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Abstract
This study focuses on how to determine the most relevant variables in order to estimate the hourly NO2 concentrations in a

monitoring network located in the Bay of Algeciras (Spain). For each station of the network, artificial neural networks and

multiple linear regression have been used to compute hourly estimation models. Meteorological variables and hourly NO2

concentrations from the nearby stations have been used as inputs, and a feature selection procedure has been applied as a

previous step. The different models developed have been statistically compared. The inputs used in the best estimation

model for each station were the most important to estimate each hourly NO2 concentration level. These estimations can be

a very useful resource to provide autonomous capacities as automatic decalibration detection or missing data imputation in

monitoring networks. Finally, the similarities between stations, according to the relevance of variables, have been analysed

with the aid of a hierarchical clustering algorithm.
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1 Introduction

Air pollution is one of the most important problems that

affect the quality of living, especially in industrialized and

densely populated areas. A poor air quality can produce

very negative effects on human health (Tabaku et al. 2011;

Gibson 2015; Chiu and Yang 2015), especially on people

who belong to susceptible population groups, such as

children and elder people (Kolehmainen et al. 2001;

European Environment Agency 2013). Therefore, EU and

many national environmental agencies have established

regulations that limit the concentration levels of atmo-

spheric pollutants with the aim of improving air quality

(European Environment Agency 2014).

For the aforementioned reasons, it is necessary to

establish a control strategy for air pollutants. Air quality

monitoring networks supply information about the actual

status of air quality. Environmental monitoring networks

can be composed of a variable number of sensors working

together. They can perform detailed measurements and

provide accurate data of concentrations of airborne pollu-

tion, which can be a very valuable resource in order to

manage air quality and take corrective actions if needed.
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According to Bhaskar and Mehta (2010), urban airborne

pollution is principally caused by human activities. Its

main origins are industrial processes where combustion is

present, especially motor vehicles and industries (Bartra

et al. 2007).

The main urban air pollutants are CO, NOx

(NO ? NO2), hydrocarbons, and particles. Nitrogen diox-

ide (NO2) is one of the most relevant air pollutants.

Although high-temperature combustion processes produce

NO2 (Rivera et al. 2015), the main quantity of NO2 in the

atmosphere has its origin in the interactions between ozone

with nitrogen oxides close to their point of emission, and

also with organic radicals along the dispersion path (Fin-

layson-Pitts and Pitts 2000). This reddish-brown gas, which

is very reactive and toxic, plays a major role in atmospheric

reactions that produce smog and acid rain in urban areas.

Nitrogen dioxide is also considered to be the main single

reason for air quality decrease in metropolitan areas

(Westmoreland et al. 2007). Hence, control of its concen-

tration levels is one of the most important objectives of

environmental agencies.

Air pollutants concentrations may be affected by several

factors: local topography, the intensity of emissions,

meteorological factors and the distance between receptors

and sources of emission (Dominick et al. 2012). Distance

from sources of emission is a key factor for pollutant

concentrations (Sun et al. 2004). Additionally, meteoro-

logical factors may have a very big impact on the quantities

of airborne pollutants present in the atmosphere (Banerjee

and Srivastava 2011). As Bai et al. (2016) stated, they are

essential elements in the process of dispersion of pollutants

across the atmosphere and, therefore, they have a great

influence in the everyday changes of air pollutants con-

centrations (He et al. 2013). Finding out the relevance of

meteorological variables is a problem of great complexity

that depends greatly on local circumstances and the type of

pollutant under study (Khedairia and Khadir 2012).

There are different studies where the influence of

meteorological factors on pollutants has been discussed.

Kourtidis et al. (2002) studied the pollution levels within

urban street canyons in Greece and indicated that primary

pollutants decreased their concentrations with higher wind

speeds due to ventilation (in the case of NO2, in a smaller

amount). Elminir (2005) described in his work the reliance

of pollutants on meteorological factors and underlined that

wind and relative humidity were the most influencing

parameters on airborne pollution. Turias et al. (2008) pre-

dicted CO, SPM and SO2 levels in The Bay of Algeciras

(Spain), and pointed out how CO showed a high correlation

between wind speed and temperature. In the case of wind

direction, their study showed how this correlation was

negative. Martı́n et al. (2008) predicted CO ground levels

in the Bay of Algeciras (Spain) and cited temperature, wind

direction and wind speed as the most influential meteoro-

logical variables over CO concentrations. İçağa and Sabah

(2009) analysed the relationship between air pollutants and

meteorological factors in Afyon (Turkey) and described

how air pollutants were influenced by temperature, inver-

sion (increase in air temperature with elevation) and

humidity. However, no dependency between pollutants

concentrations and wind velocity or precipitation could be

found. In their study, Xu et al. (2011) reported how wind

speed and direction had a great influence on pollutants in

the North China Plain. Zhang and Batterman (2013)

described how low winds and low dispersion situations led

to an increase in the concentration of air pollutants. Muñoz

et al. (2014) predicted the episodes where PM10 and SO2

levels surpassed legal concentration limits in the Bay of

Algeciras and indicated that wind speed and wind direction

were the most influencing variables. Zhang et al. (2015)

described how wind speed had a negative impact on pol-

lutant concentrations in three megacities of China. In the

same line, Xu et al. (2015) pointed out how light winds

favoured a raise in pollutant concentrations, while strong

winds caused a decrease in them due to dispersion. Finally,

Zu et al. (2017) studied the relation of meteorological

factors and PM10 concentrations and indicated that slow

winds, moderate temperature and pressure conditions and

the absence of precipitations where associated with epi-

sodes of high PM10 levels.

