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Abstract Recent advances in FPGA technology have permitted the implementation of neu-
rocomputational models, making them an interesting alternative to standard PCs in order to
speed up the computations involved taking advantage of the intrinsic FPGA parallelism. In
this work, we analyse and compare the FPGA implementation of two neural network learn-
ing algorithms: the standard and well known Back-Propagation algorithm and C-Mantec, a
constructive neural network algorithm that generates compact one hidden layer architectures
with good predictive capabilities. One of the main differences between both algorithms is the
fact that while Back-Propagation needs a predefined architecture, C-Mantec constructs its
network while learning the input patterns. Several aspects of the FPGA implementation of
both algorithms are analyzed, focusing in features like logic and memory resources needed,
transfer function implementation, computation time, etc. The advantages and disadvantages
of both methods in relationship to their hardware implementations are discussed.
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1 Introduction

Artificial Neural Networks (ANN) [14,18,30] are mathematical models inspired in the
functioning of the brain that can be utilized in clustering and classification problems,
and that have been successfully applied in several fields, including pattern recognition,
stock market prediction, control tasks, medical diagnosis and prognosis, industrial appli-
cations, etc. [4,13,15,19]. Neural Networks architectures, whether organized in layers or
not, usually comprise several neurons having a large number of interconnections. Even
if traditional PCs do not seem to be the most suitable technology for implementing an
essentially parallel system, they have been the most used choice given the success of PC
based computation and the possibility of also using clusters of PCs [12,33,38]. Alterna-
tive technologies like FPGAs, DSPs, custom VLSI chips, GPUs and microcontrollers have
been utilized more recently at a larger scale, and in particular we can mention the recent
widely popular utilization of GPUs for Deep Learning, a new and promising technology
that is growing extremely fast due to its impressive prediction capabilities [7,22]. Never-
theless, in this work we will focus on FPGA technology, as the capacity and performance
of current FPGAs are a realistic alternative for real time implementation of ANN. FPGAs
are reprogrammable silicon chips, using prebuilt logic blocks and programmable routing
resources, that can be configured to implement custom hardware functionality, being able
also to change almost instantly its behaviour by recompiling a new circuitry configura-
tion [3,5,16]. Recent advances in technology have permitted to construct FPGAs with
considerable large amounts of processing power and memory storage, and as such they
have been applied in several domains (Telecommunications, Robotics, Pattern recognition
tasks, Infrastructure monitoring, etc.) [1,6,21]. In particular FPGAs seem quite suitable for
Neural Network implementations as they can be programmed to operate in a parallel way
[11,17,23,24,28,35,36,39].

Within the area of supervised pattern recognition, the efficient hardware implementa-
tion of neurocomputational models can be done mainly following two different strategies:
modifying and adapting the traditional Back-Propagation (BP) algorithm or developing new
algorithms better suited to the hardware constraints. In this work these two different possibil-
ities are explored, first by doing a hardware optimization of the standard Back-Propagation
algorithm [28], and secondly through the implementation of an alternative algorithm named
Competitive Majority Network Trained by Error Correction (C-Mantec) based on an incre-
mental constructive architecture [25]. Constructive Neural Networks algorithm (CoNN) are
alternative models to the standard BP algorithm that generate the network topology on-line
during the training phase, avoiding the complex problem of selecting an adequate neural
architecture [8]. The overall idea of the work is to do a comparative analysis of the two
approaches in order to identify the advantages and disadvantages for each case, helping with
this information to the decision problem of choosing a neurocomputational model for the spe-
cific application. The Back-Propagation algorithm (BP) is the standard learning procedure for
training multilayer neural networks architectures [31,37] but one of the main problems asso-
ciated to its implementation is the lack of a clear methodology for determining the network
topology before training starts [10]. On the other hand, C-Mantec [34] is a neural network
constructive algorithm that utilizes competition between the neurons and a modified percep-
tron learning rule (thermal perceptron [9]) to build single hidden layer compact architectures
with good prediction capabilities for the supervised classification problems. The novelty of
C-Mantec in comparison to previous proposed constructive algorithms is that the neurons
in the single hidden layer compete for learning the incoming data, and this process permits
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Table 1 PC versus FPGA comparison

