
: (7)

The number of spin rows that can be updated simulta-
neously as just mentioned is shown in Fig. 2.

Fig. 4 shows the process implemented for updating the
values of one of the two sub-lattices. On top of the figure,
registers for storing the values of the spin to be updated
and of their neighboring ones are shown. The first row of
16 bit register corresponds to the 16 spins that can be
updated that are displayed at the bottom of the figure.
The second and third rows of register are used to store
the neighboring spins. In the bottom graph the white
squares are the spins to be updated and on grey color the
neighboring ones, where the indicated numbers and fill-
ing pattern correspond to the codification used in the
registers shown.

The whole process for updating a 8 � 8 grid of spins is
shown in Fig. 5, where the four steps involved are shown.
In the first step the first four rows of spins belonging to the
grey sub-lattice (16 spins for the 8 � 8 size case stored in the
bottom address row of the RAM) are updated (a); to then
update the remaining four rows (stored in the second
address row) in the second step (b). Third and fourth steps
correspond to the same updating process but for the spins
belonging to the white sub-lattice.

The updating process starts with an initial configuration
given by random spin values and a given value of the tem-
perature (T ), generating blocks of memory with these initial
values. An update iteration starts by transferring the value
of a row of spins to the slice registers and then to the block
of LUTS that simulate the spin dynamics.

5 LFSR RANDOM NUMBER GENERATION

Random numbers are an important part of Monte Carlo
simulations, as they should be properly generated in order
to avoid errors. As such, several authors have analyzed this
topic in great depth [30], [31], [32]. Among the different
algorithms to create random numbers, LFSR random num-
ber generators provide one of the most efficient alternatives
to use in hardware logic implementations (FPGAs, ASICS,
etc.). A LFSR works by taking a string of bits and producing
the next sequence by shifting all except the rightmost bit
one position to the right, setting the value of the new left-
most bit through a linear combination of the rest of the
sequence.

In a recent work Lin et al. [23] have used a combination
of a LFSR random number generator plus celullar automata
(CA) in order to study a FPGA based simulation of the Ising
model. Instead, in our implementation we used a novel
approach based on the XOR combination of two LFSRs: a
global 32-bit length and a shorter 12-bit local one. This
method was chosen in order to use more efficiently the
FPGA resources to allow larger numbers of spins to be
updated simultaneously, and thus per unit of time, leading
to a significant overall increase in computation speed (see
the detailed analysis in Table 3 and related text).

The hardware LFSR implementation consists in M num-
ber of registers in series (synchronized by a unique clock
signal), with M being the length of the bit sequence. The
output of one register is the input of the next, except for the
first one, which is a linear function (normally XOR or
XNOR) of some bits of the overall shift register value. The
two modules are shown in Fig. 6, where the top one corre-
sponds to a part included in the implementation of every
spin block. The bottom graph corresponds to a generic mod-
ule that uses a 32 bits LFSR. Each spin block contains a 12 bit
LFSR and the generation of pseudo random numbers for the
Ising model updating is done by combining through an
XOR function the 12 bits of the spin block LFSR with the
first 12 bits of the sequence generated by the global LFSR32
module.

Two different kinds of tests have been used to check for
the correct implementation of the random number

Fig. 4. Connectivity scheme for the update of four rows of an 8 � 8 Ising
spin lattice. On top of the figure, three registers are used to store spin
values corresponding to sites to be updated (first row) and to the neigh-
boring sites (second and third rows).

Fig. 5. Schematic representation of the hardware implementation for the
update procedure of a 2D 8 � 8 spin grid.
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generation process, the first described below based on a
standard suite of statistical tests (National Institute of Stand-
ards and Technology (NIST)) and the a second one based on
visual analysis.

5.1 Tests for Random Numbers

The NIST is a measurement standards laboratory belonging
to the United States Department of Commerce [33]. One of
its groups (the Random Number Generation Technical
Working Group) has provided software containing a battery
of statistical tests suitable for the evaluation of random
number generators [34].

