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A B S T R A C T

Niemann–Pick Class 1 (NPC1) disease is a rare and debilitating neurodegenerative lysosomal storage disease
(LSD). Metabolomics datasets of NPC1 patients available to perform this type of analysis are often limited
in the number of samples and severely unbalanced. In order to improve the predictive capability and
identify new biomarkers in an NPC1 disease urinary dataset, data augmentation (DA) techniques based
on computational intelligence have been employed to create synthetic samples, i.e. the addition of noise,
oversampling techniques and conditional generative adversarial networks. These techniques have been used
to evaluate their predictive capacities on a set of urine samples donated by 13 untreated NPC1 disease and 47
heterozygous (parental) carrier control participants. Results on the prediction have also been obtained using
different machine learning classification models and the partial least squares techniques. These results provide
strong evidence for the ability of DA techniques to generate good quality synthetic data. Results acquired
show increases in sensitivity of 20%–50%, an F1 score of 6%–30%, and a predictive capacity of 0.3 (out
of 1). Additionally, more conventional forms of multivariate data analysis have been employed. These have
allowed the detection of unusual urinary metabolite profiles, and the identification of biomarkers through
the use of synthetically augmented datasets. Results indicate that urinary branched-chain amino acids such as
valine, 3-aminoisobutyrate and quinolinate, may be employable as valuable biomarkers for the diagnosis and
prognostic monitoring of NPC1 disease.
1. Introduction

1.1. Disease and metabolomics

Niemann–Pick type C disease (NPC, OMIM 257220) is a very rare
neurodegenerative lysosomal storage disease (LSD) caused by muta-
tions in two genes NPC1 (95% of clinical cases) and NPC2 [1]. NPC
is estimated to occur in 1 in 100,000–120,000 live births [2]. The true
frequency of this disorder in the general population cannot be exactly
determined because many cases go undiagnosed or misdiagnosed. NPC
involves the altered lysosomal storage of sphingosine, and leads to a
loss of lysosomal calcium ions, a process accompanied by the accumu-
lation of unesterified cholesterol and glycosphingolipids [3,4], along
with decreased acidic store calcium levels [5]. The NPC1 gene encodes
a large transmembrane protein that resides in the limiting membrane
of the lysosome, and is known as NPC1 protein [3]. NPC2 encodes
a small soluble lysosomal protein that binds cholesterol within the
lysosomallumen and is believed to transfer cholesterol to the NPC1
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protein. Full details on how these proteins may complement each other
to allow cholesterol to pass through the glycocalyx and the lysosome
membrane are available in [3].

Usually, NPC disease presents in childhood with clumsiness, ataxia,
learning difficulties, vertical gaze paralysis, and dysphagia, together
with cataplexy, epilepsy, and hepatosplenomegaly. Respiratory dys-
function may be another clinical feature. Additionally, adult-onset ill-
ness may occur, and this may be associated with a neuropsychiatric pre-
sentation [1]. NPC disease also involves neuroinflammation, neuronal
apoptosis, and oxidative stress within its pathological cascade [6].

For the diagnosis and prognostic monitoring of such diseases,
metabolomics strategies are valuable because bioanalytical dataset
systems can be analysed under pre-established conditions determined
by the experimental design, and at the point of response after exposure
to specific stimuli, treatments or exercise regimens. The non-invasive
nature of metabolomics and the close link of this type of data with
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010-4825/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.compbiomed.2022.105916
Received 26 April 2022; Received in revised form 11 July 2022; Accepted 23 July
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2022

http://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:fjmoreno@lcc.uma.es
mailto:lfranco@lcc.uma.es
mailto:elizondo@dmu.ac.uk
mailto:mgrootveld@dmu.ac.uk
https://doi.org/10.1016/j.compbiomed.2022.105916
https://doi.org/10.1016/j.compbiomed.2022.105916
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers in Biology and Medicine 148 (2022) 105916F.J. Moreno-Barea et al.

i
t
s
m
t
o
p
i
d

p
m
h
d
E
m
t
a
t
c
(
p

s
r
a
i
l
o
t
a
i
c
v
b
o

1

t
f
i
D
h
i
i
c
t
c

T
S
S
s
N
t
t
n
n
k
t
d
r
s
F
a
s

w
m
p
i
a
r
m
f
s
t
N
o

r
a
p
a
p
o
e
i
i

2

b
w
p
d
W
1
t

w
T
r
p
A
a
p
f
m
m
f
e

the phenotype, make it an ideal tool for pharmaceutical and pre-
ventative health, amongst others. Metabolomics allow researchers to
develop a deep understanding of how the system explored responds
to such stimuli. In clinical studies, this has potential applications
for monitoring patient diagnosis and prognosis, therapeutic manage-
ment, and even drug development for conditions investigated, the
latter approach involving the identification of abnormal activities in
selected metabolomics pathways, so that any defective enzymes may
be drug-targeted.

Metabolomics is also applicable to the discovery of biomarkers as
a support for decision making. In metabolomics, biomarkers are small
molecules, known as metabolites. As an example, selected metabolites
and their concentrations can be used to determine the status of different
groups of samples based on their detection in control group samples,
or in those collected from patients with a specified disease. High-
resolution proton (1H) nuclear magnetic resonance (NMR) spectroscopy
s an established analytical tool which has been extensively used for
he purpose of probing the metabolic status of biofluids [7]. 1H NMR
pectroscopy is useful for metabolic profiling studies in view of its
ulticomponent analytical capacity and now very high sensitivity. The

echnology allows for accurate high-throughput simultaneous screening
f more than 100 metabolites present in a biological sample. 1H NMR
rofiles of urine samples such as those analysed in this work contain
nformative metabolites that can be easily analysed for the purpose of
iscovering new biomarkers.

Metabolomics is typically performed using specialised and highly re-
roducible multi-component analytical techniques. However,
etabolomic datasets are often limited in the number of samples and
eavily unbalanced. In this study, computational intelligence based
ata augmentation techniques are used to create more observations.
xperimentation is then proposed for the purpose of detecting unusual
etabolic patterns in patients with NPC1 disease via an analysis of

he 1H NMR profiles of their urine samples, using both the original
nd the augmented datasets. In order to further support these inves-
igations, and also for comparative purposes, we further utilised more
onventional forms of multivariate data analysis. These included both
unsupervised) principal component analysis (PCA) and (supervised)
artial least squares-discriminatory analysis (PLS-DA).

To date, the majority of metabolomics research conducted on lyso-
omal storage diseases has been focused on NPC1 disease. Indeed, high-
esolution 1H NMR analysis of urine samples has successfully sought
nd identified potential biomarkers for NPC1 disease diagnosis. These
ncorporated branched-chain amino acids (BCAAs), N-acetylsugars, se-
ected bile acids and 3-aminoisobutyrate [8], the latter metabolite
riginating from metabolic perturbations to either BCAA catabolism or
hymine degradation pathways. These analyses further indicated that,
long with the lysosome itself, the brain and liver were key site features
nvolved, and this observation was fully congruous with NPC1 disease
haracteristics, including seizures and hepatomegaly features. AUROC
alues determined ranged from 0.81–0.91 for the most significant
iomolecules, a PLS-DA strategy applied gave a significant Q2 value
f 0.56, with an accuracy of 0.93 [8].

