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Data augmentation (DA) is a key element in the success of Deep Learning (DL) models, as its use can lead
to better prediction accuracy values when large size data sets are used. DA was not very much used with
earlier neural network models before 2012, and the reason might be related to the type of models and the
size of the data sets used. We investigate in this work, applying several state-of-the-art models based on
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs), the effect of DA when
using small size data sets, analyzing the results in terms of the prediction accuracy obtained according
. to the different characteristics of the training samples (number of instances and features, and class unbal-
Deep Learning . . . .
Data augmentation ance degree). We further introduce modlﬁcatlpns to the standard methoc!s uﬁed to gener.ate the synthetic
GAN samples to alter the class balance representation, and the overall results indicate that with some compu-
VAE tational effort a significant increase in prediction accuracy can be obtained when small data sets are
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1. Introduction

Since the results obtained in the ImageNet competition in 2012
by Krizhevsky, Sutskever, and Hinton (2012), Deep learning models
(DL) have caused a revolution in the field of machine learning that
is still impacting in almost every application area as the industry is
investing billions of dollars in artificial intelligence techniques.
Deep learning has been extremely successful in image recognition
problems, voice recognition and temporal series, in particular
when using large size data sets (LeCun, Bengio, & Hinton, 2015;
Schmidhuber, 2015). Compared to other classic supervised
machine learning methods (FFNN, SVMs, Random Forests) deep
learning has a more complex model structure, basically including
earlier layers that perform feature extraction, and because deep
learning architectures include thousands of parameters (mainly
synaptic weights) which must be adjusted during training, a large
data set with values of thousands of instances for each output cat-
egory is generally needed to achieve a good level of success
(Goodfellow, Bengio, & Courville, 2016). Data augmentation (DA),
that refers to the creation of additional synthetic samples, has
become an important area of research in recent years, as most of
the models that won the ImageNet Large-Scale Visual Recognition
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Challenge (ILSVRC) (Russakovsky et al., 2015) were trained with
data augmentation techniques (He, Zhang, Ren, & Sun, 2016;
Simonyan & Zisserman, 2014; Szegedy et al., 2015).

Most successful examples of DA are found in the application to
data sets consisting of images, cases in which the original patterns
can be transformed by applying geometric modifications, like rota-
tion, enlargement, translation, contrast variation, etc., that do not
alter the category of the samples (Krizhevsky et al., 2012). Applying
DA to non-image data sets is more challenging and apart from
some applications of SMOTE techniques (synthetic minority over-
sampling technique) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002),
designed to deal with data sets that have unbalanced classes, the
rest of the existing literature previously to 2015 is mainly related
to noise injection techniques as a way to prevent overfitting and
improve the accuracy of predictions (Fernandez-Navarro, Hervas-
Martinez, & Gutiérrez, 2011; Moreno-Barea, Strazzera, Jerez,
Urda, & Franco, 2018; Piotrowski & Napiorkowski, 2013; Reed &
Marks, 1998; Zur, Jiang, Pesce, & Drukker, 2009). A recent work
related also to DA is the work by Formentin, Mazzoleni,
Scandella, and Previdi (2019) where they applied it to unsuper-
vised non-linear system identification.

The use and application of DL models involves several other tech-
niques that have grown at the same time, and among them Varia-
tional Autoencoders (VAEs) and Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014; Kingma & Welling, 2013; Radford,
Metz, & Chintala, 2015; Rezende, Mohamed, & Wierstra, 2014;
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Zhao, Mathieu, & LeCun, 2016) have attracted much interest in
recent times. These techniques are included within the so-called
deep generative network models, whose purpose is to learn the data
distribution from a set of samples, to further generate new samples
drawn from the learned distribution. Although they share purpose,
both techniques are based on different ideas. VAEs are based on
autoencoders networks (Bourlard & Kamp, 1988), and try to codify
the input data capturing the original distribution; while GANs are
based on the idea of producing a confrontation between two net-
works, where one captures the distribution of the real data and gen-
erates synthetic data, and tries to deceive a second network that has
to discern whether the data it receives is real or false. Both models
canbe applied also in several tasks, but VAEs and GANs have become
very popular in recent times due to their success in generating fake
images that can be considered real by experts (Karras, Aila, Laine, &
Lehtinen, 2017; Puetal.,2016; Radford et al.,2015). They can also be
applied in other tasks like image resolution enhancement (Ledig
et al., 2017), image translation (Isola, Zhu, Zhou, & Efros, 2017),
and speech and natural language processing (Hsu, Hwang, Wu,
Tsao, & Wang, 2017; Pascual, Bonafonte, & Serra, 2017); but in par-
ticular they have shown to be very useful for DA (Douzas & Bacao,
2018; Frid-Adar et al., 2018; Hsu, Zhang, & Glass, 2017).

Considering all aspects mentioned before, two are the main
objectives of this work: on one hand the current investigation tries
to fill a gap in the existing scientific literature related to the use of
DA on small size data sets. On the other hand we analyze and pro-
pose modifications to state-of-the-art DA methods in order to
obtain an increase on the prediction accuracy by modifying the
percentage of synthetic generated samples for the different exist-
ing categories in the data sets, that will permit to apply efficiently
DA techniques to small and non-structured data sets in several
domains.

2. Previous related works

We review in this Section recent works about the application of
VAE and GAN models in the field of Data Augmentation (DA).
Within the medical domain, where the available samples are usu-
ally scarce and expensive to obtain, we can mention works that
develop a DA process using GANs: Wu, Wu, Cox, and Lotter
(2018) applied these class of methods to breast cancer tomogra-
phy, Frid-Adar et al. (2018) analyzed liver lesion scans, while
Zhao et al. (2018) applied a new generator model called FRBGAN
(Forward & Backward GAN) obtaining interesting results in its
application to lung cancer images.

DA tasks have also been successfully applied to other domains,
such as language processing tasks and automatic voice recognition
(Hsu et al., 2017); digital signal modulation classification (Tang, Tu,
Zhang, & Lin, 2018); and prediction in time series, specifically in
machine fault diagnosis (Shao, Wang, & Yan, 2019).

Although the previous works show a remarkable success in the
creation of synthetic data and their application in the improve-
ment of classification tasks thanks to the DA, especially in prob-
lems whose domain is data with spatial or temporal information
(images, signals and time series), the application of deep genera-
tive models in other domains has not been as successful and it is
more difficult to find related works. We can mention the work of
Liu et al. (2019) that uses a Wasserstein GAN as a sample generator
for a small data set (78 samples) belonging to the biomedical
domain, specifically to identify the stages of cancer. This study
shows an increase in the prediction efficiency of DNN, Random For-
est and Naive Bayes classifier models by DA with samples gener-
ated through a WGAN, in comparison to traditional methods
such as SMOTE. Other interesting and related work was published
by Douzas and Bacao (2018) in a study in which the validity of data

generation is examined through a conditional GAN using imbal-
anced sets. This work uses CGAN as an oversampling algorithm,
creating only samples that belong to the minority class, so it bal-
ances the data, and applies DA on a different classifier model,
obtaining a slight improvement with respect to other standard
methods.