There are also other studies where the relationship

between meteorological variables and NO2 concentrations

have been specifically studied. Shi and Harrison (1997)

studied the possibilities of regression modelling for fore-

casting NO2 and NOx in London using meteorological

variables and found that wind speed was an important

factor in both NOx and NO2 concentrations. Gardner and

Dorling (1999) predicted hourly NO2 and NOx concentra-

tions in London using meteorological variables. For models

with no emission factor, results showed that 47% of the

variability of NO2 and 54% of the variability of NOx were

caused by changes in the meteorological predictors.

Kukkonen et al. (2003) undertook an evaluation of artificial

neural networks (ANNs) models for forecasting NO2 and

PM10 in Helsinki and concluded that climatic factors could

have a great effect on the performance of the models

obtained. Chen et al. (2009) studied the gaseous pollutants

near a traffic line in Beijing and indicated the existence of a

negative correlation between wind speed and concentra-

tions of NO2. Parra et al. (2009) studied the ambient con-

centrations of NO2 in northern Spain and highlighted the

negative influence of wind speed on pollutant concentra-

tions due to dispersion. Dominick et al. (2012) studied how

meteorological components affected concentrations of

PM10 and NO2 in Malaysia. Results revealed that wind

speed and NO2 concentrations presented a negative
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correlation. Khedairia and Khadir (2012) described how

pollutants are greatly influenced by meteorological factors

of the study area. In their study focused on Annaba (Al-

geria), it was found that high NO2 concentrations were

related to lower values of temperature and wind speed.

The main objective of this study is to determine the most

relevant meteorological and spatial variables (including the

set of monitoring stations) in order to estimate the hourly

NO2 concentrations in a monitoring network located in the

Bay of Algeciras (Spain). To achieve this goal, ANNs and

MLR were used to develop the estimation models. A set of

meteorological variables and NO2 concentrations were

used as inputs and a feature selection procedure was

applied as a previous step. Results were statistically anal-

ysed in order to find the best model for each station. The

variables that were used as inputs of the best estimation

model constituted the subset of the original variables that

were the most relevant for each case.

The rest of this paper is organized into several sections.

Section 2 describes the area of study and the database used.

Section 3 gives a brief description of the methods and

techniques used in this work. Section 4 presents the

experimental design. Section 5 discusses the obtained

results. Finally, the conclusions are shown in Sect. 6.

2 Data and area description

The area of study covers the Bay of Algeciras area in the

Campo de Gibraltar region, which is located in the south-

ernmost part of the Iberian Peninsula. This area harbours

one of the most important industrial zones in Spain, and is

densely populated, with almost 300,000 inhabitants in 2018

(Algeciras, 120,000; La Linea, 65,000). It enjoys a

Mediterranean climate, and the predominant winds blow

from east to west and vice versa. The main industries are an

oil-refinery, different petrochemical factories, several

power plants and the main stainless-steel factory in Europe.

Besides that, the Port of Algeciras is one of the most

important ports of the Mediterranean Sea, and there is also

an airport located close to the Gibraltar border. Traffic is

concentrated in the urban areas of Algeciras and La Lı́nea,

but there is also a considerable heavy vehicles traffic

related to the import and export operations of the Algeciras

Port, where approximately a number of 3.5M TEUs

(twenty-foot equivalent unit) are handled and more than

2400 vessels dock per year. It is a very complex scenario,

where everything described above is a source of particulate

and gaseous air pollution. Despite that, only a few studies

have addressed the air pollution problem in the area.

For the present study, the data have been provided by

the Environmental Agency of the Andalusian Regional

Government, supported by the coordinated research

projects TIN2014-58516-C2-1-R and TIN2014-58516-C2-

2-R of the Spanish Government. The database covers a

period of 6 years (2010–2015) and includes hourly NO2

concentration values that have been collected by a network

of 14 monitoring stations. It also contains meteorological

variables, such as relative humidity (%), rainfall (mm/

hour), atmospheric pressure (hPa), solar radiation (w/m2),

temperature (C), wind speed (km/h) and wind direction

(degrees). These variables have been measured hourly at

five meteorological stations. In this study, no methods for

missing data imputation have been used.

Figure 1 depicts the location of the study area and the

situation of the weather and NO2 monitoring stations

(represented by their codes). The correspondence between

stations and their codes is shown in Table 1. Codes one to

fourteen indicate NO2 monitoring stations, whereas codes

WE1 to WE5 indicate weather stations.

A number is assigned to each database variable, from

number one to number thirty-eight. Variable numbers from

1 to 14 indicate NO2 concentrations measured in the station

of the same code (i.e. variable 1 corresponds to station 1).

Variable numbers from 15 to 38 are assigned to different

types of meteorological variables. A description of each

variable can be found in Table 2.

As was indicated before, all the variables above are

expressing hourly values. It is also important to note that,

for the sake of concision, in the following sections of this

paper the name of each monitoring station will be used to

indicate the hourly NO2 concentrations measured at that

particular station.

According to the studies mentioned in the introduction

section, winds are among the most relevant factors that

affect pollution levels. In the Bay of Algeciras, there are

two predominant winds. On the one hand, east winds,

including east and east-southeast, which are locally known

as ‘‘Levante’’. On the other hand, west winds, including

west-northwest and west-southwest, which are locally

known as ‘‘Poniente’’ (Reyes 2015). These winds are

moderate, with maximum speeds of 30 km/h and mean

speeds of 8 km/h. Additionally, a closer examination

reveals how 90% of the time instants show speeds lower

than 16 km/h. Situations with east winds tend to last longer

compared to those produced west winds, which are much

more variable.

