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Abstract

Thermal comfort is the condition in which a person feels satisfaction with the thermal environment through a subjective
evaluation. In this work, a compact and efficient estimation of thermal comfort perception by human subjects is performed
using a constructive neurocomputational model trained with data generated in controlled conditions with 49 volunteers
giving 705 different scenarios, allowing, thanks to the versatility of the model, an interpretable and simple resulting
function facilitating an easy handling of the results by people from different fields. The results have been compared with
two of the most used standard methods for modelling thermal comfort: Fanger and COMFA models, and they show an
improvement in terms of accuracy and mean square error both in a binary decision scenario (comfort or not) as well as
for a discrete decision-making case in which different thermal comfort regions are considered. The flexibility of the neural
model permits the incorporation of extra subject-related variables that increases further the thermal comfort estimation

and, also, permits the implementation of the model in distributed and low cost/low consumption systems.

Keywords Supervised learning - Constructive neural networks - Thermal comfort - BMI

1 Introduction

Thermal comfort describes the condition of the mind
in which satisfaction with the thermal environment is
expressed. To achieve this satisfaction, the first condition is
“thermal neutrality”, that is, that the person feels neither too
hot nor too cold. Computing thermal comfort is challeng-
ing because the value involves a subjective sensation, which
varies from person to person and their activities (work,
relax, sports activities, etc.) and, also, on the measurement
of the environment variables such as temperature, humidity
and wind speed. Issues regarding thermal comfort and its
applications have been tackled by different point of view:
building scientists Alghamdi et al. (2022), urban planners
Liu et al. (2023), social scientists Lopez and Heard (2023),
anthropologists Feng et al. (2023) and Heating, Ventilating
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and Air Conditioning (HVAC) design engineers (Acquaah
et al. 2023; Ono et al. 2022) including systems to predict
demands for the heating and cooling in cars Chen et al.
(2024) among other professions, and have recently attracted
the attention of climate researchers in relationship to climate
change issues (Pallubinsky et al. 2023; Nam et al. 2024).
Through the history, different civilizations have taken
into account thermal comfort in living design in order to
isolate and control the thermal and humidity qualities of a
space. However it was not until the twentieth century that
studies were conducted to provide the basis for modelling
thermal comfort. Povl Ole Fanger made a breakthrough in
1970, laying the groundwork for theoretically modelling
thermal comfort based on the imbalance between the actual
heat flow from the body in a given thermal environment and
the heat flow required for optimum comfort (i.e., neutral)
for a given activity. Fanger devised a “comfort equation”
mixing ambient parameters (i.e., humidity level, air veloc-
ity, mean radiant temperature and air temperature) in which,
for a specific grade of activity and type clothing, the high-
est proportion of people are likely to be comfortable Fanger
(1967). He proposed a related index, named the Predicted
Percentage Dissatisfied (PPD), which is computed from Pre-
dicted Mean Vote (PMV), in order to measure the quality of
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indoor environments and to evaluate the level of discomfort
of the inhabitant. The PMV-PPD method, based on Fanger
theory, has been applied to define comfort zones in inter-
national standards such as the ISO 730:2005 norm, which
establishes the requirements for general thermal comfort
and local thermal discomfort Olesen and Parsons (2002)
and the ASHRAE Standard 55 that specifies the ranges of
indoor environmental conditions to achieve acceptable ther-
mal comfort for building occupants Ashrae (2010).

Urban planning and efficient architecture are very rel-
evant issues in recent years due to people’s awareness of
personal welfare associated with thermal comfort Lindberg
et al. (2018). In outdoor spaces the solar radiation is a fac-
tor affecting thermal comfort, being in many occasions the
most relevant variable, but nevertheless the Fanger method
does not take into account for this component. Later studies
did introduce this factor and for example a model named
COMFA has been proposed by Brown and Gillespie Brown
and Gillespie (1986) in 1986 in which this factor becomes
relevant. Posterior works also consider the inclusion of wind
and activity effect on the clothing microclimate for building
an outdoor thermal comfort model aimed for subjects per-
forming physical activity (Kenny et al. 2009a, b).