FPGA CPU-PC
Model Virtex-5 XC5VLX110T Intel Core i5 3GHZ
Price ~750$ ~650%
Consumption ~50W ~160 W
BP algorithm execution time 0.19+£0.04s 36+ 125
C-Mantec Alg. execution time 0.06 £0.02s 0.40£0.325s
Number representation Integer Floating point
Developing time ~Months ~Weeks

the creation of very compact neural architectures. The present work is an extension of Ref.
[26] and is organized as follows: After a general introduction, Sect. 2 presents a comparative
analysis of the advantages of FPGA technology for the implementation of neural networks.
The manuscript then continues in Sect. 3 with a short description of the two neural network
models analyzed, to later describe in Sect. 4 the hardware implementation details. Results
from several comparison features are presented in Sect. 5, to finally present the discussion
of the results and the conclusions obtained.

2 FPGAs as a Competitive Technology for the Implementation of Neural
Networks

The advances in microelectronics in recent years have permitted the implementation of algo-
rithms in different hardware platforms. One of these technologies, known as FPGAs, consists
in a set of modifiable logic blocks with programmable interconnections. FPGAs, mainly pro-
grammed using a VHDL language have been widely used in telecommunications, and high
technology applications like satellites, rovers, racing cars, etc. [3]. More recently, due to its
increased capacity, price reduction and flexibility they have been also applied as robust hard-
ware accelerator devices for the implementation of different kind of algorithms for vision
processing, pattern recognition, signal processing, internet search, etc. [29]. Neuro-inspired
algorithms, like neural networks, Deep Learning, Anfis networks, etc., are essentially dis-
tributed processing models where the computations are done in a parallel way, and so the
full connectivity available in FPGAs for their logical components are an ideal device for
their application. In Table 1 we indicate some specific features for the FPGA board used in
this work (Model, price, energy consumption, execution times of the two algorithms used),
together some general characteristics of FPGAs board like the standard number representa-
tion used and standard developing times. The table also shows the same parameters but for
a standard PC.

A deeper analysis of the values shown in the table, mainly in relationship to the two
algorithms compared is done later on this work, but from the information displayed in the
table, in particular in relationship to execution times (expressed in seconds, ), it seems clear
that FPGAs seem a very interesting technology for neural network approaches, as for a similar
cost than a PC the execution times are on average 7 and 189 times shorter for C-Mantec and
BP algorithms respectively, with the only disadvantage of the developing times that tend to
be much longer for FPGA based implementations.
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3 Theoretical Methods
3.1 The Backpropagation Algorithm

The backpropagation algorithm (BP) is a supervised learning method for training multilayer
artificial neural networks. As the BP algorithm is very well known, we only give the essential
details in order to understand the rest of the work.

Consider a neural network architecture comprising several hidden layers. If we consider
the neurons belonging to a hidden or output layer, the activation of these units, denoted by
Vi, can be written as:

L
vi=g| D wi-si| =g, 0
j=1

where w;; are the synaptic weights between neuron i in the current layer and the neurons of
the previous layer with activation s;. In the previous equation, / is the synaptic potential of

a neuron, that includes a sigmoid type activation function.
The objective of the BP supervised learning algorithm is to minimize the difference
between given outputs (targets) for a set of input data and the output of the network, measured
by an error function (E) that depends on the values of the synaptic weights, and that can be

defined as:
P M

E= % PIYBCICESHONS @
k=1 i=1
where the first sum is on the p patterns of the data set and the second sum is on the M
output neurons. z; (k) is the target value for output neuron i for pattern k, and y; (k) is the
corresponding response output of the network. The synaptic weights between two last layers
of neurons are updated as:

Aw;j(k) = —n = nlzi (k) — yi ()1g; (hi)s; k), 3

E
8w,~ j (k)
where 7 is the learning rate, g’ is the derivative of the sigmoid function and £ is the synaptic
potential previously defined, while the rest of the weights are modified according to similar
equations by the introduction of a set of values called the “deltas” (§), that propagate the
error from the last layer into the inner ones.