3 Methods

The methods and techniques used in this work are briefly

explained in this section.
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3.1 Feature selection

Feature selection approaches can be classified into three

different groups: filter, wrapper and embedded methods

(Saeys et al. 2007). In filter methods, features are ranked

depending on how useful they are for the model, and only

the most significant features are kept (Zheng and Zhang

2007). In wrapper methods, the feature selection takes

place based on the learning algorithm used to train the

model. In this case, different subsets of features are gen-

erated and used to train a predictive model. The best subset

is selected based on model accuracy (Guyon and Elisseeff

Fig. 1 Location of the Bay of Algeciras (area of study) including the weather and NO2 monitoring stations

Table 1 NO2 and weather

stations codes
Monitoring/weather station Code Monitoring/weather station Code

EPS Algeciras 1 Economato 11

Campamento 2 Guadarranque 12

Los Cortillijos 3 La Lı́nea 13

Esc. Hostelerı́a 4 Madrevieja 14

Col. Los Barrios 5 La Lı́nea weather station WE1

Col. Carteya 6 Los Barrios weather station WE2

El Rinconcillo 7 CEPSA weather station (10 m) WE3

Palmones 8 CEPSA weather station (60 m) WE4

Est. San Roque 9 CEPSA weather station (15 m) WE5

El Zabal 10

Table 2 Variable description.

For meteorological variables,

the corresponding weather

station is indicated within

brackets

Variable Variable numbers

NO2 concentration (lg/m3) 1–14 (monitoring stations)

Wind direction (�) 15 (WE1), 20 (WE2), 29 (WE4), 32 (WE5)

Wind speed (km/h) 19 (WE1), 31 (WE4), 38 (WE5)

Relative humidity (%) 16 (WE1), 21 (WE2), 25 (WE3), 33 (WE5)

Rainfall (l/m2) 17 (WE1), 22 (WE2), 26 (WE3), 34 (WE5)

Temperature (�C) 18 (WE1), 30 (WE4), 37 (WE5)

Atmospheric pressure (hPa) 23 (WE2), 27 (WE3), 35 (WE5)

Solar radiation (w/m2) 24 (WE2), 28 (WE3), 36 (WE5)
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2003). In this study, a combination of filter and wrapper

methods have been applied in order to select the best fea-

tures for each station.

In a first step, variables have been ranked by their

ascending regression p values. In a regression analysis, the

p value associated with each term is used to test the null

hypothesis which states that this coefficient is equal to zero

and, consequently, has no effect. An alpha of 0.05 is usu-

ally used as the cut-off for significance. If the p value is

lower than 0.05, the null hypothesis can be rejected. Thus,

there is statistical security that the coefficient chosen by the

model is well adjusted.

In a second step, starting with a dataset composed only

with the first variable of the ranking, estimation models

have been developed. This procedure has been repeated

adding new variables to the input data set, according to its

position in the ranking, and generating new estimation

models with every new addition. Once all the variables

have been added, the best model has been selected. Finally,

the best subset of variables has been obtained as the input

variables used on it.

3.2 Estimation models

Two different methods have been used to develop the

estimation models for the NO2 concentrations: Multiple

Linear Regression (MLR) and Feedforward Back Propa-

gation Neural Networks (BPNNs). A brief description of

these methods is presented in the next subsections.

3.2.1 Multiple linear regression

MLR is a multivariate statistical method that is used to

determine how predictors and the dependent variable are

related. It has been widely used in previous pollution

forecasting studies (Aguirre-Basurko et al. 2006; İçağa and

Sabah 2009; Vlachogianni et al. 2011). The general equa-

tion is as follows:

y ¼ bo þ
Xn

i¼1

bi� � xi þ e ð1Þ

where y is the dependent variable, xi are the independent

variables (predictors), bi are the regression coefficients and

e is the error.

3.2.2 Artificial neural networks

ANNs are computational models inspired by biological

neural networks. ANNs have been used in many different

areas to inquire about the complex nonlinear relations

between predictors and dependent variables. Their use

covers predictive modelling, and have been widely used to

forecast pollutants in the atmosphere (Chelani et al. 2002;

Aguirre-Basurko et al. 2006; Martı́n et al. 2008; Turias

et al. 2008; Muñoz et al. 2014; Russo et al. 2015).

A typical neural network is composed of a number of

artificial neurons, called units, which are arranged in dif-

ferent layers and linked by synaptic weights. Feedforward

Multilayer Perceptron (MLP) using backpropagation

(Rumelhart et al. 1986) is the most popular and widely

used design for ANNs. Its architecture is composed of an

input layer, one or more hidden layers and an output layer.

The network is organized in fully connected layers, with

information going forward and errors being propagated

backwards in a supervised learning procedure.

Feedforward Neural Networks with a single hidden

layer and a sufficiently large number of neurons are able to

approximate any nonlinear function and are considered to

be universal approximators (Hornik et al. 1989). In this

work, BPNN models have been trained using the Leven-

berg–Marquardt (Marquardt 1963) as the optimization

algorithm.