Thus, even if the use of DA in domains where samples are not
images, voice data or temporal series (structured data) has been
shown to be somewhat beneficial for increasing the prediction
rate, still its application its scarce and there are not many works
dealing with small size data sets.

3. Methodology

We include in this section the methods and techniques used for
the application of Data Augmentation (DA) to a set of well known
labeled benchmark problems. The whole scheme of the approach
used for performing the DA and evaluating the results can be seen
in Fig. 1, where the two main processes involved are shown: (1) the
DA process itself, and (2) the classifier used to obtain the prediction
error on non-previously used data.

This Methodology section is organized as follows: it starts with
a description of the general DA process that will be used to create
synthetic samples that together with the original ones will be used
for training a classifier. VAEs and GANs models are involved in the
DA process, and so they are described independently in the follow-
ing subsections. Subsection 3.4 describes further modifications
implemented for treating unbalanced multiclass data sets, fol-
lowed by a subsection describing technical implementation details,
like the architecture and parameters used in the models. Finally,
the section ends with a description of the benchmark data sets
used to test the different approaches.

3.1. Generative process for data augmentation

Before the deep generative models (VAEs and GANs) to be used
for the creation of synthetic samples are explained in the next sub-
sections, it is useful to describe the general process used for carry-
ing out the DA generation for an initial set of labeled samples. The
whole generative process is shown in Fig. 2, where it is possible to
see that it includes two models: a “Generator” (G) and a classifier
denoted “Generative Classifier” (C). The key thing for understand-
ing the process is to take into account that the present approach
deals with supervised benchmark problems (involving labeled
samples), and that the DA process includes two steps in relation-
ship to this: first the Generator (G) to create new synthetic data,
and second, the use of a Generative Classifier (C) to label the new
created samples. It can be seen from Fig. 2 that the whole process

Process

Data
Fig. 1. Flow diagram of the whole process for performing the DA and evaluating the
results on a set of benchmark problems. (See text for more details).
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Fig. 2. The generative DA process for the creation of synthetic data. The generative
model G is fed with train set. When it is trained, the synthetic samples z are
generated and the generative classifier C predicts the appropriate labels y. If the
label; predicted represents noise, sample; is discarded and G generates another new
sample.

consists essentially in a loop between these two main sub-
processes, where the IF control sentence included checks whether
the Generative Classifier decides if a created sample is considered
as Noise or as a Real sample; and in the last case it assigns a label
that will permit its application in a supervised classification
scheme.

The training of the Generative Classifier model is carried out
using samples from the Train set but it also incorporates some
noise from two different sources: (a) through the use of a uniform
random distribution; (b) by the addition of Gaussian noise (mean
equal to sample mean and standard deviation equals to 0.3). Sam-
ples created by both methods have a label that indicates that they
are considered as noisy samples. These two different sources of
noise are used because the first normal distribution applied is
not related to the original distribution of samples, and thus is a
way to teach the classifier that this is “purely” noise, while the sec-
ond source in which a Gaussian perturbation scheme is used cre-
ates samples related to the original distribution. Fig. 3 shows an
example of an original data set with two classes {A, B}, that with
the addition of the noisy samples become a 3-class problem
{A, B, Noise}.

On the other hand, the training of the Generator (G) model is
carried out using only samples from the Train set. Because different
models are used for this purpose (VAEs and GANs), including mod-
ifications implemented for treating unbalanced multiclass data
sets, the specific training and measuring performance details for
each case will be explained separately in its corresponding section.
As said before, once the Generator is trained, the generation of syn-
thetic data can be applied followed by the generation of the corre-
sponding labels using the Generative Classifier model. As shown in
the Fig. 2, the Generator (G) produces synthetic samples z that are
fed into a classifier to get a label for the new samples. The training
processes of the Generative Classifier and Generator can be done in
any order, or be carried out in a parallel process, since both are
totally independent, but it is necessary that the training of both
processes have been completed before starting the generation of
labels for the synthetic data. A Deep Neural Network, to be
described later in subsection 3.5, was used as the model for the
generative classifier.

Noise
Generator

Generative Classifier C

Fig. 3. The training process of the generative classifier (C) involves using training
(Tr;) and validations sets (V;) from the input data, together with the use of noise
sources. The objective of the training is for C to discriminate between the original
samples and the noisy ones.

3.2. Variational Autoencoder (VAE) generative models

VAE models (Kingma & Welling, 2013) can be considered a vari-
ation of the standard autoencoder network (Bourlard & Kamp,
1988). A VAE, like an autoencoder, consists of two interconnected
neural networks denominated encoder and decoder. The encoder
is an inference model g(z|x) that maps the input data x to a lower
dimension latent variable space z, while the decoder network gets
this latent space z variables as input, and outputs the probability
distribution of the data p(x|z). The difference of a VAE with an
autoencoder network is that, instead of directly generating a latent
vector and maximizing the marginal log-likelihood, a vector of
means u and a vector of standards deviations ¢ are generated,
and they are combined to form the latent vector. However, the
direct combination of these parameters in the latent vector z
implies that this is a continuous random variable, which would
not allow the network to learn the distribution that comes from
the encoder. To solve this problem and express the random vari-
able z as a deterministic variable, it is necessary to perform the
reparameterization trick, whereby z depends on the encoder out-
put parameters (i, ) and in addition to a variable ¢ sampled from
a Gaussian distribution (Eq. (1)).

e ~ N(0,1) 1)

Another difference of VAEs with respect to standard autoen-
coders is that the VAE maximizes the evidence lower bound (ELBO)
on the marginal log-likelihood of p(x) (Eq. (2)). The term
KL(q(z|x)||p(2)) in the Eq. 2 is the Kullback-Leibler divergence
between the distribution of the encoder q(z|x) and the prior distribu-
tionp(z). Thisis used as aregularizer, measuring the amount of infor-
mation that is lost when the distribution q is used to represent p.

min Eq[log p(x|2)] — KL(q(zIx)IlP(2) @)

200 — i 4 gt @ g,

Three different types of VAE models were tested in this work,
and a scheme of their functioning can be seen in Fig. 4, where stan-
dard VAEs are represented on top, Denoising VAEs (DVAE) in the
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Fig. 4. Schematic diagram of the functioning of the VAE (top figure), Denoising VAE (DVAE) (middle figure), and Conditional VAE (CVAE) (bottom figure). (See text for more

details).

middle, and Conditional VAEs (CVAE) at the bottom. The schematic
diagram of the VAE (Fig. 4 (top)), shows the flow of information:
the input x of the encoder, the intermediate latent space z that is
created from the distribution ¢ and the vectors of mean u and stan-
dard deviation g, and the output of the model. The propagation of
the loss through the network is also shown, a loss which is inferred
from the objective function (Eq. (2)). This loss corresponds to a
complete batch in an iteration of the model, and indicates the vari-
ation that has to be applied to both the encoder and the decoder.