The Fanger and COMFA models are typically used
through simple computer programs that, given a specific
set of conditions, provide an estimate of perceived thermal
comfort. Artificial Neural Networks (ANNs) Iman et al.
(2023), Ganaie et al. (2022) are systems inspired by how
the human brain works, though not identical, and are often
used for classification and clustering tasks. They have been
applied successfully in many areas, such as industrial pro-
cesses, stock market analysis, pattern recognition, medical
diagnosis, and control systems (Zadmirzaei et al. 2024; Pil-
liza et al. 2018; Bindu and Sastry 2023; Torres-Molina et al.
2020).

Neural networks have evolved significantly since their
inception, taking a great leap in recent years largely, since
the emergence of deep learning models LeCun et al. (2015)
that have shown higher performance compared to the Back-
propagation algorithms traditionally used for prediction
problems. In addition, the emergence not only of these
new network structures but also of new transfer functions
(Kisel’ak et al. 2021; Lopez-Rubio et al. 2019), that improve
performance have made neural networks one of the most
widely used techniques in the field of computer science.
However, this growth has created increasingly complex
systems that need a large amount of processing capacity,
requiring specific hardware sometimes costly and sensible
to parameter tuning, making it impossible to implement
in general distributed or standard real-time systems. Fur-
thermore, the resulting prediction functions are not easily
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interpretable, giving rise to prediction black boxes that are
difficult to use by people outside the field of computing.

In recent years, neurocomputational models have been
widely used to estimate thermal comfort in various con-
texts. This includes their application in optimizing heating,
ventilation, and air conditioning (HVAC) systems (Ferreira
et al. 2012; Castilla et al. 2013), predicting physiological
variables such as core and local skin temperatures Michael
et al. (2017), and modeling the distribution of solar spectral
irradiance Moreno-Saez and Mora-Lopez (2014).

However, these works have shown methods that improve
over traditional ones, they still have a high computational
cost, making them difficult to implement in distributed sys-
tems with a resulting non-interpretable function.

Ortega-Zamorano et al. (2014) implemented an expert
system in a low-cost microcontroller which consisted of an
intelligent sensor/actuator that measures five environmental
variables and takes a decision taking into account previous
events through an artificial neural network, achieving a dis-
tributed system where the learning process is done on the
device itself quickly and inexpensively.

Also, Rodriguez-Alabarce et al. (2016) introduced a neu-
rocomputational model to estimate the thermal comfort in
order to define the main factors in the equation and how the
temperature influences in the thermal comfort model.

In this paper, we implement a neurocomputational ther-
mal comfort model using data collected from 49 volunteers
exposed to different conditions, to obtain a model tested in
real life. Artificial neural networks implemented through the
C-Mantec constructive neural network algorithm Subirats
et al. (2012) have been utilized for the estimation of the sub-
jective thermal comfort, allowing, thanks to the versatility of
the model, an interpretable and very simple resulting func-
tion that facilitates easy handling of the resulting system by
people from all fields of science. Also adding new subject-
related variables to the prediction process for comparing the
predicted values with those perceived by the subjects and to
the prediction obtained from Fanger and COMFA models,
in order to obtain an improvement in the calculation of the
prediction Comfort.

The work is structured as follows: first, we describe
in Section 2 Fanger and COMFA models, followed by a
description of the C-Mantec constructive neural network
algorithm in Section 3. Section 4 gives details of the data
collection process and equipment used, together with a
descriptive analysis of the data. Thereafter, the predictions
obtained by the three models are analyzed and discussed in
Section 5, to finally extract conclusions in Section 6.
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Fig. 1 Predicted Percentage of Dissatisfied (PPD) people from a group
in relationship to the PMV value in the range [— 3,3]

Table 1 Thermal comfort in relationship to the energy balance obtained
from the COMFA scale

Balance (B) Sensation
150<B Very Hot
50<B< 150 < Hot
-50<B<50< Comfort
-150<B<-50< Cold
B<—-150< Very Cold

2 Theoretical models of the thermal comfort
2.1 The fanger model

The Fanger model of thermal comfort is a heat balance
model that evaluates thermal comfort by considering physi-
ological and environmental factors. It is based on the prin-
ciple that the body regulates its temperature to maintain
thermal equilibrium, where heat production matches heat
loss.

Body thermoregulated activity includes natural mecha-
nisms like sweating or shivering to stabilize internal tem-
perature. In thermal equilibrium, these efforts are minimal,
reducing strain and ensuring comfort. The Fanger model
predicts and optimizes conditions to achieve this state.