Generalization is a very important issue when using

machine learning models, and it can be defined as the

ability of the network to offer satisfactory results for

unseen new data (Bishop 1995). Hence, reducing the

generalization error as much as possible becomes a very

important task. In order to avoid overfitting and poor

generalization performances, the ANN models were trained

using the early stopping technique (Sarle 1995; Gardner

and Dorling 1998; Yao et al. 2007). According to this

technique, input data is split between a training, a valida-

tion, and a test set. It is based on a simultaneous use of a

training and validation sets of data while training the net-

work. The validation set is used to evaluate the general-

ization ability, and this allows the training to be stopped

when the maximum generalization capability is reached.

The test set is used to evaluate the final performance of the

trained ANN.

Finally, it is important to note that the optimal number

of neurons in the hidden layer varies depending on the

problem that must be solved. Here, a resampling procedure

has been used based on a twofold cross-validation. Authors

have previously applied this approach successfully in pre-

vious works (Turias et al. 2008, 2017; Muñoz et al. 2014).

3.3 Hierarchical clustering

The aim of cluster analysis (Hastie et al. 2009) is to

decompose data into different groups where the dissimi-

larities between the elements within a group are as small as

possible and, at the same time, as big as possible between

elements belonging to different groups.

Hierarchical clustering (Murtagh 1983; Rokach and

Maimon 2005; Hastie et al. 2009) are based on a recursive
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partitioning of the elements, which produces a set of nested

groups that are arranged as a tree. This process can be

performed in two different approaches: agglomerative

methods (bottom-up) or divisive methods (top-down).

In this work, an agglomerative hierarchical clustering

analysis has been applied in order to find similarities

between the relevance of the variables for the monitoring

stations. Minimax linkage (Bien and Tibshirani 2011) has

been employed to measure dissimilarities between groups.

This method supplies prototypical values, which can

describe groups and facilitate the interpretation of the

analysis. The optimal number of clusters have been decided

according to the results obtained by the Calinski–Har-

abasz’s CH index (Calinski and Harabasz 1974), the

Davies–Bouldin index (Davies and Bouldin 1979) and the

Silhouette method (Rousseeuw 1987).

4 Experimental procedure

The aim of this study is to determine the most relevant

variables in order to estimate the hourly NO2 concentration

for each monitoring station. BPNNs and RML where used

as estimation methods in three different approaches,

depending on the set of input variables used to create the

models. In the first one, only the meteorological variables

that are present in the initial dataset were used. In the

second one, the input dataset was composed exclusively by

the NO2 variables of the stations. Finally, the third

approach combined variables of both types in a data-driven

scheme (Solomatine et al. 2008). Thus, the whole initial

dataset was used to obtain the models (combined

approach).

As an initial step, the original data set was pre-pro-

cessed, and only complete records were used. Therefore, no

missing-data imputation procedure was applied to the

database, and all the time instants where all variables were

not jointly available were removed. As a result, a total of

11,364 time instants of the initial data were used.

For each monitoring station and input variables

approach, the input variables were sorted according to their

ascending regression p values. Starting with an input

dataset composed only of the very best variable, BPNN and

RML models were obtained. In every following step, a new

variable was added to the input dataset according to its

position in the ranking, and its corresponding models were

obtained. This process was repeated until all the variables

were used as inputs. The BPNNs used included a single

hidden layer and were defined using a different number of

hidden units (1–20, 25, 30, 35, 40, 45, 50). The early

stopping method was used to avoid overfitting and

Levenberg–Marquardt was used as the optimization

algorithm.

For each model, a random resampling procedure using

twofold cross-validation was used as the validation tech-

nique. This procedure split the inputs into two non-over-

lapping folds of equal size (a training and a test set). The

parameters of each model were estimated using the training

set while the performance was measured using the test set.

This process was repeated twice, interchanging training

and test sets, and the average of the performance measures

was calculated. Due to the random initialization of the

weights in ANNs, this validation procedure was repeated

20 times for each model, taking the average of the results.

The results of each repetition were also stored in order to

perform a multicomparison procedure in a later step. The

Pearson correlation coefficient (R) was used in order to

evaluate the predictive accuracy of the models. Addition-

ally, the root mean squared error (RMSE), the index of

agreement (d) and the mean absolute error (MAE) (Will-

mott 1982) were also calculated. Higher values of d and

R indicate a better performance of the models, while lower

values of RMSE and MAE imply more precise predictions.

These performance indexes are defined in Eqs. (2–5).

R ¼
PN

i¼1 Oi � �Oð Þ � Pi � �Pð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Oi � �Oð Þ2�

PN
i¼1 Pi � �Pð Þ2

q ð2Þ

RMSE ¼ 1

N

XN

i¼1

Pi � Oið Þ2
 !1

2

ð3Þ

d ¼ 1�
PN

i¼1 Pi � Oið Þ2
PN

i¼1 Pi � �Oj j þ Oi � �Oj jð Þ2
ð4Þ

MAE ¼ 1

N

XN

i¼1

Pi � Oij j ð5Þ

where P indicates model predicted values and O indicates

observed values.

In order to select the best model for each station and

input variables approach pair, a multicomparison procedure

was performed. Results were analysed using the Friedman

test (non-parametric alternative to ANOVA) (Friedman

1937) and the Bonferroni method (Hochberg and Tamhane

1987), in conjunction with the aforementioned perfor-

mance indexes. The Friedman test evaluated if a signi-

ficative difference between models was present, while the

Bonferroni test determined which of the models were not

equivalent. Once the best model is selected for a given

monitoring station, the most relevant variables are obtained

as the variables used as inputs of the best model.