Denoising VAEs (DVAE) (Im, Ahn, Memisevic, & Bengio, 2015)
(Fig. 4 (middle)) are different from standard VAEs as they receive
as input a deformation of the original input x, following a random
distribution that creates a noisy input x. The purpose is that by
mapping the noisy deformation x to the real input x, a more robust
latent representation is created. Eq. 3 shows the objective function
to be minimized for the case of the DVAE model.

min Equy [Eqii [l0g p(x12)] - KL(q(2¥)lIp(2))] (3)

The third VAE variant tested in this work is the Conditional one
(CVAE) (Kingma, Rezende, Mohamed, & Welling, 2014; Sohn, Lee, &
Yan, 2015). In this variant the information referring to a condition
y, or another information of the data, is added to the network, both

in the encoder and decoder. This makes the network aware of the
type of sample that has to be mapped into the latent space z of the
encoder, improving the ability of the network to discern between
classes of samples. The objective function in this case has to be
modified considering the condition y as shown in Eq. (4).

TT}}U Eqiaxy (108 P(x|2,)] — KL(q(z]x,)[IP(2]y)) 4)

3.3. Generative Adversarial Networks (GANSs)

GAN models (Goodfellow et al., 2014) essentially consist of two
coupled neural networks, called respectively generator and discrim-
inator, trained simultaneously in an adversarial process. The objec-
tive of the discriminator network, denoted D, is to distinguish
whether a given sample is real or false (i.e., whether the samples
are coming from the original distribution or not), so that for an
input sample x the discriminator estimates the probability D(x)
that the sample is real. The generator, denoted G, is a network
whose purpose is to create new synthetic samples such that D
can consider them as real samples. The input of G is a noisy random
distribution z, and the output G(z) is a distribution assigned to the
space of the real samples. Therefore, the generator process is
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Fig. 5. Schematic diagram of the functioning of the GAN (top figure), Wasserstein
GAN with gradient penalty (WGAN-GP) (middle figure), and Conditional GAN
(CGAN) (bottom figure). (See text for more details).

opposite to that of the discriminator, giving rise to a competitive
environment, which is represented by an objective cost function
(Eq. (5)).

MINMAX Expy,, 0108 D(X)] + Ezvp,( l0g(1 - D(G(2)))] (5)

In the GAN objective cost function (Eq. (5)) two parts can be
observed that are identified with the behavior of the model: one
part related to the recognition of samples that are real
(Ex~pga[10g D(x)]), and another one for those samples that are
false (E;.p,»[log(1 — D(G(2)))]). In this way, the ability of the model
to recognize whether the samples are real or false is expressed in
Eq. (6), and the error of the network related to the recognition of
false samples is modeled by Eq. (7):

MaX Expy 0108 D(X)] + v, [l0g(1 - D(G(2)))] (6)

min E,.,, - log(1 - D(G(2)))] (7)

As it has been done for the case of the VAE models, two other
variants models of the standard GANs are considered: Wasserstein
GANs with gradient penalty (WGAN-GP) and Conditional GANs
(CGAN), and the three GAN models used are schematically shown
in Fig. 5. In the Figure for each type of GAN the flow of information
is shown, including the inputs of the generator and discriminator
networks (Critic in the case of WGAN-GP), and the output of the
model that corresponds to the probability that the input sample
to the discriminator was real.

One of the variants of the standard GAN model considered is the
Wasserstein GAN with gradient penalty (WGAN-GP) (Gulrajani,
Ahmed, Arjovsky, Dumoulin, & Courville, 2017), a specific variant
of Wasserstein GANs (Arjovsky, Chintala, & Bottou, 2017). GAN mod-
els can present stability and speed difficulties in the training process,
such as vanishing gradients and collapse mode problems. To reduce
these effects, the Wasserstein distance is used in WGANSs instead of
the Jensen-Shannon divergence for the evaluation of the distance
between the synthetic data and the real data, and as a consequence
the cost function changes. It is also necessary to make a modification
in the discriminator, which in this model is renamed as Critic but
retains the notation used: D. In the WGAN-GP model used in this
paper, the weight clipping operation that is used in the WGAN model
is replaced by the use of a gradient penalty term. This term is calcu-
lated using a gradient penalty coefficient 4, and using X, which is cal-
culated from real and synthetic data (Eq. (8)).

GP— 3.y [(IV:D) ], ~ 17 ”

Thus the objective cost function of the WGAN-GP model was
modified with respect to standard WGAN case with a gradient pen-
alty (Eq. (9)), and in this way, the WGAN-GP model has a greater
stability during training and a greater independence between the
Critic and generator, preventing the problems of WGAN due to
the size of the weight clipping window.

MINMaX Ep,,, 00 [D(X)] — Ezop, 0 [D(G(2))] — GP 9)

The second variant of GAN network considered are the Con-
ditional ones (CGAN) (Mirza & Osindero, 2014). As with the
CVAE model with respect to VAE, the feature that differentiates
the CGAN model regarding GANs, is the addition of information
relative to the label y of the sample. As shown in Fig. 5 (bot-
tom), the label is added to the latent space z at the input of
the generating network, and to the real and generated samples
at the entrance of the discriminating network. The only varia-
tion with respect to the objective cost function of the GAN
model is the addition of sample label y in the computation of
the results obtained from both networks (Eq. (10)). It is
assumed that introducing this additional information gives a
starting point to the CGAN model to know what features to
look for, introducing a bias in the nodes and giving rise to bet-
ter results, specially in the case of images.

MINMax Ex.py,, 0108 D(XY)] + Erp,o[log(1 = D(G(2ly))]  (10)

3.4. Introduced modifications for treating unbalanced data distribution

When the previously described models (VAEs and GANS) were
directly applied to the generation of synthetic data and used for
training a supervised predictive model, it was observed that most
of the times they generate synthetic data for only one of the cate-
gory classes, usually for the larger one. Due to this fact, a collapse
in the classifier model may occur. In order to avoid the previously
mentioned problem, and after experimenting with different
options, two methods named ‘Multiclass’ and ‘Balanced Multiclass’
are introduced and described below.