The method represents the mean thermal sensation vote
on a standard scale, called Predicted Mean Vote (PMV), that
permits to estimate an index named predicted percentage of
dissatisfied (PPD) people that can be determined for that
particular environment conditions by means of the equation:

PDD = 100 — 95 - (003353 PMV*—~0.2179- PMV?) (1)

During his research, two different mechanisms were
observed by Fanger which are relevant in thermal comfort,
the sudoration (sweating) and skin mean temperature, which
are dependent on the physical activity of the person in which
thermal comfort is determined. A similar relationship exists

for the skin mean temperature, remarking that skin tempera-
ture decreases as the physical activity increases. From these
two relationships, Fanger proposed a heat balance equation
from which a thermal neutrality condition can be obtained,
taking into account factors as metabolic rate, clothing insu-
lation, air temperature and speed, mean radiation tempera-
ture and relative humidity. The PMV equation described by
Fanger states that:

PMV = (0.303 - e(~0%6M) 1.0.028) - (M, —A—B-C—-D—-E—-F) (2)

where M, is the metabolic rate and A, B, C, D, E, F are
heat losses by diffusion through the skin, by sweating, latent
breathing, dry by breath, by radiation, and by convection
respectively.

Figure 1 shows the relationship between the predicted
percentage of dissatisfied (PPD) people from a group in
relationship to PMV values ranging from — 3 to 3.

PMV values are widely used for setting international
ergonomic ambient standards in indoor spaces (ANSI/
AHSRAE 55 and ISO 7730) and have also been used for
tuning self-regulated cooling-heating systems HVAC4.

2.2 The COMFA model

Due to the fact that the Fanger model does not take into
account surrounding and solar radiation, this model has
been employed in indoor environments, giving accuracy
problems when is used in outdoor environments. In order
to model these tasks, an equation was introduced in 1986
by Robert Brown and Terry Gillespie for the estimation
of thermal comfort known as COMFA method Brown and
Gillespie (1986) in which the solar radiation is taking into
account.

The COMFA models compare the relationship of energy
balance between a person and the ambient, introducing the
coefficient of energy balance between absorbed surrounding
and solar radiation which allows its use in outdoor areas.
According to the COMFA method the energy balance can
be calculated as:

Balance=M+ R—-FE—-C—- 1L, (3)

where M is the metabolic heat, R is the absorbed surround-
ing and solar radiation, E is the evaporation energy, C refers
to convective energy and L is the emitted radiation.

All sources of heat are expressed in W/m?, and so is the
final balance relationship. The energy balance can then be
related to thermal comfort sensation using the relationship
shown in Table 1.

The COMFA model has undergone some modifications
by adjusting the parameters that relates the factors with the
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estimated value, in order to develop several new models
from the original model. We have used the most realistic
COMFA model in outdoor environments to compare with
our proposed system to obtain a fair comparison Sang-
kertadi and Syafriny (2014).

3 Artificial neural network models and the
C-Mantec algorithm

Artificial neural network models are mathematical models
inspired in the functioning of the brain that can be used for
clustering and classification tasks (Haykin 1998; Mehrotra
et al. 1997; Reed and Marks 1998). Several neural network
models have been developed in the past, but in particular
for classification tasks the most used architectures are those
using a feed-forward processing of the information. Among
them, multilayer perceptrons trained by the back-propaga-
tion algorithm or the more recent Deep Learning architec-
tures, are the most popular methods. However, in almost all
cases, choosing a particular neural architecture for a given
problem is a complex and time-consuming task, and thus
alternative models have been proposed that automatically
build the architecture Franco et al. (2010). C-Mantec Subi-
rats et al. (2012) (Competitive Majority Network Trained by
Error Correction) is a constructive neural network algorithm
designed to automatically build compact single-hidden-layer
architectures with strong predictive performance for super-
vised classification tasks. Unlike traditional approaches,
C-Mantec constructs the network topology dynamically
during the training process, as input patterns are presented,
thus eliminating the need to predefine the architecture. A key
innovation of C-Mantec compared to earlier constructive
models is that its hidden layer neurons compete to learn the
data using a modified perceptron learning rule known as the
thermal perceptron Frean (1990), which has been shown to
produce highly compact architectures Gomez et al. (2020).
The classification/prediction process for a neural net-
work or any other alternative model generally involves at
least two phases: training, where the internal parameters of
the model (the synaptic weights connecting the neurons) are
adjusted according to the training data, and the test phase
in which the performance of the model is evaluated on data
not previously used in the training phase. C-Mantec gener-
ates during the training phase feed-forward neural network
architectures that includes an input layer of non-processing
units that only have the function to insert the pattern infor-
mation into the system, a single hidden layer of binary units,
and an output layer with a single neuron that computes the
majority function according to the activation of the neurons
in the previous layer. In the test phase, the synaptic weights
are kept fixed, and the test pattern responses output by the
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network are compared to their real category, essentially
analyzing whether the network correctly predicts or not the
category label of the test patterns. In Fig. 6, an architecture
created using C-Mantec is shown for the problem of esti-
mating thermal comfort. The functioning of the C-Mantec
architecture is as follows: the binary activation state (S) of
the neurons in the hidden layer depends on the N input sig-
nals coming from the input layer, v;, and on the actual value
of the NV synaptic weights (w;) and bias (b), which connects
the input layer with the hidden neurons:

1 ifh>0
S = { 0 otherwise 4)

where % represents the synaptic potential of a hidden neu-
ron, defined as:

N
h = ZM i (%)
i=0

According to the thermal perceptron rule, the synaptic
weights Aw; are updated on-line, immediately after pre-
senting a single input pattern, following the equation:

Aw; = (t = S5) i Ttac, (6)

where ¢ is the target value of the input presented, and v
denotes the input value of the unit i, which is connected to
the output through the weight w;. A distinctive aspect of the
thermal perceptron compared to the standard perceptron
learning rule is the inclusion of the T’ factor, which is
calculated as shown in Eq. 7 as a function of the synaptic
potential and a temperature parameter (T) that is introduced
artificially during learning.

T [
Tpoe = e T )

The value of T decreases as the learning process is carried
out, according to Eq. 8, following a gradual temperature
reduction strategy.

I
T =Ty (1-

); ®)

max

where [ denotes the index of the current iteration within a
learning cycle, and I,,,4, sets the upper limit on the total
number of iterations allowed during the training process. A
learning cycle begins when a randomly selected pattern is
presented to the network and ends when the network output
matches the target of that pattern, or when a selected neuron
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(either the one with the highest T, value or a newly added
one) updates its synaptic weights to learn the presented
input.

The C-Mantec algorithm requires three parameters to be
set at the beginning of the learning process. Various experi-
ments have demonstrated its robustness, showing that it
performs reliably across a wide range of parameter values.
These parameters are the following:

—  Lnge: maximum number of learning iterations allowed
for each neuron in one learning cycle.

—  gfac: growing factor that determines when to stop a
learning cycle and include a new neuron in the hidden
layer.

— ¢ determines in which case an input example is con-
sidered as noise and removed from the training dataset
according to the following condition:

delete(z;) | Npr > (n+ ¢ o), 9)

where x; represents an input pattern, N is the total number
of patterns in the data set, Ny 7 is the number of times that
pattern x; has been presented to the network in the current
learning cycle, and where i and o correspond to the mean
and variance of the distribution for all patterns on the num-
ber of times that the algorithm has tried to learn each pattern
in a learning cycle. The learning procedure starts with one
neuron present in the single hidden layer of the architecture
and an output neuron that computes the majority function
of the responses of the hidden neurons (a voting scheme).
The process continues by presenting an input pattern to the
network and if it is misclassified, it will be learned by one of
the present neurons whose output did not match the target
pattern value if certain conditions are met, otherwise a new
neuron will be included in the architecture to learn it. Among
all neurons that misclassified the input pattern, the one with
the largest T'rq will learn it but only if this T4, value is

(b)

larger than the gf,. parameter of the algorithm, a condition
included to prevent the unlearning of previous stored infor-
mation. If no thermal perceptron meeting these criteria is
found, a new neuron is added to the network, starting a new
learning cycle that includes the resetting of all neurons tem-
perature to 7p. Also at the end of a cycle the noisy patterns
filtering procedure (Eq. 9) is applied. The algorithm con-
tinues its operation iteratively repeating the previous stages
until all patterns in the training set are correctly classified by
the network. During the learning process catastrophic for-
getting is prevented as synaptic weights are only modified if
the change involved is small (controlled by the value of g4,
and by an annealing process that reduces the temperature as
learning proceeds), as if this is not the case, the algorithm
introduces a new neuron in the architecture.