Finally, with the aim of discovering resemblances in the

set of variables that are important for each station, an

agglomerative hierarchical clustering algorithm using the

Minimax linkage was applied. The optimal number of

clusters was determined by the comparison of the results
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obtained using the CH index, the Davies–Bouldin index

and the Silhouette method.

5 Results and discussion

The results of the experimental procedure are presented in

this section. The rankings of variables for each station and

proposed input approach, according to their ascending

p value, are presented in Fig. 2 (meteorological variables

(a) and NO2 variables (b)) and Fig. 3 (combined approach).

In the case of the meteorological approach, the ranking

shows how relative humidity variables and wind direction

variables reach the top positions. This prominent group of

variables also include wind speed and temperature mea-

sured in WE4. Hence, these variables are more likely to be

present in the final best models. This result is coincident

with many of the works that were revised in the intro-

duction section. In the case of the NO2 approach, it is

clearly observed how the variables that have better posi-

tions for a given station are mainly among those variables

that are in its own neighbourhood. For the combined

approach, the same trend seems to be true. In this case,

NO2 concentrations measured in the neighbouring stations

are among the top positions for each station. Nevertheless,

meteorological variables such as temperature, relative

humidity, wind speed and wind direction are also present in

the higher positions of the rankings. Thus, for a certain

station, the top variables group is generally composed of a

mix of NO2 and meteorological variables.

Tables 3 and 4 show the results obtained for the pro-

posed approaches using MLR and ANNs respectively and

previously unseen data. For each NO2 monitoring station,

different ANN models can be selected varying the number

of hidden units (nh) used. For each station and estimation

method pair, the best model was selected after applying the

Friedman test and the Bonferroni method, as was explained

in Sect. 4.

The main goal of this work is to discover the most rel-

evant variables in order to estimate the NO2 concentrations

in each monitoring station. For each case, they were

obtained as the inputs used in its best estimation models. A

complete list of relevant variables per monitoring station

and input approach is shown in Table 5. The knowledge of

these variables can be very useful to discover which

monitoring stations are related to each other and are

affected by changes in the same variables.

Based on this performance indexes of Tables 3 and 4,

ANN models with early stopping are shown to be superior

to MLR models and give better results in all the cases

studied. This can be explained by the ability of the ANN to

capture complex, nonlinear relationships among variables.

In contrast, MLR models are simpler and only capture

linear relations between variables.

The analysis of the best models provided by the mete-

orological approach using ANNs shows how R values

range from 0.60 to 0.77 and d values go from 0.73 to 0.86.

Only two stations present d values of 0.85 or more and R

values greater than 0.75 (stations 1 and 13). Hence, the

overall performance of this approach can only be classified

Fig. 2 Ranking per monitoring station based on regression p values

using a meteorological variables as inputs b NO2 concentrations as

inputs. A value equal to 1 means the best variable (lower p value) and

24 (in a) or 13 (in b) indicate the worst variable (higher p value). The

top 5 variables are indicated for each case
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as modest. A closer look to Table 4 shows how none of the

best models uses less than 9 input variables. This indicates

that the top variables of the meteorological rankings are

used in all the cases (see Fig. 2a and Table 5). Therefore,

relative humidity and wind direction, with the addition of

wind speed measured in WE4, constitute the most relevant

meteorological features for this approach.

In contrast, the NO2 input approach using ANNs

achieves much better results, with R values between 0.74

and 0.88, and d values between 0.83 and 0.93. The analysis

of the input variables used in the best models (see Table 5)

shows how mainly neighbouring stations are included, as

was expected according to the rankings. However, station

1, which is located in Algeciras, is present in all the

models. This station corresponds to the most important city

in the area, with NO2 emissions mainly from urban traffic,

heavy vehicles and exhaust gases from ships. Additionally,

stations 3, 6 and 11, all of them located very close to the

petrochemical industries, are present in at least 10 of the

best models.

If both approaches are compared, it is clear that a

scheme based on NO2 inputs outperforms the meteoro-

logical approach. It produces models with higher R and

d values and lower error indices (RMSE and MAE). The

difference is very appreciable in all the stations except for

two specific cases (stations 1 and 3) where results are fairly

close. Therefore, only the very top models using the

meteorological approach produce results that are compa-

rable to those obtained using the NO2 approach.

In the case of the combined approach, both types of

variables have been ranked and used as inputs of the esti-

mation models (see Fig. 3). Based on the performance

indices shown in Table 4, the good estimation performance

of the combined models is demonstrated, with R values

between 0.78 and 0.89 and d values ranging from 0.87 to

0.94. Compared to the previous approaches, it produces the

best results for all the indices and stations. The improve-

ment is remarkable when compared to the meteorological

approach, and noticeable in most of the stations if it is

compared to the NO2 approach. In this last case, although it

performs better, the difference in stations 6, 7, 9 is not as

appreciable. This suggests that much of the information

provided by the meteorological variables is already present

in the NO2 variables used.

Scatter plots and the correlation coefficients of estimated

versus observed values for stations 1 and 13, for a period of

4 months (July 2014–October 2014), are presented in

Fig. 4. The estimations were obtained using the best

models for each station (ANNs and the combined

approach). These monitoring stations have been selected

due to their close location to the most populous cities in the

area of study (see Fig. 1).