We have applied the battery of 10 tests provided by NIST
to analyze the quality of the generated random numbers.
The random number generator used a combination of a
32bit global LFSR and a 12 bit local LFSR passed all the ten
tests and the results are shown in Fig. 7, obtaining an aver-
age for the p-values of 0.6311. As a comparison, we have
also executed the tests on the 32 bit LFSR resulting in lower
p-values (mean 0.5008), and a failure on the Rank test.

6 RESULTS

To verify the correct FPGA implementation of the Metropo-
lis-Hastings algorithm for the 2D-Ising model, we analyzed

the model’s critical behavior, which is characterized by the
presence of long-range spatial and temporal correlations, as
well a diverging response functions [35] (for instance, mag-
netic susceptibility). In this regime the system becomes
extremely sensitive to external perturbations like, in partic-
ular, implementation errors in the simulation algorithm.
The typical analysis of critical behavior involves the calcula-
tion of the magnetization and magnetic susceptibility as a
function of the temperature for increasing system sizes. For
an infinite system size the magnetization is zero above the
critical temperature Tc and different from zero below it,
while the susceptibility diverges at Tc. The respective curves
for finite size systems for both quantities have to develop
those singularities as the size increases, according to specific
rules determined by finite size scaling [35].

We started by obtaining the magnetization m in the
absence of an external magnetic field B ¼ 0 as a function of
the temperature for different lattice sizes according to
Eq. (4). In order to thermalize the system 1,000 MCS were
executed prior to any measurement, using 1,000 values for
obtaining the average value for each temperature with a 100
MCS separation between consecutive measurements.

The results are compared with the exact result [15] in
Fig. 8. Although the qualitative agreement is evident, the
calculation of a quantity more sensitive to the fluctuations
(such as a critical exponent) is needed in order to ensure
that the random numbers implementation does not intro-
duce a statistical bias. Hence, we also computed the mag-
netic susceptibility (cf. Eq. (5)), which is displayed in Fig. 9.
The maximum of the susceptibility it is known to scale as

xmax � Lg=n with the system size, where g and n are the criti-
cal exponents of the susceptibility and the correlation length
respectively [36].

In order to estimate xmaxðLÞ we performed a Lorentzian
fitting of the susceptibility curves for each value of L (see
Fig. 9). The log-log plot of xmaxðLÞ versus L shown in the
inset of Fig. 9 displays the expected power law behavior; a

TABLE 3
Number of Spins Updated Per Microsec-
ond for the 1,024 � 1,024 Ising Model

Platform # updated spins Ratio

CPU 62 1
Single GPU 7,977 129
Previous FPGA 94,127 1,518
64 GPUs 206,000 3,322
Our FPGA 614,400 9,909

Fig. 6. Hardware representation of the creation of the random value in a
generic spin, using a local LFSR12 and the general LFSR32.

Fig. 7. Output screenshot of the NIST random number evaluation pro-
gram that includes ten statistical tests (see text for more details).
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linear fitting of this plot provides an estimate g=n ¼
1:72� 0:05, in a very good agreement with the exact result
g=n ¼ 1:75 [25].

Finite size scaling provides also a method to estimate the
critical temperature Tc. The maximum of the susceptibility
is located at a pseudo critical temperature T 	 that depends
on the system size and converges to the critical temperature
Tc as T 	ðLÞ � Tc þ b=L, for large enough values of L, with
b > 0 [36]. From the Lorentzian fittings we also estimated
T 	ðLÞ. In Fig. 10 we plot T 	 ðLÞ versus 1=L. A linear extrap-
olation to 1=L ! 0 allowed us the estimate Tc ¼ 2:27� 0:1,
in excellent agreement with the exact result [15] Tc ¼
2= lnð1þ ffiffiffi