.2. Data augmentation

Data augmentation (DA) has proven to be an effective technique
o improve the performance of machine learning models, especially
or applications related to problems involving datasets consisting of
mages [9], also in biomedical applications [10–14]. The application of
A techniques to datasets that are not images, signals or time series, is,
owever, more complex. Experts find it easier to evaluate a generated
mage, being able to measure its quality and distinguish whether it
s a ‘synthetic’ or a ‘real’ image. However, this type of evaluation
onducted by human experts is not feasible when applications related
o other domains are involved. An example of this includes genomic or
2

linically-relevant metabolic data. d
Other DA techniques are available to handle this type of dataset.
hese include: noise injection techniques [15,16] or the application of
MOTE techniques (synthetic minority oversampling technique) [17].
MOTE is designed to deal with datasets containing unbalanced clas-
ifications. A more recent technique known as Generative Adversarial
etworks (GANs) has been proposed to be suitable for the analysis of

hese types of datasets [18,19]. The main objective of this technique is
o learn the distribution of original data and, based on this, to generate
ew samples. The GAN method produces a confrontation between two
eural networks, a network known as a ‘‘generator’’ and another one
nown as the ‘‘discriminator’’. The generator network generates syn-
hetic data and subsequently attempts to deceive the discriminator. The
iscriminator network, in turn, then attempts to discern whether data
eceived from the generator network is true or false. GAN models have
hown an impressive level of success in generating realistic images.
urthermore, recently it has been shown that they can also be applied
s a DA method for datasets without any type of spatial or temporal
tructure [20,21], also in some biomedical applications [22–25],

Considering all the above aspects, the main objectives of this work
ere: (1) to apply different state-of-the-art DA methods to a small size
etabolomics dataset aimed at obtaining an increase in the prediction
erformance of urine samples belonging to NPC1 disease patients,
n order to demonstrate the usefulness of these methods with small
nd non-spatial structured datasets in this research domain. Current
esearch strategies, however, attempt to analyse the ability of these DA
ethods to replicate the information of the metabolites. This is per-

ormed by the use of conventional forms of multivariate data analysis,
uch as PCA (unsupervised) and PLS-DA (supervised) approaches for
he purpose of detecting unusual metabolic patterns in samples with
PC1 disease for the purpose of distinguishing these profiles from those
f the heterozygous carrier controls group.

The paper is structured as follows: Section 2 shows some work
elated to DA in bioinformatics. Section 3 introduces the Materials
nd Methods employed in this study. This includes the collection and
rocessing of the clinical urine samples, the DA methods examined,
nd the implementations made to conduct the experiments. Section 4
resents the results divided into three subsections: the classification
f results acquired, an analysis of the augmented dataset, and the
ffect of DA on the information related to metabolites. We finalise the
nvestigation with a Discussion in Section 5, and relevant Conclusions
n Section 6.

. Related works

Most of the recent works that apply Data Augmentation (DA) in
ioinformatics tasks are focused on the treatment of medical images
ith Generative Adversarial Networks (GANs). Frid-Adar et al. [26] ap-
lied GAN models to improve liver lesion classification. Han et al. [27]
esigned a GAN to generate MR images for brain tumour detection.
aheed et al. [11] generated chest X-ray (CXR) images for COVID-

9 detection. There are extensive reviews of medical imaging DA
echniques and deep learning [28].

Nevertheless, there is a clear idea that DA application in domains
here the samples are not images or time series is a challenging task.
he works on biomedical problems with omics data are scarce and
ecent, but they show that DA methods can be beneficial to increase the
rediction performance. Among the DA studies with classical methods,
çıcı et al. [29] applied ADASYN for the generation of pseudo proteins
nd prediction of T4SS effector proteins. Beinecke and Heider [30] ap-
lied Gaussian noise, SMOTE and ADASYN methods to clinical datasets
rom the UCI ML Repository covering different medical fields. As with
edical imaging, most recent works try to apply Deep Learning based
odels with unstructured data. Liu et al. [22] proposed a GAN model

or the DA application with serum samples in cancer staging. Marouf
t al. [23] used a GAN for the realistic generation of single-cell RNA-Seq
ata and the detection of marker genes. García-Ordás et al. [24] built
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a Variational Autoencoder for the prediction of pima indians diabetes.
Barile et al. [25] employed a Generative Adversarial Autoencoder for
the generation of synthetic structural brain network with Multiple
Sclerosis.

To the best of our knowledge, the paper is the first work that
proposes the application of DA to generate new synthetic information
to improve prediction performance with non-structured metabolomics
datasets. Only a couple of works were found that apply DA without
samples generation (sampling) for missing values in metabolomics
studies [31], or a rescaling DA with 2D photoacoustic metabolomics
signals to assess breast tumour progression [32].

3. Materials and methods

In this section, the materials, methods and techniques used for
the application of Data Augmentation (DA) to a metabolomics dataset
are featured. This Methodology section is organised as follows: it
commences by describing the 1H NMR measurements present in the
tudied problem and the raw 1H NMR analytical data preprocessing
tages employed. The noise addition methods implemented and the
MOTE technique are described below. The CGAN model is described
n another sub-section, and the process that the model follows for
he generation of synthetic samples is then explained. Subsequently,

description is made of the general process performed in order to
erform the experiments and the application of DA to create synthetic
amples that, together with the original ones, will be used for the
ormation of a classifier; finally a description of the technical imple-
entation details, including the architecture and the parameters used

n the models developed is presented.

.1. Materials

.1.1. 1H NMR measurements
This study features a UK-based clinical cohort consisting of 13

ntreated NPC1 patients (age range 2.7–30 years, 6 male/7 female)
nd 47 corresponding parental heterozygous carriers (age range 25–
2 years, 19 male/28 female). For the NPC1 patient cohort, only
atients not receiving any therapeutic agents were carefully selected in
rder to avoid any complications arising from the presence of urinary
H NMR resonances attributable to such drugs and their metabolites
n the urinary metabolite profiles explored. The data for this study
as collected with informed consent and previously approved by the
ppropriate Research Ethics Committee (06/MRE02/85). Urine samples
onated by these participants were stored at −80 ◦C. When ready for
nalysis, these were thawed and centrifuged to remove any cells and
ebris (5000 rpm for a period of 10 min), and 0.60 ml volumes of
he supernatants derived therefrom were then thoroughly vortex mixed
ith 0.07 ml of deuterium oxide (2H2O). These sample mixtures were

then transferred to 5 mm diameter NMR tubes.
A Bruker Avance AV-600 spectrometer (Queen Mary University of

London facility, London, UK) operating at a frequency of 600.13 MHz
in quadrature detection mode and a probe temperature of 298 K was
employed for the single-pulse 1H NMR analysis of human urine sam-
ples, as described in [8]. The intense H2O/HOD signal (𝛿 = 4.80 ppm)
was eliminated through gated decoupling during the delay between
pulses. Chemical shift values were internally referenced to the methyl
group resonances of acetate (s, 𝛿 = 1.920 ppm), alanine (d, 𝛿 = 1.487
ppm), lactate (d, 𝛿 = 1.330 ppm) and creatinine (>NCH3 s, 𝛿 =
.030 ppm). Metabolite resonances present in spectra acquired were
outinely assigned by a full consideration of chemical shift values, cou-
ling patterns and coupling constants, and also from literature sources;
hese were then cross-checked with the Human Metabolome Database
HMDB) [33]. Amalgamations of one- (1D) and two-dimensional (2D)
orrelation (COSY) and total correlation (TOCSY) spectroscopic tech-
iques were used to confirm these urinary assignments, along with
he ‘‘spiking’’ of specimens with small 𝜇l volumes of approximately
.00 mmol/L standard solutions of authentic biomolecules prepared in
3

.10 M phosphate buffer (pH 7.00). t
.1.2. Raw 1H NMR analytical data preprocessing stages
For the dataset, 33 variables were extracted from the 199 po-

tential 1H NMR metabolite predictor variables obtained previously.
This feature extraction is performed following the conclusions ob-
tained by Ruiz-Rodado et al. [8], in which an extensive multivariate
analysis was performed to identify biomarkers in the 1H NMR pro-
files. The urinary dataset matrix therefore consists of 60 spectra ×
33 1H NMR-assigned metabolite predictor variables was generated
through the employment of macro procedures for line broadening,
zero filling, Fourier-transformation and phase and baseline corrections,
together with the subsequent application of a separate macro for the
‘‘intelligent bucketing’’ processing sub-routine. All manipulations were
performed using the ACD/Labs Spectrus Processor 2012 software pack-
age (ACD/Labs, Toronto, Ontario, Canada M5C 1T4). This ISB strategy
ensured that all bucket edges featured did not coincide with 1H NMR
resonance maxima, and hence this approach circumvented the splitting
of signals across separate integral regions. A 0.04-ppm bucket width
with a 50% looseness factor was selected for this purpose.

Spectral ISBs containing signals ascribable to ethanol (𝛿 = 1.22–
1.24 (𝑡) and 3.63–3.67 ppm (𝑞)), which were detectable in spectra
acquired on a small number of the heterozygous carrier control urine
specimens, and urea (broad, 𝛿 = 5.59–5.99 ppm) were removed from
all the urinary 1H NMR spectra acquired, as was that of the resid-
ual H2O/HOD signal (𝛿 = 4.65–5.16 ppm) via secondary irradiation
described above. Prior to analysis, all sample 1H NMR profiles were
autoscaled column-(metabolite variable)-wise.