3.1.1 Training and Validation Processes

The training procedure is executed a certain number of times (epochs) using the training pat-
terns. In one epoch, the training patterns are all presented once in random ordering, adjusting
the synaptic weights in an on-line manner. A well-documented and severe problem affecting
all predictive algorithms is the problem of overfitting, caused by an overspecialization of
the training procedure on the training set of patterns [20]. In order to alleviate this effect, a
straightforward strategy is to split the set of available training patterns in training, validation
and test sets. The training set will then be used to adjust the synaptic weights according to
Eq. 3, while the validation set is used to control overfitting effects, storing in memory the
values of the synaptic weights that have so far led to the lowest validation error, so when the
training procedure ends, the algorithm returns the stored set of weights. The test set is used
to estimate the performance of the algorithm in unseen data patterns, as a way of estimating
the generalization capability of the algorithm.
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3.2 The C-Mantec Constructive Neural Network Algorithm

Competitive Majority Network Trained by Error Correction [34] (C-Mantec) is a novel neu-
ral network constructive algorithm that utilizes competition between neurons and a modified
perceptron learning rule (thermal perceptron [9]) to build single hidden layer compact archi-
tectures with good prediction capabilities for supervised classification problems. The single
hidden layer architectures constructed contains binary neurons in the hidden layer that are
incorporated as the training process advances, and the output of the network consists of a
single neuron that computes the majority function of the responses of the hidden neurons,
like in a voting process.

The binary activation state (S;) of the Ny neurons in the hidden layer depends on N input
signals, ¥;, and on the actual value of the N synaptic weights (wj;) and bias (b;) as follows:

_J1L1©ON) ifh=0
§= { 0 (OFF) otherwise @)

where £ is the synaptic potential of the neuron defined as:

N
h= wii—b; )
i=1
In the thermal perceptron rule, the modification of the synaptic weights, Awj;, is done on-line
(after the presentation of a single input pattern) according to the following equation:

Awji = (t = 8;) ¥i Trac, (6)

where ¢ is the target value of the presented input (it is the same for all hidden neurons), and
¥; represents the value of input unit i connected to the hidden neuron j by weight wj;. The
difference to the standard perceptron learning rule is that the thermal perceptron incorporates
the Tj, factor. This factor, whose value is computed as shown in Eq. 7, depends on the value
of the synaptic potential and on an artificially introduced temperature (T).

— et )
Trge = —e T,
fac To

The value of T decreases as the learning process advances according to Eq. 8, similarly

to a simulated annealing process.
1
T = To: (1 - ) ; ®)
Imax

where [ is a cycle counter that defines an iteration of the algorithm on one learning cycle,
and Inax is the maximum number of iterations allowed. One learning cycle of the algorithm
is the process that starts when a chosen pattern is presented to the network and finishes after
checking that all neurons respond correctly to the input or when the synaptic weights of the
neuron chosen to learn the actual pattern (whether an existing or a new neuron) modifies its
synaptic weights.

The C-Mantec algorithm has three parameters to be set at the time of starting the learning
procedure, and several experiments have shown the robustness of the algorithm that operates
fairly well in a wide range of parameter values. The three parameters of the algorithm are:

— Imax: maximum number of learning iterations allowed for each neuron in one learning
cycle.
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— &fac: growing factor that determines when to stop a learning cycle and include a new
neuron in the hidden layer.

— ¢: determines in which case an input example is considered as noise and removed from
the training dataset according to the following condition:

delete(x;) | Nor = (u + ¢-0), (C))

where x; represents an input pattern, N is the total number of patterns in the dataset, Nyt is
the number of times that pattern x; has been presented to the network on the current learning
cycle, and where u and o corresponds to the mean and variance of the distribution for all
patterns on the number of times that the algorithm has tried to learn each pattern in a learning
cycle. The learning procedure starts with only one neuron included in the single hidden layer
of the architecture and an output neuron that computes the majority function of the responses
of the hidden neurons (a voting scheme). The process continues by presenting an input pattern
to the network and if it is misclassified, it will be learned by one of the present neurons whose
output did not match the target pattern value if certain conditions are met, otherwise a new
neuron will be included in the architecture to learn it. Among all neurons that misclassified
the input pattern, the one with the largest Ty, will learn it but only if this Ty, value is larger
than the gg,. parameter, a condition included to prevent the unlearning of previous stored
information. If no thermal perceptron meeting these criteria is found, a new neuron is added
to the network, starting a new learning cycle that includes the resetting of the temperature
of all neurons to Ty. The g7, parameter has an important effect in the algorithm as directly
controls the point at which new neurons are added to the hidden layer, affecting the final size
of the obtained architectures. Also at the end of a cycle the noisy patterns filtering procedure
(Eq. 9) is applied. This procedure consists in analyze the number of times an example has
been presented to the network and required a synaptic weight correction (i.e., it was initially
wrongly classified by the network), to eliminate at the end of a learning cycle those inputs that
needed larger number of modifications in comparison to the mean. The algorithm continues
its operation iteratively repeating the previous stages until all patterns in the training set are
correctly classified by the network. A more detailed analysis of the C-Mantec algorithm can
be found in Ref. [34].