The estimation model (a) shows an R-value on 0.841,

which leads to a determination coefficient (R2) of 0.707. In

the case of estimation model (b), it shows an R-value of

0.877 and a corresponding R2 of 0.769. The coefficient of

determination expresses the proportion of the variance in

the dependent variable that is predictable from the

Fig. 3 Ranking per monitoring station based on regression p values using the combined approach for the input dataset (1 means the best

variable—lower p value, and 37 means the worst variable—higher p value). The top 10 variables are indicated for each case
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independent variables. The more variance accounted by the

models, the closer the data points will be to the perfect fit

line. In consequence, there will always exist a difference,

or bias, between estimated and the real values according to

the R2 values that the models can achieve. The exception to

that statement would be the theoretical case of R2 = 1, a

perfect match that represents a 45� degrees line. Hence, a
no-perfect match, as occurs here, shows a bias vs the best

perfect linear fit.

The main consequence of this bias is that our estima-

tions will reflect only 70.7% and 76.9% of the variance of

the real values. With the available dataset, this is the top

Table 3 Best MLR models for

each NO2 monitoring station

(number of variables per input

approach: NO2 ST = 13,

meteorological MET = 24,

combined ST ? MET = 37)

Station Inputs Selected variables �R RMSE �d MAE

1 ST ? MET 25 0.807 13.657 0.882 9.992

MET 16 0.714 16.183 0.815 12.171

ST 13 0.693 16.662 0.798 12.694

2 ST ? MET 23 0.759 9.803 0.850 6.573

MET 16 0.561 12.458 0.674 8.758

ST 13 0.732 10.257 0.828 6.993

3 ST ? MET 19 0.794 9.004 0.876 6.220

MET 26 0.619 11.654 0.731 7.825

ST 12 0.739 9.995 0.835 6.748

4 ST ? MET 23 0.835 9.580 0.904 6.672

MET 20 0.554 14.511 0.671 10.340

ST 10 0.823 9.902 0.896 6.857

5 ST ? MET 25 0.800 7.702 0.880 5.223

MET 18 0.511 11.028 0.623 7.486

ST 9 0.776 8.099 0.863 5.479

6 ST ? MET 18 0.879 6.891 0.932 4.503

MET 20 0.543 12.108 0.655 8.156

ST 10 0.874 6.996 0.930 4.576

7 ST ? MET 24 0.880 8.286 0.933 5.572

MET 18 0.625 13.619 0.739 9.919

ST 8 0.873 8.519 0.929 5.661

8 ST ? MET 19 0.860 9.436 0.920 5.999

MET 22 0.652 14.009 0.762 9.964

ST 10 0.838 10.091 0.906 6.341

9 ST ? MET 25 0.879 6.425 0.932 4.137

MET 21 0.554 11.220 0.667 7.327

ST 10 0.870 6.644 0.927 4.282

10 ST ? MET 20 0.853 8.515 0.916 6.048

MET 12 0.652 12.368 0.763 9.027

ST 6 0.839 8.868 0.907 6.321

11 ST ? MET 22 0.838 7.696 0.906 5.242

MET 23 0.614 11.117 0.729 7.650

ST 11 0.797 8.507 0.878 5.837

12 ST ? MET 22 0.778 11.325 0.867 8.083

MET 16 0.509 15.523 0.633 11.418

ST 11 0.753 11.865 0.847 8.399

13 ST ? MET 24 0.858 10.825 0.919 7.804

MET 19 0.708 14.896 0.811 11.170

ST 6 0.83 11.773 0.901 8.537

14 ST ? MET 21 0.848 6.407 0.913 4.306

MET 20 0.563 9.997 0.676 7.026

ST 7 0.829 6.758 0.900 4.545
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performance that the applied models can achieve. A pos-

sible increase in the performance (and thus, a lower bias

between observed vs. predicted values) could be achieved

if new variables adding relevant information were added.

A period of 100 h has been selected from the temporal

range mentioned before (July 2014–October 2014). A

representation of observed vs. estimated values for this

period and stations 1 and 13 is depicted in Fig. 5a and b.

Table 4 Best ANN models for

each NO2 monitoring station

(number of variables per input

approach: NO2 ST = 13,

meteorological MET = 24,

combined ST ? MET = 37)