The first thing to take into account is that a single generative
model was not used for the whole data set, but we use as many
models as classes are present in the original data set. In this way,
the first step in the process consists in dividing the input data
according to problem labels (classes). For each of the n classes,
one model will be trained taking all samples that belong to the cat-
egory of the model together with a random selection of samples
from the other classes, trying to reach a 20% proportion of samples
that do not belong to the model category (in cases where the total
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number of samples of the remaining classes is less than this pro-
portion, all existing samples are used).

The first of the implemented method, named ‘Multiclass’, essen-
tially works by keeping the proportion of samples of each class as
in the original data. For the second introduced method, the
‘Balanced Multiclass’, more samples are generated for less repre-
sented classes, i.e., after the DA process is applied the training set
will be more balanced. The number of samples L that the class i
generator model has to produce, is given by the following equa-
tions for both approaches:

L =x-K, for the ‘Multiclass’ case

L=[1-x)/(n-1)]-K, for the ‘Balanced Multiclass’ case

where X is the proportion of class i in original data, n is the number
of classes, and K is the total number of samples we want to gener-
ate. The introduced methods do not intend to force the model to
generate only synthetic samples of a class, but to better adapt the
distribution of samples of this class, trying to avoid the collapse that
happens when the model is fed with all the data. The number of

samples generated by each of the generators depends on the imple-
mented method used, on the number of samples desired and on the
proportion of classes in the original set. For example, if we consider
a data set with three categories originally containing 60, 20 and 20
samples for each class, and the objective is to augment the size by a
100%, for the case of the ‘Multiclass’ method the target is to end up
with a number of samples close to 120, 40 and 40, while the distri-
bution of classes will be 80, 60 and 60 for the ‘Balanced Multiclass’
one. If a sample generated by the generator model i is classified as
noise, the same model generates a new sample. The final set of syn-
thetic data z results from the union of the different sets of generated
samples.

The process described above is schematically shown in Fig. 6.
Once we have the training data X, at this example with a binary
class data, A and B, they will be split into two sets. One of them
is composed of all samples of the class A and 20% of samples ran-
domly selected from class B, and the other is composed of all sam-
ples of B and 20% of A. Then, the generative models G; and G, are
trained with their respectively division. Already in the process of
generating synthetic samples, the synthetic samples z; and z, are

( Train Data x R
| Features; Class B
| Features, Class A
[ Features; | Class A
| Featuresy || ClassB |
-

/\

(" TrainData Class A )
| Features, | [ Class A
[ Featl.Jres3 | Clafs A 100% A
[ Features, | [ ClassA
| Features; | [ ClassB

5 5 20% B
|KFeaturesk [ ClassB | )

Generator G,

Synth Data z;

Sample;

Sample,
Sample;

(" Train Data Class B )
| Features, |[ ClassB |
| Featl.lresk l | Cla§s B | 100% B
Class B
| Features, || ClassA

: f 20% A
K[ Features; [ | ClassA |

Generator G,

Synth Data z,
Sample .,
Sample ,,

Sampley , 3

Fig. 6. Scheme behind the modifications introduced to deal with the data augmentation problem. Training data x are split into as many sets as classes. Each division i is
composed of all samples from the class i and 20% of samples randomly selected from the rest of the classes. Once the generative models are trained the synthetic samples z are
generated following one of the two proposed methods: ‘Multiclass’ and ‘Balanced Multiclass’.
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Table 1
Short description of the different models used for the DA experiments.
Model Abbrv. Architecture summary Function
Variational Autoencoder VAE Two neural networks: encoder and decoder. The output of the encoder is Evidence Lower Bound and
transformed into a latent variable that becomes the decoder’s input, trying to Kullback-Leibler
recreate the original data. Divergence.
Denoising VAE DVAE Similar to VAE but with noise added to the input of the encoder. Same as VAE.
Conditional VAE CVAE Similar to VAE but with sample labels added to the encoder and decoder inputs. Same as VAE.
Generative Adversarial Network ~ GAN Two neural networks: generator and discriminator. A random distribution is the Jensen-Shannon
generator input while synthetic samples are the output. The discriminator receives Divergence.

Wasserstein GAN with gradient ~ WGAN-GP
penalty

Conditional GAN CGAN

‘Multiclass’ GANs and VAEs _M

‘Balanced Multiclass’ GANs and  _BM

real and synthetic samples trying to predict whether they are the real ones or not.
Similar to GAN model but in this case the discriminator is called Critic, and it is
trained several times for each iteration of the generator.

Similar to GAN model but with sample labels added to the input of generator and
discriminator.

This modification creates n models, each one for every existing class of the original
data. The input of the model i consist in all samples from class i, plus a 20% from
other classes. The number of synthetic samples generated by each model follows the
proportion of classes of the original data.

Similar to the variation _M. There are n models, having each one all the samples

Wasserstein distance.
Same as GAN.

Same as original model.

Same as original model.

VAEs from one class and 20% from the rest. The difference with the _M method is the
number of synthetic samples generated by each model, that in the present case
follows an inverse proportion of the classes in data, and thus tries to balance the

distribution of samples.

generated following one of the methods designed for it, until they
have the desired size K.

After explaining all the models studied in this work, Table 1
describes the main characteristics of the different models used,
including also the introduced modifications for the synthetic data
generation. It presents the name of the models and their formal
abbreviation, which in the case of model modifications indicates
the suffix that will be added to the abbreviation, ‘_M’ for ‘Multi-
class’ and ‘_BM’ for ‘Balanced Multiclass’. The table also shows a
brief description of the structure and operation that each model
presents, and the objective cost function that they apply.

3.5. Implementations of the models

Details of all models used in this work are given in this subsec-
tion, starting with VAEs and GANs models used in the generative
part and following with the details of the classifier used when
the augmented data is incorporated to the training set. The set of
parameters tested in the experiments comes from a selection
based on previous experience as the range of parameters should
be limited due to involved computation times.

All VAE models (standard VAE, DVAE and CVAE) share the same
characteristics: the encoder network comprises 4 hidden layers
with 512, 256, 128 and 64 neurons respectively, and the decoder
network has a similar structure in reverse order, with 4 hidden lay-
ers containing 64, 128, 256 and 512 neurons. In addition, the enco-
der has two outputs with 32 neurons each, this being the size of
the latent space which is the decoder input. Each hidden layer of
the encoder network uses Rectified Linear Unit (ReLU) (Xu,
Wang, Chen, & Li, 2015) activation functions, (the de facto state
of the art of the activation functions in deep learning), but for
the decoder the leaky ReLU (Maas, Hannun, & Ng, 2013) activation
function was the choice, since it provides more stability for the
reconstruction of the data. The decoder output layer uses a sigmoid
activation function. In the specific case of the CVAE model, an addi-
tional input neuron is included to incorporate the label
information.