Outlier samples were removed from the original urinary 1H NMR
profile datasets following the inspection of both two- and three-
dimensional PC3 𝑣𝑠. PC2 𝑣𝑠. PC1 plots. These included heterozy-
gous carrier control classification samples in which paracetamol’s glu-
curonide and sulphate metabolites were detected by 1H NMR analysis
(i.e. quite prominent aromatic doublet signals centred at 𝛿 = 7.13
nd 7.35 ppm (glucuronide), and 𝛿 = 7.31 and 7.45 ppm (sulphate),
long with their acetamido-NH-CO-CH3 function resonances (𝛿 =
.15–2.17 ppm).

.2. Methods

.2.1. Addition of noise
To perform DA there are some methods with approaches which may

e considered simple, such as resampling, shifting, flipping, clipping,
r adding noise. In this study on the use of DA towards metabolomics
atasets, a good initial approximation can be performed by using a
imple method such as the addition of noise, based on a modification
f original instances with an established degree of this factor. Although
he approach of this method is simple, carrying out the design and
pplying a procedure based on the addition of noise can be extended,
omplicating its operation for adaptation towards different datasets,
nd with the ability to obtain effective results.

𝑥̃ = min(Max_Val,max(Min_Val, 𝑥 + RND(−1.0, 1.0))) (1)

The noise addition method designed performs an increase in the
umber of available samples based on the random selection of ‘‘train-
ng’’ samples. For each sample, a copy is made, the features of which
re then modified to a maximal value of 25%. Eq. (1) mathematically
escribes the process of obtaining a new feature value 𝑥̃ from the
riginal one 𝑥. If the attribute is chosen for modification, noise that
rises from a random normal distribution (denoted ‘‘RND’’ in Eq. (1))
ith a standard deviation/variance of 1.0, is added to the original
alue; the resulting ‘‘noisy’’ value must not exceed the limits established
or its feature. Furthermore, this value is not excessively affected by
ny previous scaling of the data. In this manner, the new value must
e greater than the minimum value present in the feature (Min_Val),
process which sets a lower bound. The value must also be less than
he maximum value present in the feature (Max_Val) setting an upper



Computers in Biology and Medicine 148 (2022) 105916F.J. Moreno-Barea et al.
Fig. 1. Example of synthetic sample generation with the SMOTE technique. Synthetic
samples are created with a random interpolation between samples of the minority class.

bound. A standard deviation of 1.0 is sufficient to create a sample that
does not stray too far from the sample.

A variation of this noise addition method has also been designed.
This method, abbreviated here as ‘‘noise bal’’, differs from the noise
addition method described above, in that it performs the random
selection only on the training samples of the minority class. Thus, only
synthetic samples that belong to this class are created. The remainder
of the method follows the same process as the standard noise addition
approach.

3.2.2. SMOTE technique
Medical datasets, as well as metabolomics ones, may specifically

present a characteristic that normally renders the task of predic-
tion/classification difficult: large imbalances amongst the data classes.
These sets usually show more samples of the control class than samples
belonging to the class that indicates the presence of a particular disease.
This is especially the case for biofluid samples collected from rare
or very diseases such as the lysosomal storage disease NPC type 1
investigated here. An effective way to reverse this situation with DA
is to apply an oversampling technique, such as the SMOTE technique
(synthetic minority oversampling technique) [17].

In order to generate synthetic minority class data and balance the
dataset, SMOTE uses a k-nearest neighbour algorithm on the minority
class data, instead of random sampling with replacement. Thereby,
different neighbours are randomly selected for each sample 𝑥, and a
random interpolation is performed between these selected neighbours
and sample 𝑥. Typically, this interpolation calculates the difference
between sample 𝑥 and each of the neighbours in the feature space,
multiplies the difference of each feature by a random normalisation
between 0 and 1, and then adds this value to that of the original feature
of sample 𝑥. Hence, this technique creates new synthetic samples that
will be located within this space between neighbours and 𝑥. Fig. 1
shows the process followed by SMOTE for the creation of samples.

The disadvantages of the SMOTE algorithm application are con-
nected to the random interpolation it performs, and its design as an
oversampling technique. One of these disadvantages is the lack of
control over the number of samples that will be generated from data,
since oversampling aims to fully balance the dataset, i.e. it can only
generate sufficient samples for this circumstance. Therefore, it is an
ineffective method in well-balanced datasets, for which the number of
samples to be generated in order to achieve balance is low in proportion
when expressed relative to the number of samples involved. Another
disadvantage derived from interpolation is the creation of synthetic
samples that violate the geometry present in the dataset. An example of
how SMOTE can lead to the creation of synthetic samples that do not
follow the distributions of the original samples is also shown in Fig. 1.
4

3.2.3. Conditional generative adversarial network
The DA involved in the generation of realistic images has shown

impressive success through the application of models known as Gener-
ative Adversary Networks (GAN) [18,19], which have a deep learning
architecture. The objective of the GAN models is to learn the distri-
bution of the original dataset in order to generate new samples from
the learned distribution. With this aim, the standard GAN model has
a structure divided into two neural networks, the generator and the
discriminator. These two networks are trained simultaneously, yielding
a confrontation between both so that they are able to learn from
each other. In this context, the objective of the discriminator network
(𝐷) is to distinguish whether a sample arises from the set of ‘real’
data or is a generated sample, i.e. for the input sample 𝑥 the dis-
criminator estimates the probability of the sample belonging to the
actual distribution or not. Notwithstanding, the generator network (𝐺)
takes as input a noisy random distribution 𝑧, and produces as output
a distribution 𝐺(𝑧) assigned to the space of the real samples. The
purpose of the generator is to create new ‘synthetic’ samples with
features that approximate those present in the real samples. Hence, the
discriminator network will not be able to distinguish these synthetic
samples as samples not derived from the real distribution. Moreover,
the generating process completely opposes the discriminating process,
giving rise to the competitive environment noted above.

From the basic GAN, variants have been proposed that include vari-
ations in the network architecture, the loss function, or the inclusion
of additional information. Some of these variants have demonstrated
a valuable and effective performance in the generation of false im-
ages, being able to generate those that experts can consider ‘real’.
Amongst these, the most prominent variants may include the Cycle-
GAN [34], the Conditional GAN [35], the Wasserstein GAN [36] and
the Progressive Growing GAN [37].

Specifically, since a supervised task is performed in the present
study, the model considered is the Conditional GAN (CGAN) [35]. This
model is a variant of the standard GAN model in which the information
concerning either a conditional parameter 𝑦, the sample label or other
data information, is taken into account in the network, so that the
generated samples directly present a label. In this manner, the latent
space 𝑧 and the condition 𝑦 are passed onto the generator network as
an input, 𝑦, that can be created randomly when training the model,
and this can be controlled when generating synthetic samples. This
condition (𝑦) is also added to the input of the discriminator network,
being the same as that employed to create a synthetic sample by the
generator, or being the real label assigned to the real sample to be
introduced in the discriminator.

min
𝐺

max
𝐷

E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥|𝑦)] + E𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧|𝑦)))] (2)

The behaviour of the model can be observed in the GAN objec-
tive cost function (Eq. (2)), in which two parts that are identified
within the competitive process may be distinguished. One is related
to having an improved recognition of those samples that belong to
the real distribution (E𝑥[log𝐷(𝑥|𝑦)]), whereas another is related to
an improved recognition of those samples that are generated by the
generator (E𝑧[log(1 − 𝐷(𝐺(𝑧|𝑦)))]). In this context, the capacity of the
model to perceive whether the samples are real or false is expressed
in Eq. (3), and the error of the model identified for the recognition
of fake samples is modelled by Eq. (4). Additionally, the condition 𝑦
in the computation of the objective cost function is the only variation
with respect to that present in the standard GAN model.

max
𝐷

E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥|𝑦)] + E𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧|𝑦)))] (3)

min
𝐺

E𝑧∼𝑝𝑧(𝑧)[log(𝐷(𝐺(𝑧|𝑦)))] (4)

The DA process performed with the CGAN model is shown in Fig. 2.
Primarily, the noisy random distribution 𝑥̃ and a label 𝑦 are introduced
as input to the generator network 𝐺, which creates a synthetic sample,
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G

Fig. 2. Synthetic sample creation process for DA performed with a Conditional

enerative Adversarial Network. Noise distribution 𝑥̃ and label 𝑦 are inputted to the
generator 𝐺, which creates a synthetic sample 𝑧. The discriminator 𝐷 estimates whether
it considers 𝑧 as ‘‘real’’, in which case it is saved and assigned the label 𝑦. If 𝑧 is
considered false, the sample is discarded and the process is repeated.