2
p Þ ¼ 2:269 . . . . This set of results confirms the

correct implementation of the algorithm.
Further, we have also compared the number of spins

updates in a microsecond obtained from the current imple-
mentation to previously obtained values from [23] regard-
ing CPU, GPU and previous FPGA implementations. The
results are shown in Table 3, where all values except those
in the last row were extracted from the work of Lin et al.
[23]. To put the results shown in Table 3 in context, we give
next some details of the hardware and methods used for
their obtention: the CPU platform results were obtained

using an Intel core i5 at 2.67 GHz (CPU) applying some opti-
mization techniques like a linear congruential generator
(LCG), sequential updating and cashed Boltzmann.
“Previous FPGA” values were obtained using a DK-DEV-
3CI20N board from Altera, while results in relationship to
the “64 GPUs” system were achieved using 64 intercon-
nected GPU processors in a supercomputer. For a discus-
sion about the advantages/disadvantages of the current
available hardware computing devices, in relationship to
magnetic systems and in a more general context, we refer to
the works of [9], [23], [37], [38].

In relationship to the computation time required to exe-
cute the numerical simulations presented in this work, we
have estimated the times employed to compute one MCS
and a whole simulation for obtaining one data value at a
given temperature. The results are shown in Table 4, as a
function of the system lattice size.

7 POSSIBLE EXTENSIONS

The implementation described in the sections above can be
extended with relatively modest modifications to systems
of current research interest. Here we will describe three
basic extensions that will illustrate the required changes in
the implementation.

Perhaps the simplest extension involves the inclusion
of next-nearest-neighbor interactions. The next-nearest
neighbors of the spin at position ði; jÞ are defined as the
four spins at positions ði� 1; j� 1Þ, that is along the diag-
onals of the spin at ði; jÞ. Of particular interest is the case
in which the interaction with first neighbors is ferromag-
netic and anti-ferromagnetic with next-nearest neighbors.
This can be modelled by introducing a negative exchange
constant that mediates the interaction of each spin with

Fig. 8. Magnetization of a 2D Ising model as a function of the tempera-
ture for different lattice sizes, compared with the exact result (dashed
line). The continuous lines are a guide to the eye.

Fig. 9. Magnetic susceptibility x for the zero magnetic field 2D Ising
model as a function of the temperature for different lattice sizes. The
continuous lines correspond to a Lorentzian fitting close to the maximal.
The inset shows a log-log plot of the susceptibility maximum xmax as a
function of the system size (error bars are smaller than the symbol size);
the linear fitting (r2 ¼ 0:9978) provides an estimate of the critical expo-
nent g=n ¼ 1:72� 0:05.

Fig. 10. Pseudo critical temperature T 	ðLÞ as a function of 1=L. The lin-
ear fitting (r2 ¼ 0:99) provides the estimate Tc ¼ 2:27� 0:1 (see text for
details).

TABLE 4
Time Employed to Compute One MCS and a Whole Simulation
Carried to Obtain Data at a Given Temperature, as a Function of

System Lattice Size

Size Lattice 16 32 64 128 256 512 1,024

1 MCS (ns) 6.6 6.6 6.6 26.6 106.6 426.6 1,706.6
TOTAL (ms) 0.6 0.6 0.6 2.7 10.8 43.1 172.4
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the second neighbors, as represented in the following
Hamiltonian:

H ¼ �J1
X

hi;ji
SiSj � J2

X

hhi;jii
SiSj ; (8)

where J1 > 0, J2 < 0, and hh. . .ii denotes that the sum runs
over all next-nearest neighbor pairs. This model represents
a binary spin version of the J1=J2 model [39], [40].