For the GAN models also 4 hidden layer architectures were
used. Generator networks contain 4 hidden layers with 1024,
512, 256 and 128 neurons with ReLU activation function, and an
output layer with the size of the data and the hyperbolic tangent
(tanh) activation function was used. The noise vector dimension

of the generator’s input, z, was set to 32. The discriminator net-
work (the Critic in the case of WGAN-GP) also has 4 hidden layers,
but with 64, 128, 256 and 512 neurons, respectively, and leaky
ReLU activation functions. The discriminator output layer that
decides if a created sample is real or fake, contains a single neuron,
except for the case of WGAN-GP where an activation function is
not applied to the output. WGANSs also includes an extra parame-
ter, setting the number of iterations that the Critic performs for
each iteration of the generator, a value of 5 was used. An extra neu-
ron is added to input of CGAN in order to include the information
about sample label. The Adam algorithm (Kingma & Ba, 2014), a
popular optimization algorithm with adaptive learning rate was
used for training the models. The parameters used were: 2e—4 as
learning rate, 0.5 and 0.9 for the exponential decay rate for 1st
and 2nd moments respectively, and 1e—8 for €. Batch normaliza-
tion was also implemented as a regularization technique (loffe &
Szegedy, 2015), and used in all hidden layers.

In relationship to the classifier models used both for the process
of generating synthetic samples, and for the final testing of the
models when using the augmented data, the model implemented
is a feedforward three hidden layer architecture. Fig. 7 shows a

Fig. 7. Scheme of the multilayer perceptron architecture, with 3 hidden layers with
N, M and P neurons respectively, using Leaky ReLU (LR) activation function. The
boxes represent batch normalization (BN) and dropout.
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scheme of such an architecture with (N, M, K) neurons at first, sec-
ond and third hidden layers. The number of neurons included in
each layer was dependent on the data set being analyzed, and pre-
vious experiments were used as evidence in order to choose the
architecture. Leaky ReLU activation functions were used in the hid-
den neurons, and the sigmoid activation function was chosen for
the output neurons that classify the patterns in the different
classes.

A combination of dropout (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014), batch normalization and L2
norm (also known as weight decay) were used as regularization
techniques in order to prevent overfitting effects. The dropout rate
was 0.1, 0.5 and 0.3 in first, second and third hidden layers respec-
tively. The Adam algorithm, mentioned above in the case of the
generative models, was used with the same parameter settings.

3.6. Benchmark data

Table 2 shows some characteristics of the benchmark data used
for the set of experiments. The data was taken from the UCI
(Asuncion & Newman, 2007) and PROBEN1 benchmark sets
(Prechelt, 1994) frequently used in the literature. All data sets
come from real world data representing problems which that could
be called diagnosis tasks. In Table 2, the columns show the name of
the benchmark data set, the number of classes, features and
instances, and the proportion of classes. For this last column,
instead of showing the percentage of instances that belongs to each
class, a balance measure (Eq. (11)) based on the Shannon entropy
(H) was used. The measure is computed from the number of
instances n in the data set, the number of classes k, and the size
of each class ¢;. A value of Balance 1 means that the set is com-
pletely balanced, while values close to 0, corresponds to com-
pletely unbalanced sets.

k¢ G
Balance _H i logy (11)
log k log k

Two data sets shown in the table are not the original ones from
the UCI and PROBENT1 databases, as they were slightly transformed.
The idea of these modifications, was to increase the number of data
sets used and at the same time analyze similar problems with dif-
ferent number of classes and balance structure. The modified data
sets are ‘geneN’, derived from the data set ‘gene’ from PROBENT,
and the ‘non bal scale’ set modified from the data set ‘bal scale’

Table 2
Characteristics of the nineteen benchmark data sets selected to carry out the
experiments. (See text for more details).

Data set Classes Features Instances Balance
bal scale 3 4 625 0.83
breast cancer 2 9 699 0.93
card 2 15 690 0.99
cleveland 2 13 303 0.99
gene 3 120 3175 0.93
geneN 3 60 3175 0.93
glass 6 9 214 0.84
horse colic 3 58 364 0.84
ionosphere 2 34 351 0.94
iris 3 4 150 1.00
non bal scale 2 4 576 1.00
pima diabetes 2 8 768 0.93
seeds 3 7 210 1.00
sonar 2 60 208 0.99
soybean 19 82 683 0.90
thyroid 3 21 7200 0.28
waveform 3 12 5000 0.99
wdbc 2 30 569 0.95
wine 3 13 178 0.99

originally from the UCI database. In the data set ‘gene’, each
nucleotide taken in the gene sequence window is represented by
a pair of inputs that result in 120 features encoded such that
nucleotide C is encoded as (-1, —1), A as (-1, 1), G as (1, —-1),
and T as (1, 1). We have modified this coding such that C was
encoded as 0, Aas 1, G as 2, and T as 3, leading to a set (‘geneN’)
which has 60 features. In the other case, the ‘bal scale’ data set con-
tains three classes with 4 features and 625 instances, as shown in
Table 2, and it is unbalanced, having two major classes with a rep-
resentation of 46.08% and a minority class with only 7.84%. The
modified data set, ‘non bal scale’, has only two classes, those that
are majority in ‘bal scale’, so that the instances are reduced to
576, and the data set becomes fully balanced. Finally, it should
be mentioned that all the benchmark data sets have been normal-
ized before the experiments were carried out.

4. Experiments and results

First, the synthetic data generation process for each of the mod-
els is carried out, following the procedure described in Section 3.1.
Once this process is finished, the synthetic data z are added in the
needed percentage to the previously named training and validation
data and a cross validation procedure is implemented. Test data is
not used in the cross validation scheme as it is kept separately for
external honest test of the accuracy. As shown in the Fig. 8, the
Train and Valid sets are put together and used to make a split
through a stratified 10-fold cross-validation procedure, such that
9 folds will be used for training, 1-fold will be used to perform
early stopping through validation in the classifier models. Note
that the validation folds do not include synthetic data, and that
the subset of synthetic data to be added is the same for all the
folds, in order to minimize possible random effects.