𝑧. This sample 𝑧, together with the label 𝑦, are passed to the discrimina-
tor network 𝐷 that estimates the probability that the sample is indeed
‘‘real’’. If the synthetic sample 𝑧 is considered as such, it is saved by
assigning it to the same label class 𝑦. If the sample is considered fake,
it is discarded and the method proceeds to create a new one.

3.3. Experiments

The details of the experiments conducted and the implementations
of the models used in this study are provided in this sub-section. The
set of parameters tested in the experiments arise from a selection based
on previous experience, since the range of parameters should be limited
in view of the large computational times involved.

The process followed to perform the experiments can be observed in
Fig. 3. From the original dataset, a stratified division into training and
test sets is performed in order to maintain total independence between
the synthetic data generation process. This relates to the training of
the classifier models and the evaluation of the classification metrics.
In this context, the test set is not included in the data generation
process, and is retained separately until the final testing for an external
honest test of the accuracy takes place. A division of 60% of data
for training and 40% for testing was established in view of the small
number of samples present in the benchmark datasets. This proportion
allows for a better evaluation of the test results. In addition, the entire
process of dividing the data and its application is performed by a cross-
validation procedure to provide an improved estimate of the results
acquired. This reduces the random effects arising from the process. The
data generation process employs the training set to create the desired
number of synthetic samples. SMOTE then creates a sufficient number
of samples for the set to become balanced. Each desired augmentation
model follows the procedure described above in the previous sections.
In this process, the quality of the samples generated can be affected
by the training data provided; therefore, the implementation of a
cross-validation strategy is considered important.

Once the synthetic samples have been created, a principal compo-
nent analysis (PCA) is performed on the training dataset, obtaining the
scores vectors and transforming all the data sub-sets (training, test and
synthetic). This PCA strategy is applied prior to any experimentation
performed on the dataset. This approach also considers the percentages
of the variance explained by each principal component (PC), in order to
select a sufficient number of components. Once a satisfactory number
5

Fig. 3. Flow diagram of the whole experimentation process. A generative model is fed
with samples from the training set, synthetic samples are created and added. Once the
classifier is trained, predictions are evaluated using the Test set. The process is repeated
with 5 different seeds in a 10-fold cross validation process.

Table 1
Characteristics of the generator and discriminator networks that compose the CGAN
model for the generation process.

Layer Output size Batch-norm. Activation

Generator
Input = [𝑧, 𝑦] 33 + 1 – –
Fully connected 1024 Yes ReLU
Fully connected 512 Yes ReLU
Fully connected 256 Yes ReLU
Fully connected 128 Yes ReLU
Fully connected 33 No Sigmoid

Discriminator
Input = [𝑥, 𝑦] 33 + 1 – –
Fully connected 64 Yes Leaky ReLU
Fully connected 128 Yes Leaky ReLU
Fully connected 256 Yes Leaky ReLU
Fully connected 512 Yes Leaky ReLU
Fully connected 1 No Sigmoid

Gen. optimiser Adam (lr = 0.0004, beta1 = 0.5, beta2 = 0.9)
Discrim. optimiser Adam (lr = 0.0002, beta1 = 0.5, beta2 = 0.9)
Leaky ReLU slope 0.2
Backend Tensorflow

of PCs have been selected, in this case 14 PCs, the transformation
of the sub-sets modifies the samples. In this manner, the samples
present values that are represented by PC vectors instead of the original
variable values. This process is performed to remove any high levels of
correlation (multicollinearity) between the variables that are present
in the metabolomics dataset. With the transformed sub-sets, synthetic
data is added to training data, a process resulting in an augmented
training set with which the classifier model is trained. Once the training
is completed, prediction of the test set is conducted, obtaining the
necessary metrics, which are then averaged for cross-validation. The
entire process described was repeated with 5 different seeds featured
in order to alleviate random effects.

Regarding the specific implementation of DA methods, the noise
addition and SMOTE techniques do not present parameters or unique
details of this procedure beyond those described in the respective
sections featured in this report. The most important requirement is
to indicate the implementation and architecture details of the CGAN
model used for the generative process of synthetic samples, since a stan-
dard implementation process is not used, and its application depends on
a series of different elements. Table 1 shows the characteristics of our
CGAN process, which involves a distinction between the generator and
discriminator networks, since they present different parameters and
values. The columns in the Table show the type of layer, the output size
of each one (which is identified by the number of neurons present in
each layer), the use of batch normalisation, and the activation function
used in the layer.

The neural network architecture used by the generator network
consists of an input layer, four hidden layers and an output layer. The

input layer is composed of the dimension of the noise vector, which is
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Table 2
Test results acquired with logistic regression as classifier. Comb 1 is a combination of samples created with the CGAN and SMOTE strategies.
Comb 2 is a combination of samples created with the CGAN and NOISE Bal approaches.

Model DA % Train Accuracy Specificity Precision Sensitivity F1 score AUROC

None None 36 88.42 ± 0.48 95.89 ± 0.56 79.37 ± 0.62 60.00 ± 1.41 68.34 ± 1.04 77.95 ± 0.71
CGAN 50 54 88.08 ± 0.43 93.58 ± 0.45 73.36 ± 1.13 67.20 ± 1.85 70.15 ± 1.23 80.39 ± 0.88
NOISE 1000 396 89.33 ± 0.78 95.89 ± 0.71 80.50 ± 2.54 64.40 ± 2.48 71.56 ± 2.32 80.15 ± 1.30
SMOTE 100 56 88.83 ± 0.52 94.63 ± 0.35 76.61 ± 1.36 66.80 ± 1.36 71.37 ± 1.25 80.72 ± 0.81
NOISE Bal 500 76 89.25 ± 0.64 93.79 ± 0.68 75.31 ± 2.03 72.00 ± 0.89 73.62 ± 0.96 82.68 ± 0.67
NOISE Bal 2000 196 88.58 ± 0.81 91.16 ± 0.65 70.11 ± 1.44 78.80 ± 1.85 74.20 ± 2.04 84.98 ± 1.15
Comb 1 50 74 87.58 ± 0.46 91.89 ± 0.49 69.80 ± 0.82 71.20 ± 2.58 70.49 ± 1.84 81.55 ± 1.18
Comb 2 100 112 87.17 ± 0.31 90.63 ± 0.35 67.52 ± 0.81 74.00 ± 0.63 70.61 ± 0.92 82.32 ± 0.36
equivalent to the size of the dataset (33 variables), together with one
that represents the classification label. The output layer presents a di-
mension equivalent to the original dataset. This network is responsible
for creating synthetic data, and uses a sigmoidal activation function.
In the hidden layers, the Rectified Linear Unit (ReLU) [38] function
is used as the activation function. Batch normalisation is employed as
a regularisation technique [39]. The architecture of the discriminator
network also has an input layer, four hidden layers, and an output
layer. The input layer has a dimension equivalent to the size of the
dataset plus one for the class label, and the output layer has a single
neuron, which decides whether the input sample is real or false. In the
discriminator network, the hidden layers use the Leaky ReLU [40] acti-
vation function, which provides more stability in the classification task
than the ReLU version employed in the generator network. The hidden
layers of this network also use batch normalisation as a regularisation
technique. The bottom of Table 1 shows other details of the model. Both
networks use the Adam algorithm with adaptive learning rate [41], and
the values used for the first and second moments (beta1 and beta2) are
indicated. Further, the value of the slope of the Leaky ReLu activation
function and the software backend used (Tensorflow [42]) are shown.