4 Hardware Implementation

We describe in this section the main functioning aspects of both algorithms, including also
specific details of the FPGA implementation. An important issue and a big difference in
relationship to standard PC implementations regards the number representation used in the
FPGA. While for standard PCs floating point number representation is the standard choice,
this type is not usually the most efficient for FPGAs and a fixed point number representation
is preferred [32]. The synaptic weights precision has been analyzed for the both algorithms
(Back-Propagation and C-Mantec) in Sect. 4.4 in order to determinate the size and speed of
the neural network model.

Regarding the FPGA implementation of the BP algorithm three main aspects have been
carefully analyzed for increasing the efficiency of resource utilization: first, the introduction
of a new input-hidden neurons block (Sect. 4.1), second, a new scheme for computing the
sigmoid transfer function (Sect. 4.2), and third, a strategy of time division for using only a
single multiplier block for each neuron (Sect. 4.3).
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Inputs (1, ..., Ny) Hid Neu
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Inp Hid Neu
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Inputs (¥4, ..., ¥i)
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K= Q Output = (Nyy> Ny /2)
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Fig. 1 Overall scheme of the FPGA architectures used for the implementation of the BP (a) and C-Mantec
(b) algorithms

For the case of the implementation of the C-Mantec algorithm, the same aspects have been
analyzed in order to carry out a fair comparison: the introduction of a novel architecture of
a constructive neural network (Sect. 4.1), a scheme for implementing the majority function
(Sect. 4.2), and also the same strategy of time division used in the BP case (Sect. 4.3).

4.1 FPGA Implementations of the Neural Network Architectures

Figure la, b show the two different schemes designed for the implementation of the
neural architectures for the Back-Propagation (a) and C-Mantec (b) algorithms. The Back-
Propagation architecture (Fig. 1a) is based on a new scheme where three types of blocks are
used for the implementation of the different parts of the neural architecture. The proposed
implementation does not consider the input layer of neurons separately as this is included
together with the first hidden layer neurons in a module named input-hidden neurons (“inp-
hid”). The definition of this new type of module is possible because the input layer neurons
do not process the information as they simple act as input to the network, also it facilitates
the calculation of the learning phase due to the neurons manage the synaptic weights of the
next layer.

For the case of the C-Mantec algorithm (Fig. 1) the network architecture built contains
a single hidden layer of threshold neurons (S;) with output values {0, 1}. An important
characteristic of this network is that permits a fast calculation of the output of the network
since the information is not transmitted between hidden layers.

4.2 FPGA Implementation of Continuous Transfer Functions
Another important design aspect regarding the FPGA implementation of a neural network

algorithm is the way of computing the activation function of the neurons, usually of a sigmoid-
type, as in the case of the BP algorithm. A scheme based on a lookup table approach plus linear
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interpolation scheme permits to obtain an efficient representation in terms of the resources
needed together with low absolute and relative errors. In a previous work [27] a complete
study about size of the lookup table, employed resources and precision results has been
introduced, obtaining that efficient size values for the sigmoid function table consists in
using 2bits for the decimal part representation, 3 bits for the integer part and one extra bit
for indicating the sign of the function. These parameters produce a table of 2¢ = 64 inputs
with 16bits of word length for the the size of each input. The total resources necessary to
implement this table are 32 bits or 1 block memory. Figure 2 shows the results obtained for
the approximation of the sigmoid function (top graph) and the absolute and relative errors
committed in its approximation (middle and bottom graphs).

For the case of the C-Mantec algorithm, the learning process involves the computation of
the Ty factor that requires the FPGA implementation of the exponential function. The same
approach mentioned above for the computation of the sigmoid function was used. Section
5 includes Table 3 that shows a comparison between the approximation results obtained for
both functions (sigmoid and exponential functions).