The work that explains in detail the design of the C-Man-
tec algorithm Subirats et al. (2012)shows how the algorithm
is very stable in reference to the parameters to be set at the
time of starting the learning procedure. This work describes
in detail the selection of parameters, and these parameters
must be within the following ranges:

Gfac € {0.05 - 0.5}.
Lnae € {1000 — 100000}.
- ¢e{1-3}

Although the algorithm has proven to have very little vari-
ability when the parameters are changed, a series of runs
with different settings have been launched. The different
configurations have been g, = {0.1,0.2,0.3,0.4,0.5},
Inae = {1000, 5000, 10000, 20000 }and¢ = {1, 2, 3}result-
ing in results without statistical difference. The parameters
that we have finally selected, because it is the configuration
that provides the best efficiency values between classifica-
tion measures and computing time, have been: g, = 0.5,
Iinas = 10000., ¢ = 2.

(c) (d)

Fig. 2 Devices used to control the environmental variables, (a) CSI-OQ-1000 Thorn lamp (radiation), (b) Industrial fan mf-30p (wind), (¢) Haier
Brezza-12K HVAC system (temperature and humidity), and (d) humidifier Beurer LB-88 ( humidity)
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Table 2 Characteristics of elements used to control the environmental
variables, (a) irradiance levels control device, (b) wind condition con-
trol device, (c) the temperature sensation control device and (d) the
humidity condition control device

Characteristic Value

(a)

Dimension (380 x 262 x 350) mm
Consumption 1kW

Power 1kW

Luminous Flux 21500 Im

Color Temp. 2900 K

(b)

Dimension (990 x 940 x 300) mm
Consumption 378 kW

Max. airflow 19.200 m*/h
Diameter 750 mm

Rotation 360°

(c)

Dimension (855 x 204 x 280) mm
Consumption 1350 W

Cooling 3600 W

Heating 3700 W

Max. airflow 650 m3/h

(a)

Dimension (295 x 195 x 280) mm
Consumption 16-280 W

Capacity 550 ml/h

Deposit 61

4 Experimental study with volunteers

For training and test the different thermal comfort models,
a set of data is required, and thus a series of experiments
with human subjects have been carried out. In order to do
this and with the aim of testing different scenarios, a space
was prepared in which the environmental variables are

Fig. 3 Devices used for measuring

the variables involved in the study:

(a) environment meter PCE-EM882
(temperature), (b) solarimeter Kimo SL
100 (irradiance level), (¢) PCE-AMS81
portable anemometer (wind speed)
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configured by the researchers using several devices (lamp,
fan, air conditioner and humidifier) described below.

4.1 Control elements of environmental variables

The Fig.2a shows lamp CSI-OQ-1000 Thorn used to simu-
late different irradiance levels and different elevations and
solar azimuth. The Fig.2b shows the industrial fans, mf-30
p, used to generate wind conditions with different speed
levels. The Fig.2c shows the air conditioner Haier Brezza-
12K installed in the space to cool or heat depending on the
analyzed scenario for characterize. The Fig.2d shows the
humidifier Beurer LB-88 employed in the regulation of the
relative humidity of the air (Table 2 shows the main charac-
teristics of the used devices.)

4.2 Measuring elements of environmental variables

Several devices have been used to measure the variables
involved in the study of the thermal comfort. Fig.3a shows
the environment meter PCE-EM882for measuring tempera-
ture and humidity. This device can also measure the light
and the sound level but these functions were not used in this
experiment. Fig.3b shows the portable Solarimeter Kimo
SL 100 used to measure the solar radiant flow received by
unit area. The Fig.3c shows the portable anemometer PCE-
AMBS]1 used to to measure wind speed. The main character-
istics of these used devices are shown in Table 3.

4.3 Study group

Several tests carried out with the participation of 49 vol-
unteers of different ages and body constitutions were per-
formed in different environmental controlled conditions.
Each person has been exposed to 15 experiments under
variations of solar radiation, humidity, temperature, wind,

(b) (c)
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clothing and activity in which values have been precisely
monitored used the equipment described previously. Table 4
shows the range of values of the variables used in the exper-
iments. The Body Mass Index (BMI) has been measured for
all subjects as it can influence the thermal sensation. Blood
Pressure (BP) was also measured during the experiments by
means of the portable monitor “Beurer Medical BC32” but
was not used for predicting thermal comfort. In the experi-
ments the subjects have to indicate after a minimum of 120
seconds its comfort sensation in range of continuum values
according to the ASHRAE scale.