4. Results

The experimentation process proposed in Section 3.3 was followed,
and an auto-scaled transformation (mean-centred followed by division
by the standard deviation of each metabolite variable) of the raw 1H

MR analytical dataset described in the Section 3.1.1 was performed.

.1. Classification performance

The objective is the classification of the samples in one of the
wo groups: the heterozygous (parental) carrier control group or to
he NPC1 disease one. Table 2 shows the test results obtained for the
ifferent methods and DA models applied, when a logistic regression
pproach was used as a classifier model in the experimentation. In this
able, ‘None’ indicates the results obtained when the number of data
amples is not increased. This was used for the results to show if the
ata augmentation improves the classification performance. In addi-
ion, the results obtained with two additional methods are included,
here samples from two different models of DA are combined. ‘Comb 1’

efers to the results obtained with a combination between the samples
reated using the CGAN model and the SMOTE techniques, where as
Comb 2’ indicates the results obtained with a combination between
he samples created using the CGAN model and the Noise Bal method,
hen a 500% level of sample creation with Noise Bal is involved.

The first column of Table 2 (‘Percent’) refers to the size of the
ynthetic data created compared to the original training set. Thus,

percentage of 100 indicates that as many samples are created as
hose in the training set. A percentage of 50 indicates that half the
umber of samples are created. Finally, the value 1000 indicates that
he number of training samples is increased 10-fold. The ‘Train’ column
ndicates the number of samples used for training once the DA has been
erformed. The following columns show the values (± SE) obtained
or each of the test metrics (boldface font indicates the best values).
6

Fig. 4. Comparisons of the accuracy, specificity and sensitivity obtained using logistic
regression as classifier with different DA models with respect to the log of the number
of instances created. Dots represent the results obtained with the CGAN model, crosses
those with the NOISE method, and cross-hairs represent results obtained by using the
NOISE Bal method.

The Table also shows the accuracy level obtained. This indicates the
proportion of the correct predictions (true positives and true negatives)
amongst the total number of test samples. The specificity is also shown
— this measures the number of true negatives with respect to the
total number of negative patients. This is related to the ability of the
classifier model to correctly reject heterozygous control patients. The
sensitivity is also shown; this measures the number of true positives
in relation to the total number of positive patients, and relates to the
ability of the test to correctly detect patients with the disease.

Precision is also shown in Table 2, and indicates how good the
classifier model is in predicting a sample as being positive. This is
calculated as the number of true positives amongst the total of samples
predicted as positive. The following column shows the results obtained
for the F1 score. This metric is the harmonic mean of the precision
and sensitivity. It allows a more reliable measure of the performance
of the classifier, and this is particularly the case in circumstances
where sensitivity becomes more important. The last column shows the
results obtained for the AUROC, and represents the ability of a classifier
to distinguish between classes according to the relationship between
sensitivity and 1 - specificity.

Results shown in Table 2 show that an improvement in test pre-
diction accuracy is achieved with the addition of the noise method
compared to that obtained with the dataset without augmentation
(‘None’). Using the Noise method with 1000 percent, an accuracy of
89.33% with a specificity of 95.89% is achieved. The latter assumes
the highest value as being the same as that obtained with the bench-
mark dataset. The other outstanding method is that of the Noise Bal

approach, with 2000%. This method reaches the highest sensitivity
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Table 3
Results acquired with a random forest (RF) system used as a classifier. Comb 1 and Comb 2: described in Table 2.

Model DA % Train Accuracy Specificity Precision Sensitivity F1 score AUROC

None None 36 85.00 ± 0.47 96.95 ± 0.68 77.34 ± 1.88 39.60 ± 2.90 52.38 ± 2.53 67.58 ± 1.25
CGAN 100 72 86.58 ± 0.83 93.68 ± 0.96 71.29 ± 1.90 59.60 ± 2.14 64.92 ± 2.00 77.04 ± 1.01
NOISE 1000 396 86.17 ± 0.42 96.63 ± 0.69 78.38 ± 3.19 46.40 ± 4.07 58.29 ± 3.36 71.22 ± 1.73
SMOTE 100 20 86.67 ± 0.85 93.16 ± 1.55 70.45 ± 4.03 62.00 ± 3.38 65.96 ± 1.65 77.18 ± 1.23
NOISE Bal 500 76 86.58 ± 1.35 90.84 ± 1.46 66.92 ± 2.82 70.40 ± 1.94 68.62 ± 2.15 80.00 ± 1.40
NOISE Bal 2000 196 78.92 ± 0.92 79.26 ± 1.38 49.62 ± 1.96 77.60 ± 2.15 60.53 ± 1.16 77.97 ± 0.89
Comb 1 100 92 83.17 ± 1.05 85.68 ± 1.62 57.50 ± 2.35 73.60 ± 1.41 64.56 ± 0.64 79.64 ± 0.46
Comb 2 50 94 85.33 ± 0.96 88.63 ± 1.17 62.76 ± 1.64 72.80 ± 2.48 67.41 ± 1.69 78.41 ± 1.26
Table 4
Test results with a support vector machine system used as a classifier. Comb 1 and Comb 2: described in Table 2.

Model DA % Train Accuracy Specificity Precision Sensitivity F1 score AUROC

None None 36 83.17 ± 0.60 99.37 ± 0.31 90.00 ± 2.18 21.60 ± 2.04 38.84 ± 2.92 60.48 ± 1.11
CGAN 200 108 87.25 ± 0.75 93.26 ± 0.51 71.56 ± 1.97 64.40 ± 2.48 67.79 ± 2.83 78.83 ± 1.35
NOISE 100 72 88.25 ± 0.45 96.84 ± 0.27 82.25 ± 2.14 55.60 ± 2.28 66.35 ± 2.10 69.05 ± 1.10
SMOTE 100 20 89.25 ± 0.46 95.68 ± 0.48 79.80 ± 2.01 64.80 ± 2.06 71.52 ± 1.46 80.24 ± 0.97
NOISE Bal 500 76 89.50 ± 0.65 94.53 ± 0.74 77.19 ± 2.19 70.40 ± 1.85 73.64 ± 1.24 83.51 ± 0.95
NOISE Bal 2000 196 87.25 ± 0.67 89.50 ± 0.43 66.11 ± 1.15 79.60 ± 2.14 72.23 ± 1.48 84.43 ± 1.18
Comb 1 100 92 89.00 ± 0.48 93.05 ± 0.51 73.59 ± 0.96 73.60 ± 1.67 73.60 ± 0.94 81.39 ± 0.83
Comb 2 50 94 88.50 ± 0.43 93.59 ± 0.26 73.93 ± 1.25 69.20 ± 1.62 71.49 ± 1.39 82.53 ± 0.85
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Fig. 5. Comparisons of the accuracy, specificity and sensitivity obtained using a
random forest model as a classifier with different DA models with respect to the log
of the number of instances created. Symbol codes: as Fig. 4.

values (78.8%), F1 score (74.2%) and AUROC (85.0%). These values
how a substantial improvement compared to analysis of the dataset
ithout augmentation.

Further analyses of the influence of the size of the datasets on the re-
ults obtained with different DA methods are presented in Fig. 4. Here,
hree test metrics (accuracy, specificity, and sensitivity) obtained with
hree DA methods (CGAN, Noise, and Noise Bal), versus the number

of instances on a logarithmic scale on the abscissa axis, are presented.
Taking into account the different models, for the Noise and Noise
Bal methods, the accuracy of the results obtained are approximately
stable with respect to the increase in the number of instances created.
Furthermore, the specificity values are stable with the Noise method,
and decrease slightly for Noise Bal. The sensitivity values increase
slightly with Noise and there is clearly a significant positive correlation
between sensitivity and the number of instances created with this
analysis strategy. The results obtained with the CGAN model indicate
a negative correlation between the number of instances created and
the specificity and accuracy gain of the prediction. However, a positive
correlation for the sensitivity gain was also observed.
7

n

Fig. 6. Comparisons of the accuracy, specificity and sensitivity obtained using support
vector machine system as a classifier with different DA models with respect to the log
of the number of instances created. Symbol codes: as Fig. 4.