Further, the output of a C-Mantec network consists in a single output neuron (S) that
computes the majority function (see Eq.10) of the activation of the hidden layer units, like in
a voting process. The network output is active (1) if half or more of the Ny hidden neurons
with activation values §; are active (1):

(10)

1(ON) if Y5>
0 (OFF) otherwise

The FPGA implementation of the majority function is shown in Fig. 3. On the left part
of the figure the activation value of all Ny hidden layer neurons S; are shown, followed by
the computation of the sum of their activations. In the module indicated as “comparator” the
obtained value is compared with the value of % and the whole network output is computed
following Eq. 10. The whole process can be executed in less than one clock cycle of the
FPGA because all operations involved are implemented with logic cells that introduce only
minor delays.

4.3 Time Division Multiplexing Scheme for the Multiplier Block

Furthermore, a third important aspect considered during the FPGA implementation regards
a time division scheme for performing the multiplications involved in the algorithm [27].
The multiplier blocks can be implemented both as a combination of logic cells or using
specific DSP blocks. We have selected the first choice in this work for a fair comparison
with the C-Mantec algorithm implementation, as this was done without DSPs. Further the
implementation using DSP is specific to each board and thus the present choice gives more
generality to the results. The strategy consists in using a single multiplier for each neuron
(built using logic blocks [5]) and then through using a time division multiplexing scheme
compute all the multiplications related to the neuron. The time division scheme for the
multiplications can be observed in the Fig. 4, in which it is observed as a single multiplicator
performs all multiplications outside of the logic of every neuron.

4.4 Synaptic Weights Precision

The representation of the synaptic weights can be chosen according to the available resources,
taking into account that a higher accuracy requires a larger representation, which will imply
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Sigmoid function
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Fig.2 Sigmoid function approximation results obtained using a lookup table plus linear interpolation scheme
(top graph). Absolute (middle graph) and relative errors (bottom graph) committed in the approximation of
the function

an increase in the number of LUTSs per neuron (consequently a reduced number of available
neurons) and a decrease in the maximum operation frequency of the FPGA board. Synaptic
weight accuracy is important so that the resulting values are similar to those obtained with the
floating point representation used in the PC based code. A synaptic weight is represented by
a bit array with integer and fractional parts of length Ny and N,. Nj determines the minimum
and maximum values that can be obtained —2¥1~1 to 2(N1=D while N> defines the accuracy
2(=N2) The number of bits needed to represent all possible discrete values within a certain
range of positive values depends on the difference between maximum and minimum values
of the interval, and can be obtained from the following equation:
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Fig. 3 Hardware
implementation of the majority
function needed for obtaining the
output of a network trained by the 2,

1 Ni

>

j=1

FE

C-Mantec algorithm Comparator
= A
- N
o A>B L Mdjority
Sfunction
B
Nu
# Neurons o 2
(Nn)
Neuron module
T o]
»{ Error
Neuron block > Output
-LUTs N
- Registers [ LY
-BR Ny b
NNy
> e,

Fig. 4 Time division scheme for performing the multiplications involved in the algorithm, in which it is
observed as a single multiplicator performs all multiplications outside of the logic of every neuron

# Bits = log, ((1 + max(w;;))/(min(w;;))). (11)

Section 5 includes Table 3 that shows the number of LUTS per neuron, the number of available
neurons and maximum operating for the both algorithms according to the number of bits used
for representing the synaptic weights N1 4+ N», where Nj and N indicate the integer and
fractional parts of the representation.

5 Results

We present in this section results from the implementation of both algorithms (BP and C-
Mantec) in a Virtex-5 OpenSPARC Evaluation Platform (ML509). This device includes a
Xilinx Virtex-5 XC5VLX110T FPGA that provides different connector devices: 2 USB (Host
and Peripheral) ports, 2 PS/2(Keyboard, Mouse) ports, RJ-45 (10/100/1000 Networking) and
RS-232 (Male Serial port) connectors, 2 Audio Inputs (Line, Microphone), 2 Audio Outputs
(Line, Amp, SPDIF), Video Input, Video Output (DVI/VGA), Single-Ended and Differential
I/O Expansion. Table 2 shows some characteristics of the Virtex-5 XC5VLX110T FPGA,
indicating its main logic resources. A picture of the Virtex-5 OpenSPARC Platform is shown
in Fig. 5.