Station Inputs Selected variables nh �R RMSE �d MAE

1 ST ? MET 19 7 0.834 12.756 0.905 8.910

MET 13 12 0.754 15.198 0.850 11.010

ST 9 9 0.765 14.902 0.858 10.580

2 ST ? MET 21 9 0.785 9.335 0.874 6.110

MET 14 13 0.646 11.512 0.765 7.757

ST 11 9 0.740 10.138 0.837 6.859

3 ST ? MET 15 18 0.837 8.145 0.905 5.269

MET 12 16 0.730 10.176 0.833 6.446

ST 12 6 0.758 9.688 0.851 6.377

4 ST ? MET 23 9 0.848 9.262 0.914 6.377

MET 15 17 0.638 13.452 0.760 9.250

ST 10 7 0.832 9.683 0.903 6.695

5 ST ? MET 20 10 0.821 7.363 0.895 4.857

MET 18 14 0.606 10.243 0.731 6.867

ST 9 7 0.786 7.951 0.872 5.211

6 ST ? MET 15 12 0.895 6.443 0.943 3.986

MET 20 15 0.678 10.638 0.795 6.738

ST 11 6 0.888 6.642 0.938 4.118

7 ST ? MET 18 7 0.893 7.870 0.940 5.236

MET 15 17 0.704 12.429 0.813 8.756

ST 6 9 0.885 8.135 0.937 5.365

8 ST ? MET 12 9 0.873 9.013 0.929 5.748

MET 15 16 0.716 12.926 0.824 8.949

ST 9 13 0.842 9.971 0.910 6.283

9 ST ? MET 18 11 0.887 6.234 0.938 3.818

MET 15 11 0.654 10.226 0.771 6.394

ST 10 4 0.877 6.488 0.931 3.999

10 ST ? MET 16 14 0.875 7.914 0.931 5.482

MET 12 17 0.721 11.325 0.826 7.942

ST 5 8 0.851 8.565 0.915 6.033

11 ST ? MET 19 16 0.860 7.208 0.921 4.693

MET 12 17 0.707 9.998 0.817 6.563

ST 12 8 0.821 8.054 0.896 5.344

12 ST ? MET 22 13 0.824 10.225 0.899 7.110

MET 14 15 0.701 13.011 0.816 9.215

ST 13 14 0.775 11.428 0.865 8.020

13 ST ? MET 17 20 0.877 10.155 0.931 7.156

MET 9 25 0.771 13.444 0.862 9.556

ST 6 9 0.840 11.448 0.908 8.092

14 ST ? MET 21 8 0.860 6.171 0.921 4.113

MET 19 19 0.661 9.108 0.783 6.284

ST 7 6 0.838 6.596 0.907 4.436
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Values were estimated using the best models for each

station (ANNs and the combined approach). Examining the

figure, an acceptable fit between estimated and observed

values is observed, as it is expected according to the R and

R2 values of model (a) and model (b) that were previously

discussed.

Table 5 Most relevant variables for each NO2 monitoring station

NO2 monitoring station number Inputs Selected variables (in order)