The previous results were obtained using a logistic regression model
classifier. For comparison, a random forest (RF) system [43] was also
implemented. The results obtained with the different methods and
DA models applied are shown in Table 3. This Table displays the
percentage of synthetic data created, and the test values obtained for
the accuracy, specificity, sensitivity, precision and the F1 score. In this
ase, the highest accuracy prediction value is obtained by increasing
he set with the synthetic samples created with SMOTE (86.67%).
egarding the sensitivity and F1 score metrics, they are still attained
ith the Noise Bal method. The results show a 77.6% sensitivity value
sing 2000% data size increment and a 68.62% F1 score value using
00% increment. This demonstrates a substantial improvement over the
esults obtained when no data augmentation method is applied (39.6%
ensitivity, 52.38% F1 score).

Fig. 5 shows the influence that the size of the datasets has on the
ccuracy, specificity and sensitivity results obtained with the CGAN,
oise and Noise Bal methods. In these experiments, a random forest

ystem is again employed, and results therefrom are compared to the
umber of instances on a logarithmic scale on the abscissa axis. The
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results are similar to those obtained when using a logistic regression
strategy. Emphasis was given to the cases of CGAN and Noise Bal with
a negative correlation between the number of instances created and the
gain in specificity, and also the precision of the prediction. In contrast,
a positive correlation for the gain of sensitivity was considered.

A support vector machine model was also used as a classification
system. The results obtained for the different methods and DA models
applied are shown in the Table 4. This table shows the percentage of
synthetic data created. It also shows the test values obtained for the
accuracy, specificity, sensitivity, precision and F1 score. The results in
Table 4 show an improvement in the accuracy and sensitivity of the
prediction with the Noise Bal method over and above that obtained
with the dataset without augmentation. Using the Noise Bal method
with 500%, a precision of 89.50% and an F1 score of 73.64% were
achieved. Training using only the original dataset, however, yielded the
highest values of specificity (99.37%) and precision (90%). Noise Bal
with 2000% also was very effective, achieving the highest sensitivity
value of 79.6% and AUROC value of 84.4%.
8

The influence of the dataset size on the results can be viewed in
Fig. 6. Indeed, this Figure shows the precision, specificity and recovery
of the results obtained with the CGAN, Noise and Noise Bal methods.
The results acquired are based on a support vector machine model
and are compared to the number of instances on a logarithmic scale
on the abscissa axis. This Figure shows similar results to the previous
ones in the relationship between specificity and size of the dataset.
Similar results for the increase with the CGAN strategy can also be
observed. The results with both methods of noise addition show a
positive correlation between the number of instances created and the
sensitivity gain.

Considering the overall results of the different classifiers examined,
an accuracy of 85.5% and a F1 score of 53.2% were obtained without
an augmentation process. The overall accuracy and F1 score increases
to 88.4% and 72.0% respectively using the Noise Bal method and 500%
DA, and increases to 87.0% and 69.8% using Comb 2 (combination
method CGAN + NOISE Bal).
Fig. 7. PCA scores plot with: the original NPC1 disease dataset (a); the samples augmented with SMOTE (b); the samples augmented via the addition of noise with percentage of
samples generated 100% (c) and 2000% (d). Colour codes: green triangles, NPC1 disease urine; dark blue circles, heterozygous carrier control urine; red inverse triangles, generated
NPC1 disease urine samples; light blue squares, generated heterozygous carrier control urine samples.
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Fig. 8. PCA scores plot with the samples augmented via the addition of noise in a balance process with percentage of samples generated 500% (a) and 2000% (b); the samples
augmented with the CGAN model with percentages 100% (c) and 2000% (d). Colour codes: as Fig. 7.
4.2. Augmented datasets analysis

In order to analyse how the DA methods used in the experimenta-
tion were able to replicate the information present in the metabolomics
dataset, a main principal component analysis (PCA) and a partial least
squares — discriminatory analysis (PLS-DA) were conducted. Through
these methods, the configuration of the samples can be visualised
in a two-dimensional space (i.e. component 2 vs component 1). This
provided a means to check the distribution of the synthetic samples
created, and compare this with the distribution of the original samples.

Fig. 7(a) shows the PCA model results obtained by using the original
NPC1 dataset. This reveals that there were two significant clusters of
the two sets of ‘‘disease state’’ classifications, whereas the cluster be-
longing to the heterozygous carrier group (dark blue circles) appeared
as a compact cluster. On the contrary, the cluster conformed by the
samples of NPC1 disease urine (green triangles), was more dispersed.
It can also be noted that there is an area where both clusters converge.

The results of PCA scores after adding the samples generated with
SMOTE are shown in Fig. 7(b). Here, it can be clearly seen how the
creation of samples through SMOTE works. The synthetic samples (red
inverse triangles) are distributed along the distribution of the original
9

samples of NPC1 disease urine. These synthetic samples were generated
by interpolation of the original samples.

Fig. 7 shows the distribution of the synthetic samples created by us-
ing the Noise method with respect to the original samples. Percentages
of 100 (c) and of 2000 (d) were used respectively. Fig. 8 shows the
distribution of the samples created by the Noise Bal method. Percent-
ages of 500 (a) and 2000 (b) were used respectively. The difference
between both methods of noise addition can be fully appreciated in
this analysis, which creates Noise Bal-only samples for the minority
class. Since the basic operation used by both methods is the same
regarding modifications of the original samples, it can be observed how
the synthetic samples are grouped around the original samples that they
modify. Moreover, the synthetic samples form only small clusters.

The sample creation of the above DA methods clearly differs from
the CGAN method. Fig. 8 shows the results obtained with the use of
PCA scores and the distribution of the synthetic samples created by
CGAN with respect to the original samples. Percentages of 100 (c) and
2000 (d) were used respectively. With a greater number of samples, the
behaviour of this model can be better observed. Most of the samples are
concentrated in the dispersion areas of the original data. This produces
an admixture of samples from both groups in the originally present
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Fig. 9. PLS-DA component 2 versus component 1 scores plot (a) and cross-validation results for the original dataset (c), and PLS-DA scores plot (b) and cross-validation results
(d) acquired on the augmented set with SMOTE applied. Colour codes: green triangles, NPC1 disease urine; red circles, heterozygous carrier control urine.
convergence zone. This model does not create any samples that stray
excessively from these clusters, and this is probably accountable by the
‘‘discriminator’’ network of the model classifying them as false, and
hence they are discarded.

Results derived from the PLS-DA component 2 versus component
1 scores plots, and the cross-validation, provide results that support
previous analyses. These analyses were conducted using MetaboAnalyst
v4.0 software (University of Alberta and National Research Council, Na-
tional Nanotechnology Institute (NINT), Edmonton, AB, Canada) [44].
PLS-DA provides metrics that indicated the predictive power of the
model [45]. These metrics were accuracy, goodness of fit (R2) and
predictive capacity (Q2). During the PLS-DA, a cross-validation was
performed and the predictive data was then compared with the original
data. The prediction error in all samples is summed (predicted residual
sum of squares or PRESS). To calculate the Q2 value, PRESS is divided
by the initial sum of squares and subtracted from 1 to match the scale
of R2.

Fig. 9(a) also reveals two significant groups in the original data for
the two sets of ‘‘disease state’’ classifications, with a small area of con-
vergence between the two. Fig. 9(c) shows the results of accuracy, R2

and Q2 obtained with the original dataset, with regard to the number of
components used. The optimal number of components selected for the
dataset without augmentation is 2 components, obtaining an accuracy
of 0.873, an R2 value of 0.781, and a Q2 value of 0.457.

In a similar manner to the representation by PCA of the synthetic
samples created with SMOTE, Fig. 9(b) shows how the samples created
10
with this technique are distributed throughout the ‘real’ cluster, from
the interpolation process. Fig. 9(d) shows the cross-validation results
with respect to the number of components used, in this case the
dataset augmented with the synthetic samples created with SMOTE.
This model obtained the most effective results with 3 components,
with an accuracy of 0.930, an R2 value of 0.840, and a Q2 index of
0.743. These results confirm that this model gave rise to a significant
improvement over the original, non-augmented, dataset.

Fig. 10(a) shows the PLS-DA component 2 versus component 1 scores
plot when the augmented dataset with the CGAN synthetic samples
is used (using a percentage value of 50%). The analysis reveals a
substantial change compared to that deduced from the original dataset.
In this case, the analysis of the components has been modified, and this
significantly changes the distribution shown. Although the dispersion
and angle of the distributions are dissimilar, it is still possible to
differentiate both clusters, with a larger convergence zone.