The VHSIC Hardware Description Language (VHDL) [2,5] language is used for pro-
gramming the FPGA, under the “Xilinx ISE Design Suite 12.4” environment using the “ISim
M.81d” simulator. VHDL is a hardware description language widely used in electronic design
automation to describe digital and mixed-signal systems such as FPGAs and integrated cir-
cuits, and can be also used as a general purpose parallel programming language. Our design
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Table 2 Main specifications of the Virtex-5 XC5VLX110T FPGA related to its available slice logic

Device Slice registers Slice LUTs Bonded IOBs Block RAM/FIFO

Virtex-5 XC5VLX110T 69,120 69,120 34 148

Fig. 5 Picture of the Virtex-5 XC5VLX110T board used for the implementation of the C-Mantec algorithm

Table 3 Maximum error (Max) and root mean square error (RMSE) for different values of N, and Np, in the
implementation of the exponential and sigmoidal functions

Ng Np Exponential Sigmoidal

Max RMSE Max RMSE
3 3 1.833 x 1073 3.249 x 1074 3.353 x 1074 9.477 x 1073
3 4 4704 x 1074 7.632 x 1073 1.982 x 1074 4.428 x 1073
4 4 4704 x 1074 5501 x 107> 6.091 x 1073 1.394 x 1075
4 5 1.151 x 1074 1.358 x 1073 2.669 x 1072 8.783 x 10°°
4 6 2530 x 1073 6.493 x 10°° 1755 x 1073 8.362 x 107

strategy was to avoid the usage of specific Xilinx cores, in order to obtain a general design
that can potentially be used in FPGAs from other manufacturers.

Table 2 shows some characteristics of the Virtex-5 XC5VLX110T FPGA, indicating its
main logic resources. VHSIC Hardware Description Language (VHDL) [2,5] language was
used for programming the FPGA, under the “Xilinx ISE Design Suite 12.4” environment
using the “ISim M.81d” simulator.

Table 3 shows the Maximum and Root Mean Square errors for different values of the
integer N, and decimal parts N, obtained for the implementation of the exponential and
sigmoidal functions used in the C-Mantec and Back-Propagation algorithms respectively
through a lookup table plus linear interpolation scheme. As it can be appreciated from the
table both errors are quite low for both functions for almost all values of N, and N, being
lower for the Sigmoidal function.
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Table 4 Number of LUTSs, maximum number of neurons and maximum frequency that can be implemented
in a Virtex-5 board for the two algorithms and as a function of different fixed-point representations

Ny Ny LUTs/neuron Max. # neurons Frequency (MHz)
BP C-M BP C-M BP C-M
8 8 787 689 82 94 73.9 74.1
8 12 967 757 67 85 53.0 74.1
8 16 1124 943 57 68 41.3 74.1
12 12 1057 826 61 78 52.7 53.7
12 16 1223 1033 53 62 41.1 53.7
16 16 1382 1299 47 50 40.9 42.7

T T T T

[_Joutputs Calculation
[ Synaptic Weights Modification

Back-Propagation 11+N +N +N 10+2N +NEEE
C-Mantec | 8*2N, 38+[N, /16]+2:N, ]

L L L L

0 20 40 60 80

Number of clock cycles

Fig. 6 Execution cycles needed to learn and compute the output for a single input pattern for the case of a
5-50-1 neural network architecture

One of the most interesting results of this work is the comparison carried out for obtaining
the maximum number of neurons that can be implemented in the Virtex-5 board used, together
with the analysis of the resources needed for the implementation of a single neuron for both
algorithms. Table 4 shows the values obtained for BP and C-Mantec for different values for
the integer N and decimal part N; of the fixed point representations tested.

As a way of quantifying the time complexity of the implementation of both algorithms, we
have also analysed the number of FPGA clock cycles involved in the computations related
to training a network with one input pattern. The analysis done was divided in two parts: the
number of cycles needed for the computation of the network output for a given input pattern,
and the number of cycles related to the modification of the synaptic weights (cf. Egs. 3, 6).
The results displayed in Fig. 6 correspond to neural network architectures containing a single
hidden layer with 50 neurons.