1 ST ? MET 38, 29, 5, 30, 18, 7, 15, 4, 32, 37, 20, 10, 31, 12, 33, 14, 19, 9, 23

MET 29, 30, 18, 38, 20, 15, 21, 37, 31, 25, 23, 27, 19

ST 7, 5, 11, 8, 12, 9, 13, 3, 6

2 ST ? MET 11, 10, 25, 3, 30, 6, 9, 15, 14, 33, 13, 18, 21, 20, 24, 4, 38, 27, 23, 16, 32

MET 25, 21, 33, 29, 15, 31, 16, 32, 38, 20, 30, 24, 37, 36

ST 11, 3, 10, 14, 6, 12, 1, 5, 4, 9, 8

3 ST ? MET 9, 25, 33, 7, 2, 19, 20, 23, 21, 16, 12, 18, 31, 5, 30

MET 33, 21, 31, 25, 19, 20, 16, 38, 29, 28, 23, 30

ST 9, 12, 1, 8, 7, 6, 11, 4, 5, 13, 2, 10

4 ST ? MET 6, 14, 11, 13, 31, 32, 1, 16, 38, 29, 19, 37, 9, 25, 8, 23, 21, 24, 7, 35, 2, 26, 36

MET 31, 21, 16, 33, 25, 38, 29, 28, 23, 36, 24, 32, 35, 19, 18

ST 6, 14, 11, 8, 13, 7, 3, 2, 9, 1

5 ST ? MET 9, 7, 33, 1, 32, 23, 6, 36, 35, 29, 38, 21, 25, 11, 12, 3, 15, 19, 10, 31

MET 29, 31, 25, 21, 36, 32, 15, 37, 35, 34, 33, 19, 27, 24, 16, 30, 20, 18

ST 7, 9, 6, 1, 11, 3, 2, 12, 13

6 ST ? MET 4, 9, 14, 12, 25, 11, 5, 10, 2, 30, 21, 31, 37, 29, 3

MET 31, 32, 21, 15, 16, 34, 30, 25, 29, 23, 26, 33, 37, 35, 24, 20, 36, 28, 19, 38

ST 9, 3, 11, 4, 5, 14, 8, 12, 10, 1, 2

7 ST ? MET 8, 5, 3, 1, 12, 23, 9, 35, 10, 20, 31, 36, 19, 4, 11, 32, 30, 18

MET 21, 31, 33, 23, 29, 20, 25, 37, 35, 30, 16, 28, 32, 19, 38

ST 5, 8, 9, 3, 1, 11

8 ST ? MET 7, 12, 37, 9, 20, 30, 15, 21, 32, 27, 23, 33

MET 21, 20, 31, 33, 30, 23, 37, 25, 29, 27, 15, 35,16, 19, 18

ST 7, 1, 9, 12, 14, 4, 5, 6, 3

9 ST ? MET 5, 3, 14, 6, 8, 23, 29, 2, 36, 16, 7, 32, 4, 12, 25, 35, 33, 1

MET 31, 21, 23, 33, 32, 36, 19, 27, 38, 15, 37, 25, 34, 24, 29

ST 6, 14, 5, 7, 4, 3, 8, 1, 12, 10

10 ST ? MET 13, 2, 15, 30, 18, 38, 25, 6, 11, 20, 1, 21, 7, 16, 27, 31

MET 15, 29, 30, 33, 38, 18, 21, 16, 19, 31, 26, 23

ST 13, 2, 6, 11, 1

11 ST ? MET 2, 12, 14, 4, 32, 6, 18, 10, 30, 21, 33, 15, 29, 5, 25, 24, 20, 28, 31

MET 32, 21, 20, 15, 16, 29, 33, 18, 22, 30, 28, 31

ST 2, 6, 12, 1, 10, 5, 4, 14, 8, 13, 7, 3

12 ST ? MET 11, 8, 6, 18, 7, 30, 31, 37, 20, 36, 29, 3, 19, 23, 5, 1, 9, 13, 21,10, 33, 32

MET 21, 20, 32, 33, 30, 29, 18, 25, 16, 31, 36, 37, 34, 38

ST 11, 6, 8, 3, 7, 2, 1, 10, 5, 4, 9, 14, 13

13 ST ? MET 10, 29, 15, 19, 4, 30, 25, 16, 20, 37, 27, 12, 2, 14, 3, 31, 38

MET 15, 29, 30, 19, 33, 21, 31, 23, 18

ST 10, 4, 3, 1, 2, 14

14 ST ? MET 9, 6, 4, 11, 16, 30, 19, 23, 2, 1, 13, 25, 32, 38, 8, 10, 31, 24, 35, 33, 18

MET 31, 30, 33, 21, 32, 20, 25, 18, 19, 27, 23, 37, 16, 35, 29, 28, 34, 15, 38

ST 4, 9, 6, 3, 1, 11, 13
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After obtaining the most relevant variables, and con-

sidering their positions in the ranking, a cluster analysis

was performed. Through this analysis, it is possible to

discover the similarities between stations according to the

variables that are relevant to them. To achieve this goal, a

hierarchical cluster analysis was applied using the Mini-

max linkage. The optimal number of clusters was deter-

mined using the CH index, the Davies–Bouldin index and

Silhouette method and is shown in Table 6.

Results are presented in Fig. 6 and show how the

monitoring stations in the area of study can be divided into

a western and an eastern main groups (see Fig. 1). Station

12 and station 2 act as prototypes of their respective

clusters and, in most cases, stations share similar relevant

variables with other stations that are close to them. As it

was expected, the obtained clusters are in agreement with

the fact that meteorological factors are very similar in

nearby stations. Therefore, this result highlights the

importance of the spatial relationships between stations.

6 Conclusions

This paper is focused on the determination of the most

relevant variables in order to estimate the NO2 concentra-

tion for each station of a monitoring network. This moni-

toring network is located in El Campo de Gibraltar region

(Spain). To achieve this goal, ANNs and MLR were

employed as estimation models, using a set of

Fig. 4 Scatterplot of observed

vs. estimated data and

R correlation coefficients for

EPS Algeciras station (1)

(a) and La Lı́nea station (13)

(b) using the best models (July

2014–October 2014). The

dashed line corresponds to

perfect fit while the red line

corresponds to the best linear fit

Fig. 5 Observed vs. estimated NO2 values for EPS Algeciras station (1) (a) and La Lı́nea station (13) (b) for a selected period of 100 h from the

temporal interval (July 2014–October 2014). The estimation values were obtained using the best models for each monitoring station

Table 6 Optimal number of clusters according to the CH index, the

Davies–Bouldin index and the Silhouette method

Method Optimal number of clusters

CH index 2

Davies–Bouldin index 4

Silhouette 2
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meteorological variables and NO2 as inputs in three dif-

ferent approaches. The first one was based on the use of

meteorological variables only, the second one employed

NO2 variables exclusively and the last one combine vari-

ables of both types. After a previous feature selection

procedure based on the p values of a multiple linear

regression as well as an incremental aggregation of vari-

ables scheme, the best NO2 estimation model was obtained

for each station and input approach.

Results showed how ANN models using backpropaga-

tion outperformed MLR models in every station using

different statistical indexes (R, d, MSE, MAE). Focusing on

the ANN models, a comparison between the proposed input

approaches was performed. Results showed how the com-

bined approach achieved fairly good results and outper-

formed the other approaches in all the stations and for all

the statistical indices. However, it is also important to note

that the difference of this approach with respect to the NO2

approach was limited in a reduced number of cases.

The comparison of the proposed approaches let us

understand better the relevance of using meteorological

and/or NO2 variables in the estimation models and drawn

some interesting conclusions. As was previously stated,

meteorological models are vastly surpassed by the other

approaches. They are only close to the NO2 model in terms

of performance if their very best models are considered.

However, an improvement in performance can be obtained

with the combined approach in all the cases (the amount is

important in most cases). This means that relevant infor-

mation can be added to the models through the use of

meteorological variables but the bulk of the important

information is contained in the NO2 variables. Addition-

ally, it is important to note that, in some cases, much of the

information provided by the meteorological variables is

already present in the NO2 variables in an implicit way.

The most relevant variables were obtained as the inputs

used in the global best estimation model for each station.

The knowledge of these groups of relevant variables let us

discover which factors affect the NO2 concentrations at

each monitoring station and know which stations are

affected by changes in the same variables. A hierarchical

cluster was applied in order to discover these similarities

between stations. The cluster results revealed the impor-

tance of the spatial relationships between stations. This was

expected according to the input approaches comparison

results and the fact that nearby stations share very similar

meteorological conditions. Additionally, based on the list

of relevant variables, a map showing the influence area of

each of the variables could be obtained.

The application of the estimation of NO2 measures

could produce multiple benefits. It could provide robust-

ness to a network of monitoring sensors. In that sense, in

the event of a failure in a monitoring station of the network,

its NO2 measures could be approximated using its corre-

sponding estimation model. Similarly, they might also help

in missing values situations producing accurate new values.

Furthermore, their use might facilitate the detection of

decalibration situations through the comparison of mea-

sured data with estimated data provided by the models.
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