We then proceed with the training of the classifiers, which pre-
sent the structure proposed above in the Section 3.5, and with the
number of neurons in each layer adjusted to the benchmark data
set to be analyzed. Once training is finished, we proceed to make
the prediction with the Test data. The result of the classification
process is then the average of the accuracy results obtained for
the 10-folds. This process is further repeated 10 times with differ-
ent seeds to reduce random effects.

Table 3 shows the results obtained for the 19 data sets used as
benchmarks and described previously in Table 2. First column
(‘Original’) shows the test accuracy when no Data Augmentation
(DA) is applied, while following columns show results for different
values of the size of the augmented training data (50%, 100%,
200%). The results corresponds for each data set to the model for
which the highest validation value was obtained, for which the
accuracy is evaluated on the test set. Last column in the

Table (@) shows the relative difference computed on the maxi-
mum results obtained previously (boldface font indicate the best
values for each data set). The relative difference (RD) is a measured
that indicates the percentage increase when the augmented data
set is used in comparison to the original data and is computed
using Eq. (12).

Acc_Aug — Acc_Ref)
Acc Ref

An analysis of the number of instances of the data sets corre-
sponding to the best obtained values (indicated in bold in Table 3)
shows that for 50% of DA the mean of instances is 2214.3 (std.
2476.2), for 100% DA it is 908.6 instances (std. 1154.4), and for
200% it is 404.6 instances (std. 190.5), i.e. that sets with lower
number of instances benefit more by using larger percentages of
DA. To further analyze the influence of the size of the data sets
in the accuracy obtained, we plot in Fig. 9 the test maximum rela-

RD:(

% 100 (12)
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Fig. 8. Classification process for performing the experiments. The real data x that were split at the generative process is used to perform a 10-fold cross-validation process.
The training sets are increased by adding synthetic samples, implementing the data augmentation. Once the classifiers are trained, the prediction is made with the Test set

and the accuracy is measured.

Table 3

Test accuracy using 50%, 100% and 200% of augmented data, and maximum relative difference (@) for all benchmark problems ordered according to the number of instances. All
different methods were applied, and for the one leading to the largest validation error, the obtained test results are reported.

Data set Original Data augmentation RD
50% 100% 200%

iris 0.9126 0.9323 0.9327 0.9427 3.295
wine 0.9633 1.0000 1.0000 1.0000 3.810
sonar 0.6245 0.7519 0.7781 0.7676 24.595
seeds 0.8917 0.8938 0.8921 0.8933 0.237
glass 0.6351 0.6572 0.6749 0.6658 6.264
cleveland 0.8493 0.8636 0.8690 0.8769 3.248
ionosphere 0.8862 0.8945 0.9051 0.9118 2.892
horse colic 0.6574 0.6593 0.6660 0.6697 1.875
wdbc 0.9705 0.9789 0.9778 0.9769 0.870
non bal scale 0.9835 0.9869 0.9855 0.9886 0.521
bal scale 0.9258 0.9252 0.9250 0.9441 1.975
soybean 0.9241 0.9283 0.9281 0.9256 0.457
card 0.8536 0.8591 0.8541 0.8618 0.962
breast cancer 0.9736 0.9754 0.9754 0.9741 0.188
pima diabetes 0.7537 0.7566 0.7578 0.7555 0.543
geneN 0.8499 0.8833 0.8839 0.8768 3.996
gene 0.9008 0.9051 0.9028 0.8985 0.479
waveform 0.8525 0.8634 0.8630 0.8632 1.273
thyroid 0.9780 0.9808 0.9806 0.9767 0.281
MEAN 0.8624 0.8787 0.8817 0.8826 3.040

tive difference RD (last column values from Table 3) versus the
number of instances on a logarithmic scale on the x-axis. A linear
regression model was fit to the results, obtaining the following
equation: y = —0.59x +5.69, with a correlation coefficient of
—0.38, indicating a moderate negative correlation between
instances number and prediction accuracy gain. (Note that the
results from the ‘sonar’ data set were excluded from this analysis
as the RD values are excessively large, fact that can be explained

on the extremely low values obtained with the original data. This
kind of result was observed previously for this data set (reference
Gorman & Sejnowski (1988)) and the explanation is that some pat-
terns are not well represented in the training or test sets in the
splitting used.).

We further perform an analysis to see which of the models lead
to the better results for each data set and the results are shown in
Table 4 for the different values of augmented training data (50%,



10 F.J. Moreno-Barea et al./ Expert Systems with Applications 161 (2020) 113696

il —— y=-0.59 *x + 5.69
5<
4 5 X
o
(-4
@
2 31
i
I
>~2_
14
X X X
0— T T T T T

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
X = log [# of instances]

Fig. 9. Relative prediction accuracy difference (RD) versus the logarithm of the
number of instances using the values from Table 3. The continuous line is a linear
regression adjusted to the data.

100%, 200%) for the whole set of benchmark problems ordered
according to the number of instances. A summary of these results
is shown in Table 5. For each of the six models, three different vari-
ations were analyzed, where ‘S’ refers to the standard model, ‘M’
refers to the modified model denoted ‘Multiclass’, while ‘BM’ refers
to the modified model named ‘Balanced Multiclass’.

The WGAN-GP model with the ‘Multiclass’ scheme leads to 10
best results out of the 57 analyzed cases and to the best overall
accuracy with a mean in prediction of 0.877. The second most pre-
ferred option was CVAE also with the use of the ‘Multiclass’ scheme
that lead to the obtaining of 8 best cases, but noting that on aver-
age the accuracy obtained is much lower (0.869).

A careful analysis of the results shown in Fig. 9 and those from
Table 5 leads to the conclusion that for the analyzed problems, sets
with smaller number of instances behaves differently to those with
larger number of patterns. Thus we consider different scenarios as
follows, in order to come to a conclusion about which can be con-
sidered the best performing method:

If only one method should be applied to the whole data set, our
results indicate that the best option is the CVAE model with the

Table 5

Table 4
Models that lead to the best validation results when using 50%, 100% and 200% of
augmented data. (See text for more details).