A Principal Component Analysis (PCA) has been applied
to the data obtained from the experiments. PCA is a sta-
tistical procedure that uses a linear orthogonal transforma-
tion to convert a set of observations of possibly correlated
variables into a set of uncorrelated variables called principal
components. The full set of principal components is as large
as the original set of variables, but it is commonplace for the
sum of the variances of the first few (two or three) princi-
pal components to exceed 80% of the total variance of the
original data.

- X
Xo
—5.36 —82.60 —106.74 19.51 —24.04 —25.39 —10.70 54.16 63.26 —95.61 §3 Y,
—12.11 —4.95 —102.50 30.44 14.18 1659  0.32 —45.36 —857 —72.64 X4 Y,
—37.75  5.66 40.18  40.85 —38.69 1.46 12.34 —56.11 —21.56 —41.63 | .| §° | =| Y3
—2393 —3.73 —4519 198 —4.33 —4483 —553 —9.30 494 —86.32 X Y,
—17.06 —13.52 11.42 —2347 5.53 29.82 —9.06 9.73 878  —4.86 X7 Ys
~- Xz (10)
[ -1 ]
Comfort =[(Y1 > 0)+ (Y2 > 0)+ (Y3 >0)+ (Y4 > 0)+ (Y5 > 0)] > 5/2 (11)

Table 3 Characteristics of the devices used to measure the solar radia-
tion (a), wind speed (b) and temperature and humidity (c)

Characteristic Value
@)
Dimension (50 x 120 x 33) mm
Weight 150g
working temp. —10°C+50°C
Range of measurement 1-1300 W/m?
Frequency of calculation 2/s
Accuracy 5% mm
(b)
Dimension (156 x 60 x 33) mm
Weight 160g
Range of measurement 0.4...30.0 m/s
Resolution 0.1 m/s
Accuracy +3%( <20 m/s)
+4%(>20 m/s)
Characteristic Value Characteristic Value
Humid.  Temp.
(0
Dimension (251 x Range of 25-95% —20
64 x 40) measurement H.r +200
mm °C
Resolution 0.1% +3%
Weight 250g Accuracy 5% +3.5

%

Table4 Set of standard and new variables and their range (or category)
used for the estimation of thermal comfort sensation in the different
experiments

Variable Range/Categories
Standard Radiation {15,250, 550, 850} W/m?
Humidity [33 —45] %
Temperature [18 — 32}00
Wind [0 — 4]m/s
Clothing [Winter, Spring, Summer]
Activity [None, office type]
New Age [22 — 50] Years
Sex {Male, Female}
BMI [19 — 34] K g/m?
100 T T . . . :
;\3 80 .
o
@
£ 60 1
«©
[}
X
w40 + i
)
o
c
8 20 i
S
>

1 2 3 4 5 6 7 8 9
Principal Component

Fig. 4 Percentage of variance explained by each of the principal com-
ponents (vertical bars) and the accumulated value (solid line)
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Fig. 5 PCA representation of the data. All eight variables (solid lines)
and recorded subject data (red dots) are represented in the bi-dimen-
sional space of the first and second Principal Components

Fig. 4 shows the percentage of variance explained by each
principal component (vertical bar) and the accumulated
value of the previous components (solid line). The first two
components explains approximately 60% of the total vari-
ance while using the three first components takes this level
up to approximately 80%. Because 3-dimensional graph-
ics are not well displayed in paper support document, we
decided to perform an analyses of the subjects’ data with
only the 2 first components. Fig. 5 shows all nine experi-
mental variables (subject and environmental conditions
data), represented in this graph by a vector, which direction
and length indicate how each variable contributes to the two
principal components. The first principal component, on the
horizontal axis, has positive coefficients for the majority of
the variables, in particular for all of them except BMI and
Clothing, being the largest coefficients corresponding to
Humidity and Temperature. However, the second principal
component, on the vertical axis, has positive coefficients for
all variables except for the variable sex. The Activity vari-
able, that can be hardly seen in the graph, contributes almost
nothing to the two main principal components, and this is
due to the fact that its contribution is related to the third
component (not shown) that represents approximately 20 %
of the total variance. The red dots in the figure represent the

705 observations recorded from the experiments as a func-
tion of the two principal components.