In order to get a more complete analysis, we have also calculated the computation times
involved in the obtention of the output and in relationship to the learning process for a single
pattern for both algorithms as the size of the neural network architecture increases. Figure
7 shows the computation times for this analysis as a function of the number of neurons
in the hidden layer in which it can be observed that for the case of C-Mantec algorithms
the computation times are almost constant, as a factor of 16 relates the computation time
to the number of hidden neurons (see values in Fig. 6). The figure shows that for the BP
algorithm the time grows linearly with the number of hidden neurons, and thus only for small
architectures the Back-Propagation models operate faster than C-Mantec.
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Fig. 7 Computation time for the calculation of the output and learning for a single input pattern depending

on of the size of neural network architecture

Table 5 Generalization ability (%) obtained and number of neurons used in the architectures for the imple-
mentation of seven classic benchmark problems

Function C-Mantec Back-Propagation
Gen. # Neu Time (ms) Gen. # Neu. Time (ms)

Diabetes 76.6 5 97 79.3 5 227
Cancer 96.9 2 52 95.7 5 210
Heart 82.6 3 71 78.2 5 104
Tonosphere 87.4 2 56 87.5 5 210
Heart-c 82.5 2 55 80.1 5 190
Card 85.2 3 72 83.1 5 195
Sonar 75.0 1 43 75.2 5 223
Average 83.7 3 63 82.7 5 194

Using a set of benchmark functions from the UCI repository, we have computed the
generalization ability and computation time (ms) for the execution of both algorithms. Table
5 shows these results together with the number of neurons used in each case, noting that
C-Mantec sets this number automatically while a constant size architecture comprising 5
neurons was used for Back-Propagation.

6 Conclusions

We have presented and analyzed the implementation in a FPGA board of two neural network
learning algorithms: the traditional Back-Propagation model and C-Mantec a constructive
neural network model. The algorithms operate from different principles as BP is essentially a
gradient based algorithm minimizing an error function for a fixed architecture that has to be
defined in advance, while C-Mantec is an error correcting method that constructs the network
architecture automatically as it learns the input patterns. In terms of the FPGA implementa-
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tion, both methods require the implementation of continuous functions (the sigmoid and the
exponential functions), process that is very simple for standard computers (PCs) but much
more complex for hardware devices using a fixed point number representation like FPGAs.
An analysis of the resources needed to implement both functions efficiently indicate that
similar error levels are obtained for both cases when using a lookup table plus linear inter-
polation scheme, with slightly lower error values for the case of the sigmoid function used
in the BP algorithm. Nevertheless, it is worth noting that as C-Mantec is an error correct-
ing algorithm the precision needed for the arithmetic representation is lower than for BP,
that requires higher precision levels as its algorithm involves an accurate computation of the
derivatives of the neural activation functions for its correct operation.

Another very important issue regarding the comparison of both algorithms is the amount of
hardware resources needed for the implementation of single neurons in both algorithms, and
in this aspect the advantage is on the C-Mantec side as a lower number of LUTS is required,
permitting for a given board the construction of larger neural network architectures, For the
case analyzed in this work (Virtex-5 XC5VLX110T board) the results averaged over different
number representation (cf. Table 4) implies a 18.7% increase in the maximum number of
neurons that can be included in the architectures for C-Mantec in comparison to the BP
algorithm. Further, we have also estimated the average computation time needed for training
both algorithms using a set of benchmark functions, finding that C-Mantec operates faster than
BP, needing in average a third of the computational time (cf. Table 5). A more detailed analysis
on the number of cycles and the time needed for the computation of processes involved in
obtaining the output neuron value and in the modification of the synaptic weights, cf. Figs.
6 and 7 shows a different behavior for both algorithms, with a clear advantage favoring
C-Mantec for the case of larger architectures.

As a conclusion, the present work shows a detailed comparison regarding the possibilities
of the application of two neurocomputational algorithms using FPGA boards. From general
functioning consideration and from the results obtained for both algorithms in terms of integer
number representation, hardware resources and computation times, C-Mantec seems more
suited for its FPGA implementation as first it does not need the a priori specification of the
neural architecture to use, and second as it is less demanding in terms of hardware resource
utilization and computation times.
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