Data set Data Augmentation

50% 100% 200%
iris GAN_BM WGAN-GP_M WGAN-GP
wine WGAN-GP_M WGAN-GP_M WGAN-GP_M
sonar GAN_M WGAN-GP_M WGAN-GP_M
seeds CVAE_M CVAE_BM CVAE_M
glass CVAE_BM CVAE_BM CVAE_M
cleveland WGAN-GP_M WGAN-GP_M WGAN-GP_M
ionosphere CGAN_M GAN_BM GAN_BM
horse colic DVAE_BM CVAE_BM GAN_BM
wdbc GAN_M CGAN_BM CVAE_M
non bal scale CVAE_M CVAE_M CVAE_BM
bal scale DVAE_M VAE_M CVAE
soybean CGAN_BM WGAN-GP_M CVAE_M
card GAN DVAE GAN_M
breast cancer DVAE DVAE DVAE
pima diabetes CVAE_M CGAN_M CVAE_BM
geneN CVAE CVAE CVAE
gene CGAN_BM CGAN_BM CGAN_BM
waveform GAN_M GAN_M GAN_M
thyroid CVAE_BM CGAN CVAE

‘Balanced Multiclass’ scheme and 50% of DA. The first row in Table 6
indicates for this case, the average number of instances for the
whole set of problems, the validation results based on which the
chosen method was selected, and the test results. For both cases
(validation and test) accuracy and RD% values are indicated. Better
results can be obtained if the set of problems is divided in two
groups according to the number of instances available, and in this
case WGAN-GP with the ‘Balanced Multiclass’ scheme with 100%
DA works better than the rest for problems with a mean number
of instances of 283, leading to a relative large RD of 4.12%. For
problems with larger number of instances (mean equal to 2259),
standard VAEs seems to be the best choice, in this case using the
‘Multiclass’ scheme and 100% of DA, leading to a test RD% of
0.77. The average result for the combined strategy will lead to
0.88 and 2.36 test accuracy and RD%, a bit larger than for the case
of choosing a single method (0.87 and 1.03).

All previous results were obtained using the neural architecture
shown in Fig. 7. For comparison, a logistic regression (LR) model
classifier was also implemented. The results obtained for the 19

Number of times that the different models tested are chosen as best models (smaller validation error). The total number of cases (57) corresponds to the 19 data sets considered
for the three different DA percentages. First column corresponds to the different models tested and the sampling augmentation schemes. Last column reports the accuracy for the

chosen model averaged across all 19 problems. (See text for more details).

Models Data Augmentation Best cases Acc Test
50% 100% 200%
S 0 0 0 0 0.867
VAE M 0 1 0 1 0.871
BM 0 0 0 0 0.870
S 1 2 1 4 0.869
DVAE M 1 0 0 1 0.870
BM 1 0 0 1 0.869
S 1 1 3 5 0.870
CVAE M 3 1 4 8 0.869
BM 2 3 2 7 0.870
1 0 0 1 0.871
GAN M 3 1 2 6 0.874
BM 1 1 2 4 0.874
0 0 1 1 0.871
WGAN-GP M 2 5 3 10 0.877
BM 0 0 0 0 0.876
S 0 1 0 1 0.874
CGAN M 1 1 0 2 0.872
BM 2 2 1 5 0.874
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Table 6

Best option model and their results for three cases: considering all data sets together or selecting the model for two groups of problems according to the number of instances. (See

the text for more details).

Data Method #inst Acc Val RD Acc Test RD

Sets 1-19 CVAE_BMsq 1271 0.92 0.40 0.87 1.03

Sets 1-9 WGAN-GP_BM 0o 283 0.90 0.73 0.85 4.12

Sets 10-19 VAE_Mj o 2259 0.94 0.43 0.91 0.77
Table 7

Test accuracy obtained when a Logistic Regression classifier is used on the original data and different cases of augmented data. Last column shows the maximum relative

difference (RD). (See text for more details).

Data set Original Data augmentation RD
50% 100% 200%

iris 0.7500 0.9100 0.9207 0.9317 24,222
wine 0.9667 0.9894 0.9964 0.9950 3.075
sonar 0.7457 0.7629 0.7590 0.7533 2.299
seeds 0.8333 0.8802 0.8681 0.8433 5.629
glass 0.5163 0.6263 0.6442 0.6347 24,775
cleveland 0.9230 0.9328 0.9301 0.9293 1.066
ionosphere 0.8803 0.8890 0.8855 0.8901 1.120
horse colic 0.6836 0.6914 0.7130 0.7096 4.309
wdbc 0.9430 0.9462 0.9451 0.9495 0.688
non bal scale 0.9371 0.9351 0.9366 0.9379 0.092
bal scale 0.8608 0.8996 0.8772 0.8718 4,507
soybean 0.9241 0.9258 0.9300 0.9335 1.019
card 0.8703 0.8883 0.8883 0.8823 2.073
breast cancer 0.9629 0.9641 0.9649 0.9644 0.215
pima diabetes 0.7630 0.7795 0.7738 0.7734 2.170
geneN 0.7005 0.7049 0.6741 0.6778 0.630
gene 0.8976 0.8898 0.8864 0.8946 -0.342
waveform 0.8592 0.8618 0.8617 0.8610 0.301
thyroid 0.9347 0.9434 0.9425 0.9416 0.929
MEAN 0.8396 0.8642 0.8630 0.8618 4.146

data sets are shown in the Table 7. The table shows test accuracy
values measured for those models with larger validation scores
with different values of training DA (50%, 100%, 200%), and the

maximum relative difference (@) found.

In comparison to the neural network results, the LR model leads
to a larger RD average value (4.146) but noting that the maximum
average test accuracy is obtained with 50% DA with a value of
0.8642, lower than the obtained from the NN models when DA is
used. With respect to the comparison between the models with
which the best results have been obtained, the use of the WGAN-
GP model lead to 18 best results, followed by CGAN and GAN with
14 and 12 best results for each model, so the variations of GAN rep-
resent the best options in 44 out of 57 cases analyzed. Regarding
the modifications, the use of ‘Balanced Multiclass’ models lead to
22 best results, and ‘Multiclass’ models lead to 21 best results for
each model, so our proposal for dealing with class unbalanced
problems represents the best options in 43 out of 57 cases.

A further experiment was carried out using only synthetic data
for training the predictive models in order to analyze the quality of
the generated samples. Specifically, to obtain the prediction accu-
racy for these cases, synthetic data were used for training and val-
idation a feedforward neural network classifier using a distribution
of samples equal to the one from the original data. The test set is
the same one reserved for perform the testing in all experiments.
Table 8 shows the accuracy obtained in the test data set when only
the original data, only the synthetic data, and when augmented
data sets are used (these values corresponds to previously ana-
lyzed cases shown in Table 3). The values shown for the column
“Data Aug.”, are the maximum values reached using the percent-
ages 50 %, 100 % and 200 % of augmented data. The boldface font
indicates best values between the test accuracy obtained by origi-

nal, synthetic and augmented data, clearly showing that in most
cases (15 out of 19) it is beneficial to use the augmented sets,
but unexpectedly for 4 cases higher values were obtained by using
only the synthetic created data. These 4 cases might need further
analysis to determine the exact reason but it seems that the syn-
thetic samples are more regularized and thus the generation pro-
cess eliminates some noise present in the original data.