Fig. 10(c) shows the cross-validation results with respect to the
number of components used (the augmented dataset with the synthetic
samples created with CGAN model was employed). The optimal number
of components selected was two, obtaining an accuracy of 0.880, and
R2 and Q2 values of 0.620 and 0.398 respectively for a model with two
components. The change induced in the analysis of the components and
the larger convergence zone, may be the cause of the poor performance
in predictive capacity.

Fig. 10(b) shows the PLS-DA results when the augmented dataset
generated by the Noise Bal method was used (with a percentage value
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Fig. 10. PLS-DA scores plot (a) and cross-validation results (c) obtained with the augmented set generated with CGAN model, and PLS-DA scores plot (b) and cross-validation
results (d) acquired with the Noise Bal strategy. Colour codes: as Fig. 9.
of 500%). The results are similar to those obtained with the original
dataset, and with an augmented dataset produced by the SMOTE strat-
egy. They are also similar to the results obtained with PCA. The samples
generated NPC1 disease class samples accumulate around the original
ones. The model obtains the optimal results with 4 components, with an
accuracy of 0.960, an R2 value of 0.852, and a Q2 value of 0.749. These
results significantly improve the results obtained on the dataset with-
out augmentation, and also with the CGAN augmentation approach.
They also improve the results obtained with the SMOTE augmentation
method, but only to a small extent.

4.3. Metabolite importance

The variable importance in projection (VIP) scores with respect to
component 1 were obtained using the PLS-DA technique. A VIP score is
a measure of the contribution of an individual variable in the PLS-DA
model [46]. This metric is calculated as the weighted sum of squares
of the PLS-DA weights. This analysis indicates the importance of each
metabolite in the process of differentiating between the clusters formed
by the heterozygous carrier (control) group and NPC1 disease urine
samples. This identifies the metabolites that may be employable as
valuable biomarkers.

Fig. 11(a) shows the VIP scores obtained from PLS-DA applied to
the original dataset. Values for the top 14 metabolites are shown. The
coloured boxes on the right-hand side indicate the relative concentra-
tions of the corresponding metabolite in each group under study. The
11
most prominent metabolite were 3-aminoisobutyric acid
(3-aminoisobutyrate at the normal pH values of human urine), with
a VIP value equal to 1.89 (values >1.00 are considered significant).

Fig. 11(b) shows results from the VIP analysis with the augmented
dataset using the synthetic samples created with the SMOTE method.
The most prominent metabolites were trimethylamine with a VIP value
of 1.81, and 3-hydroxyisovaleric acid with a VIP value of 1.69. The
metabolite 3-aminoisobutyric acid occupied position 5 in this analysis.

The VIP analysis with the augmented dataset using the synthetic
samples created with Noise Bal reflects a result similar to that obtained
with SMOTE. Indeed, Fig. 11(c) revealed that the highest scoring
metabolites with this augmented set were trimethylamine with a VIP
value of 1.68, and 3-hydroxyisovaleric acid with a VIP value of 1.86.
The metabolite 3-aminoisobutyric acid occupied position 4.

Fig. 11(d) shows the VIP analysis with the augmented dataset using
the synthetic samples created with the CGAN model. In this case, the
results present more differences than those observed for the alternative
models. Indeed, the most prominent metabolites were found to be
trigonelline with a VIP value of 1.79, and pyroglutamic acid with a VIP
value of 1.70. The metabolite 3-aminoisobutyric acid occupied position
8 in this analysis.

The results of VIP scores shown in all the above Figures are sum-
marised in Table 5. This table shows the VIP values obtained for each of
the top 14 marker metabolites using the different augmented datasets.
The results show that there are only 4 metabolites that are not included



Computers in Biology and Medicine 148 (2022) 105916F.J. Moreno-Barea et al.
Fig. 11. PLS-DA variable importance parameter (VIP) values derived from the application of PLS-DA to: (a) the original dataset; (b) the augmented set using SMOTE; (b) the
augmented set with Noise Bal method (using 500% of DA); (d) the augmented set with CGAN model. Colour codes indicate the relative concentrations of metabolites featured.
Table 5
PLS-DA VIP values obtained with the different DA methods (brackets represent the
relative rank position of each metabolite variable for each method applied).

Metabolite Original SMOTE Noise Bal CGAN

3-Aminoisobutyric Acid 1.89 (1) 1.51 (5) 1.45 (4) 1.22 (8)
Quinolinic Acid 1.45 (2) 1.60 (3) 1.33 (6) 1.05 (11)
Trimethylamine 1.41 (3) 1.81 (1) 1.68 (2) 0.79 (16)
Trigonelline 1.21 (4) 1.12 (8) 1.23 (8) 1.79 (1)
Succinic Acid 1.20 (5) 1.13 (7) 1.07 (11) 0.70 (21)
3-Hydroxyisobutyric Acid 1.19 (6) 1.56 (4) 1.48 (3) 0.93 (13)
N-Acetylneuraminic Acid 1.13 (7) 0.93 (15) 1.26 (7) 0.93 (12)
Nicotinamide Riboside 1.12 (8) 0.68 (20) 1.44 (5) 1.51 (4)
L-Valine 1.11 (9) 1.38 (6) 1.23 (9) 0.66 (22)
Creatine 1.08 (10) 0.78 (18) 0.65 (22) 1.66 (3)
Glucuronic Acid 1.07 (11) 1.10 (9) 1.17 (10) 1.38 (7)
Propylene Glycol 1.05 (12) 0.43 (28) 0.40 (27) 1.14 (9)
L-Glutamine 1.03 (13) 0.96 (13) 0.77 (19) 0.70 (20)
Trimethylamine-N-oxide 1.03 (14) 1.05 (11) 0.93 (16) 1.49 (6)
2-H-3-Methylbutyric Acid 1.02 (15) 1.02 (12) 0.99 (13) 1.13 (10)
Acetic Acid 1.00 (16) 1.05 (10) 0.98 (14) 0.77 (17)
3-Hydroxyisovaleric Acid 0.99 (17) 1.69 (2) 1.86 (1) 0.58 (25)
N1-Methylnicotinamide 0.99 (18) 0.86 (17) 1.04 (12) 1.51 (5)
Pyroglutamic Acid 0.84 (19) 0.95 (14) 0.89 (17) 1.70 (2)
L-Alanine 0.43 (28) 0.16 (30) 0.24 (31) 0.87 (14)

with the original dataset, and which are present in the analysis with
application of the SMOTE and Noise Bal methods.

Especially, the results obtained with the SMOTE and Noise Bal
approaches are similar, and there are certain metabolites that occupy
12
equivalent ranking positions. Amongst these, the following metabo-
lites should be highlighted: trimethylamine (positions 1 and 2); 3-
hydroxyisovaleric acid (pos. 2 and 1); 3-hydroxyisobutyric acid (pos.
4 and 3); 3-aminoisobutyric acid (pos. 5 and 4); and trigonelline (pos.
8 and 8). The similarity between the VIP scores obtained with these DA
methods may arise from the fact that both are oversampling methods.
The greater number of samples synthesised for the minority class
(NPC1 disease) influenced the analysis significantly, which indicates a
greater relevance of these metabolites to separate this group from the
heterozygous carriers.

Notwithstanding, Table 5 shows the analysis with the augmented
set using the CGAN model. This presents 5 differing metabolites from
those deduced with the original dataset. The difference of the pyroglu-
tamic acid metabolite at position 2 with CGAN, and position 19 with
original dataset, should be noted. Similarly, the difference between the
trimethylamine metabolite in position 16 with the CGAN approach, and
position 3 with respect to the original dataset, should be highlighted.