The implementation of the binary J1=J2 model requires a
small number of changes in the logic of the FPGA circuit
shown in Fig. 1. The main differences are the following:

a) The values of the four next-nearest neighbor of the
spin to be updated (L’, T’, R’, and B’) need to be con-
sidered in the circuit.

b) Instead of the checkboard division into two sublatti-
ces the system can be divided into four sublattices in
such a way that spins belonging to the same sublat-
tice are neither nearest neighbors nor next-nearest
neighbors—hence, requiring four memory modules
to store the spin values of each sublattice.

c) The change in energy associated with a single spin
flip is equal to DE ¼ 2�0, where �0 is given by the fol-
lowing expression,

�0 ¼ ðJ1ðS1 þ S2 þ S3 þ S4Þ
þ J2ðS0

1 þ S0
2 þ S0

3 þ S0
4ÞÞ � S0 :

(9)

d) The look-up table for the energy values needs to be
expanded since now the change in energy can take a
wider range of values. In practical implementation it
is usual to take J1 or J2 equal to 1 and then allow the
other exchange constant to adjust the relative
strength of the ferromagnetic/anti-ferromagnetic
interactions.

A second example of possible extensions is the imple-
mentation of the Potts model [41]. The Potts model is a gen-
eralization of the Ising model in which each individual spin
can take an integer value Si ¼ 1; . . . ; q. Its Hamiltonian is
given by the following:

H ¼ �J
X

hi;ji
dðSi; SjÞ ; (10)

where dðSi; SjÞ is the Kronecker delta, whose value is 1 if
Si ¼ Sj and zero otherwise. The implementation of the Potts
model implies some more significant changes to the logic in
Fig. 1. The main ones are the following:

a) Instead of using Boolean variables as in the case of
the Ising model, the Potts model requires that each
spin can take one of q different states

b) For the update of spin Si into the new state S0
i the

Monte Carlo algorithm proceeds by choosing at ran-
dom one of the q � 1 states for which Si 6¼ S0

i, then
computing the corresponding energy difference DE
that the change implies, and finally the decision to
accept it or not follows the same logic as the one for
the Ising model.

One final example is the 3D Ising model. Its implementa-
tion requires a small modification of the spin block in

comparisonwith the 2D Ising, as six neighboring spins should
be considered instead of four. This change will affect the size
of the lookup table because the energy range will be larger.
Memory management for this model will be also more com-
plex and as in principlememory resourcesmay not be enough
to handle the whole system divided in two sub-lattices, but a
layered scheme should be used where the whole system is
analyzed as composed ofM 2D Isingmodels.

8 CONCLUSIONS AND DISCUSSION

The results of this work confirm the potential of FPGA
boards for the simulation of statistical mechanics models,
demonstrating a significant improvement in terms of the
numbers of spins updated per second was obtained in com-
parison to previous work (Table 3). The improvements in
performance are a consequence of efficient spin implemen-
tation and resource utilization. The spin representation was
clearly described and analyzed in terms of the logic resour-
ces involved (cf. Figs 1 and 2, and Table 2), and the use of a
combined global-local random number LFSR generator
proved to be a significant factor in increased performance.
The procedure based on the combination of two LFSR (one
local and one global with the respect to the implementation
of a block of spins) was used, rigorously tested in terms of
the quality of the random numbers produced using a stan-
dard suite of statistical tests [33]. In relation to the previous
work by Lin et al. [23], it is worth noting that their analysis
showed that using a true RNG does not improved much the
quality of the random numbers obtained. On the other
hand, our approach used a local LFSR instead of a CA, and
this fact permitted us to utilize efficiently the board resour-
ces to get faster spin updates.

These improvements summed to the parallelism pro-
vided by the FPGA implementation offer a significant
potential for extensions to other models of magnetic sys-
tems. The 2D Ising model requires a minimal number of
modifications to be extended to more complicated models
like the binary spin version of the J1=J2 model, the Potts
model, or the 3D Ising model. Further work is required to
exploit the massive parallelism of FPGAs in systems with
more complex (long-range) interactions like the Ising dipo-
lar model [42], which would require a complete redesign of
the logic involved.
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