Table 8
Test accuracy using the original data and the synthetic samples generated, and best
test accuracy using 50%, 100% and 200% of augmented data. (See text for more
details).

Data set Original Synthetic Data Aug.
iris 0.9126 0.9337 0.9427
wine 0.9633 0.9936 1.0000
sonar 0.6245 0.5312 0.7781
seeds 0.8917 0.9143 0.8938
glass 0.6351 0.5979 0.6749
cleveland 0.8493 0.8115 0.8769
ionosphere 0.8862 0.8821 0.9118
horse colic 0.6574 0.6718 0.6697
wdbc 0.9705 0.9694 0.9789
non bal scale 0.9835 0.9762 0.9886
bal scale 0.9258 0.9154 0.9441
soybean 0.9241 0.9088 0.9283
card 0.8536 0.8720 0.8618
breast cancer 0.9736 0.9729 0.9754
pima diabetes 0.7537 0.7577 0.7578
geneN 0.8499 0.7533 0.8839
gene 0.9008 0.6878 0.9051
waveform 0.8525 0.8657 0.8634
thyroid 0.9780 09174 0.9808
MEAN 0.8624 0.8386 0.8851
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Fig. 10 shows the computation times (in seconds and in a loga-
rithmic scale) that have been necessary for the processes of syn-
thetic data generation and classification, plotted as function of
the number of instances plus the number of features of the bench-
mark data sets. Represented by a line consisting of dashes and dots
is the computation time necessary to perform the classification
process used in the experimentation if only one fold is taken. With
a higher value, it is shown computation time necessary for the gen-
eration of the synthetic data with the WGAN-GP model repre-
sented by a dashed line, and the time necessary for the
generation with the WGAN-GP_BM model represented by a contin-
uous line. The number of instances plus the number of features of
the data has been used to distinguish the values obtained for the
data sets ‘gene’ and ‘geneN’, since they present the same number
of samples, but different features.

To give a clearer idea of the computation times involved we
report that the average time across the 19 benchmark sets for
the execution of one experiment with one set of fixed parameters
for the WGAN-GP method is 69 s. Further, if we had to repeat all
experiments that leads to the results reported in this works (this
excludes different tests carried out to tune the models, etc.) the
overall computation time will be of 76.37 days. All experiments
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Fig. 10. Computation time used in the different experiments. With a dashed line is
represented the time used by the process of synthetic data generation through the
WGAN-GP model, and with a continuous line the time used through the WGAN-GP
with the ‘Balanced Multiclass’ scheme with 100% DA. Below is the time spent in the
classification process, represented by a line of dashes and dots.
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Fig. 11. Test accuracy using the original data, the best option for DA, the WGAN-GP
model with the ‘Balanced Multiclass’ with 100% DA and the VAE model with
‘Multiclass’ with 100% DA. The results are indicated for three groups: considering all
data sets together, and grouped according to the number of instances.

have been executed on a PC running under Windows 10 64-bits
0S, equipped with an Intel Core i7-6700K CPU 4.00 GHz, 32 GB

RAM, NVIDIA® Titan Xp GPU with 12 GB RAM. The software utilized

for the experiments was CUDA’ Toolkit 9.0, cuDNN v7.0, Python
3.6.2v, and TensorFlow 1.8v with GPU support (Abadi et al., 2016).

5. Discussion and conclusions

We studied in this work the effect of using different state-of-
the-art techniques for Data Augmentation (DA) on the prediction
accuracy that can be obtained in supervised problems when small
benchmark data sets (number of instances per class lower than
1000) are considered. There are several relatively new studies
showing the usefulness of using DA, but up to our knowledge, no
previous ones have shown its application and effect on small size
data sets. In the present study we applied different types of VAE
and GAN models for the generation of augmented data, and have
also introduced modifications to the original sample class distribu-
tion in order to increase the classification accuracy (two methods
named ‘Multiclass’ and ‘Balanced Multiclass’ were introduced in
subsection 3.4).

The results shown in Table 3, together with those shown in
Table 6 can be considered the most relevant results of this work,
as they shown the best results that can be obtained when all the
different methods tested can be chosen for a given data set or alter-
natively the results if only one method is to be chosen for all data,
considering also the option of grouping the data according to the
number of samples available (Table 6). In the first case, the result
of this work is that DA can lead to an increase in prediction accu-
racy of approximately 3% (all tested method are evaluated, choos-
ing the best one according to the validation error). If only one
method should be applied, our results show that the best perform-
ing method among all data sets tested is the CVAE with the
‘Balanced Multiclass’ scheme and 50% of DA, method that leads
to a 1.03% relative difference increase in accuracy (RD), but noting
that better results can be obtained if problems are grouped accord-
ing to the number of instances available for training; in these case
WGAN-GP with the ‘Balanced Multiclass’ scheme with 100% DA
was the best option for problems with lower number of samples
leading to an RD of 4.12%, while standard VAE with the ‘Multiclass’
scheme and 100% DA was the best alternative for data sets with a
number of samples larger than 600 (mean number of instances
equal to 2259) (cf. Table 6). Nevertheless, it is worth noting that
the results show that not all data sets benefit on the same degree,
and results with lowest values close to 0.2% to very high values up
to 24.6% increase in prediction accuracy were observed. Fig. 11
summarizes the main results for the prediction accuracy obtained
with the original and augmented training samples grouped in three
cases: all data sets considered together, the nine sets with the low-
est number of instances, and the remaining ten sets with the lar-
gest number of samples.

In order to have an idea of the quality of the generated aug-
mented samples, we further analyzed the results by training pre-
dictive models only with synthetic samples, and the result is that
the quality of the generated data is high, as a 0.839 prediction
accuracy was obtained when using only synthetic data, a little
bit lower than the 0.8624 obtained with the original data (cf.
Table 8).

The most important results of this work were obtained by using
classifiers based on Artificial Neural Networks with three hidden
layers of neurons, in the border between what can be considered
shallow or deep architectures, but in order to analyze the effect
of DA when using alternative methods, we further tested it using
a linear regression classifier that confirms the previous results
(cf. Table 7).
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The overall conclusion that can be extracted from the obtained
results is that DA techniques based on VAEs and GANs constitute
useful approaches for increasing the prediction accuracy when
small data sets are analyzed, as they generate good quality data,
that lead on average to a 1-3% relative prediction increase. In rela-
tionship to this, several future studies are planned, in particular the
application of the present methods to genomic data, a challenging
problem in biomedicine where usually few samples are available,
and for which no great advantage have been obtained so far from
the application of deep learning problems (Liu et al., 2019).
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