5. Discussion

The strategies employed here clearly offer much potential regard-
ing the metabolomics analysis of imbalanced datasets. These datasets
predominantly comprise smaller or much smaller numbers of sample-
donating participants recruited to the diseased group. This is particu-
larly the case for diseases which are rare, and these include the NPC1
condition which is examined in this work in some detail. Indeed, NPC
diseases caused by NPC1 and NPC2 mutations affect approximately
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1:100,000 live births [2], although the NPC1 mutations account for
95% of cases observed. Overall, lysosomal storage disorders represent
a series of > 41 genetically-distinct and metabolically-related, inherited
iseases. Indeed, the prevalence of these diseases varied substantially.
hese values being between 1 per 57,000 and 1 per 4.2 million live
irths for Gaucher and sialidosis diseases respectively [47]. In such
ases, the prior collection and the parental ethical consent required are
ften highly challenging hurdles to surmount. Additionally, obtaining
sufficient number of biofluid samples for NMR or other analyses adds

o this complexity. Therefore, the Data Augmentation (DA) approaches
utlined here offer great potential in such cases. There are several
elatively new studies showing the usefulness of using DA in biomedical
roblems with non-structured datasets (not images, signals or time
eries), but to the best of the authors knowledge, none before have
hown its application and effect on metabolomics datasets.

Notwithstanding, currently there is a clear lack of global, untargeted
etabolomics studies focused on investigations of lysosomal storage
iseases, with only a small number of studies being reported [48–51].
hese studies justify the value offered by NMR-based metabolomics
ata analysis techniques. Notably, the roles of branched-chain amino
cids (BCAAs), the recognition of 3-aminoisobutyrate as a catabolite of
CAA degradation, and the molecular nature of excreted N-acetylated
etabolites in NPC diseases was not properly deciphered until more

lobal, untargeted 1H NMR-based metabolomics approaches were em-
loyed for this purpose [8,49]. This global approach is slowly but surely
eveloping. The use of composites of both bioanalytical techniques
nd multivariate statistical and computational intelligence techniques
or their solution, is therefore further evolving and becoming more
opular [52].

In the present study, the effect of using different state-of-the-art
echniques for DA on the prediction performance that can be obtained
hen metabolomic NPC1 urinary dataset is considered. The results

hown in Table 2 can be considered the most relevant results of
his work in the improvement of test prediction. Indeed, they exhibit
he most effective results obtained. These indicate that the DA can
ead to an increase in predictive accuracy, when a logistic regression
pproach was used as a classifier model. The augmented dataset with
he addition of noise reaches approximately a 1% improvement in
ccuracy compared to the analysis performed on the original dataset.
owever, given the features of the problem, accuracy is not the most

epresentative metric. Since the dataset is very unbalanced, with 47
amples corresponding to parental heterozygous carriers (controls), and
3 samples corresponding to untreated NPC1 patients (diseased). Thus,
t is easy to obtain a high value of accuracy simply by predicting all
he control samples alone. Furthermore, the ability of the model not
o predict disease samples from the participants’ urinary metabolite
rofiles as if they were control samples implies more value than the
ccuracy obtained by the model. It is more important that the largest
umber of patients with the disease be diagnosed as such and not as
ontrol patients. Therefore, the most representative prediction metrics
or this problem are sensitivity and F1 score. Table 2 shows that when
erforming DA, the balanced noise addition method (Noise Bal) and
000% DA, an approximate 19% improvement in sensitivity and a 6%
mprovement in F1 score were obtained.

In order to analyse the effect of DA when using alternative classifier
odels, the same analysis with random forest (Table 3) and support

ector machine systems (Table 4) was performed. The results acquired
howed that the DA method with the most valuable test results is
oise Bal and 500% DA. This method gave rise to a ca. 30% improve-
ent in sensitivity, and 16% in F1 score, when using random forest.
ith the support vector machine system, however, the model yielded

pproximately a 49% improvement in sensitivity, along with a 35%
mprovement in F1 score.

Results also demonstrate that the best performing method is Noise
al and 500% DA. This method leads to the highest improvements
13

sing random forest and support vector machine systems as classifiers, a
nd the second best improvement was obtained when using logistic
egression (12% improvement in sensitivity and 5% in F1 score). The
btained PLS-DA cross-validation results also support this decision (cf.
ig. 10(d)). The augmented set with involving data created using the
oise Bal model and 500% DA provide approximately a 9% improve-
ent in accuracy, and a 0.3 (out of 1) improvement in predictive

apacity (Q2).
In order to determine the ability of DA methods to replicate

etabolic information, an analysis was performed using conventional
orms of multivariate data analysis. The PCA and PLS-DA results for
omponent 2 versus component 1 clearly show the differences in the

generation of data by each method applied. The noise addition methods
implemented generate synthetic samples that are grouped around the
original samples that they modify. The distance and dispersion of the
synthetic samples with respect to the original samples depends on
the applied random Gaussian error and the percentage of modified
variables. Hence, these methods have a clear capacity to replicate the
information if the applied error is not excessive. Indeed, using the
SMOTE technique, the replication capacity is based on the interpolation
of real samples. In this case, with the original dataset, two separate
clusters with a small convergence zone were observed. This fact avoids
the disadvantages that creation with the SMOTE method can present.

The results obtained from the analysis of the data augmented with
the CGAN model are more interesting, however. These results show the
ability of this model to replicate information that fits the distribution
of the ‘real’ samples. However, a disadvantage can also be concluded
from these results, and this arises from the small number of samples and
their original configuration. Given the internal function of the discrim-
inator network, samples that are far from the core of the distribution
(‘‘outliers’’) are considered as ‘false’ samples. This implies that when
the generator tries to create a synthetic sample close to these outliers,
the discriminator discards them. The PLS-DA results are affected by the
synthetic samples created by this model; this is clearly shown by the
component 2 versus component 1 scores plot analysis (Fig. 10) and the
VIP value results (Table 5).

A previously conducted study of the dataset analysed, and which
involved a series of contemporary multivariate metabolomics analysis
techniques, and without any form of DA or expansion strategies, re-
vealed a series of biomarkers which were valuable for distinguishing
between the urinary 1H NMR profiles of NPC1 patients and their
eterozygous (parental) healthy controls. These included the branched-
hain amino acid valine, 3-aminoisobutyrate, quinolinate, succinate,
rigonelline, 2-hydroxy-3-methylbuyrate and L-alanine, and those se-
ected and their relative importance rankings were found to be similar
o those reported here (Table 5). Similarly, computational intelligence
nalysis approaches involving genetic algorithm (GA) techniques pro-
ided evidence to support these observations. With the exception of
ne metabolite, trigonelline (a caffeine metabolite), along with some
urther nicotinate and nicotinamide metabolism pathway intermedi-
tes, all of these biomarkers were upregulated in the urinary profiles
f NPC1 patients. These studies were conducted using a range of row-
ise normalisation preprocessing approaches, including creatinine-,

onstant sum- and median-normalisation.
From the current study, and the results available in [8], it appears

hat urinary BCAAs such as valine, the BCAA and thymine degradation
roduct 3-aminoisobutyrate, and perhaps also quinolinate, may be
mployable as valuable biomarkers for the diagnosis and perhaps even
rognostic monitoring of NPC1 disease. However, there is a primary
equirement for their validation, and it will be necessary to achieve
his through a comparison of these urinary biomarker levels in both
ntreated and NPC1-selective drug-treated patients. Two moderately
uccessful therapies employed for controlling this disease and attenuat-
ng its activity is the orally-administered glucosylceramide synthase in-
ibitor miglustat, and more recently also the cholesterol-encapsulating

gent 2-hydroxypropyl-𝛽-cyclodextrin.
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6. Conclusions

In conclusion, DA techniques constitute a suitable approach to
increase the prediction performance of Niemann–Pick Class C1 (NPC1)
disease activity in patients when analysing 1H NMR urinary metabolic
datasets. DA techniques are capable of generating good quality syn-
thetic data that lead to an increase in sensitivity of 20%–50%. This,
however, depends on the machine learning model used, and increases
in the predictive capacity of 0.3 (out of 1) were observed for such mod-
els. The establishment of these DA techniques allows the identification
of a series of urinary metabolomics biomarkers which will serve to pro-
vide valuable information on the diagnosis, pathogenesis, status, and
monitoring of the severity of patients with NPC1 disease. In relation to
this, several future studies are planned which employ the application
of current methods to other metabolomics datasets acquired on the
analysis of biofluid samples collected from patients with other diseases,
with differential levels of metabolomics information. The aim of such
studies should be focused on achieving an improvement in disease
diagnosis, along with the search for new metabolomics information and
clinically-acceptable biomarkers of interest.
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