5 Results

One of the principal aims of this work is to test the pre-
diction accuracy of a constructive neural network model
(C-Mantec) regarding the thermal comfort sensation felt
by subjects in different ambient conditions, and compare it
to those that can be obtained from the Fanger and COMFA
models.

In a first analysis we test the accuracy of the models for
correctly predicting whether a given subject under defined
ambient conditions feels in comfort or not (i.e., a binary pre-
diction task). As the output of the registered data set (PMV)
is continuous and the proposed model is binary, the data set
has been discretized, selecting two different possible out-
puts, comfort (— 0.5 < PMV < 0.5) or not comfort (rest of
the values) (in relationship to Fig. 1, comfort corresponds
to the neutral indicated zone, and not comfort to the outside
region). The whole data set was divided in training and test
data sets, using 60% and 40% of the total cases. The C-Man-
tec neural network algorithm was run with the following
standard configuration for the parameters: gro. = 0.05,
Iz = 1000, ¢ = 2; and two models were considered: one
with the standard six input variables used by the theoreti-
cal models (Fanger and COMFA) denoted as ‘6 Var’ model,
and a second one that also includes as input variables 4Age,
Sex and the Body Mass Index indicated as ‘9 Var.” model.
The results are shown in Table 5 where the first column
indicates the used method; the second column shows the
accuracy obtained for which the mean value plus standard
deviation are indicated ( maximum and minimum values
are also shown). The last column indicates the number of
neurons that the C-Mantec model automatically choose, and
this column also contains three sub-columns with mean plus
standard deviation, maximum and minimum values. 100
randomly runs for the indicated data split scheme were per-
formed for each model.

One of the main advantages of using the proposed neu-
ral network model is that, as it usually generates architec-
tures with a low number of neurons, a relatively simple

Table 5 Accuracy values for the prediction of Comfort Not Comfort sensation according to the theoretical methods (Fanger and COMFA) and

proposed neurocomputational method (C-Mantec)

Method Accuracy # of neurons

Mean + Std Max Min Mean + Std Max Min
Fanger 0.5287 +0.0226 0.5816 0.4645 - - -
COMFA 0.5698 +0.0235 0.6277 0.5248 - - -
C-Mantec Model (6 Var) 0.8335 +0.0208 0.8723 0.7801 10.89 +1.1538 14 9
C-Mantec Model (9 Var) 0.8438 +0.0212 0.9113 0.7872 6.17 +£0.4935 7 5

C-Mantec performance was analyzed using as inputs the usual six variables (6 Var.) and an extended set of variables (9 Var.) (See text for details)
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Fig. 6 Neural network architecture generated by the C-Mantec algo-
rithm for estimating as a function of the 9 input variable whether a
human subject is in a Comfort or No Comfort situation
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Fig. 7 Probability of correct decision of the designed neural network
system according to the first two Principal components of the input
patterns

logical equation can be extracted, that in the present case
corresponds to the comfort equation. Equations 10 and 11
show the logical function for the comfort / not comfort case
in which a model with only 5 neurons in the hidden layer
has been chosen in order to simplify the model as much
as possible (this model achieves a probability of success
of 89.57%). Fig. 6 shows such a network comprising the
9 input neurons (plus the bias term), the synaptic weights

matrix M (learnt during training), the 5 hidden layer neu-
rons (Y;) and the single binary output. Eq. 11 represents
mathematically the final operation of the shown architec-
ture, with Y; with ¢ = 1,...,5 values representing the out-
put of the equation 10, obtained through a multiplication
between a matrix of the synaptic weights (M) of the neural
architecture and a vector of inputs (X7, Xo, ..., Xg)(the — 1
term at the last component of the vector corresponds to a
fixed bias term). The nine X; inputs represent the ambient
and subject variables which are Solar Radiation, Humid-
ity, Temperature, Wind, Clothing, Activity, Sex, BMI, and
Age, respectively. Thus by multiplying the learned synap-
tic weights matrix by the ambient and subject variables,
the response of 5 intermediate neurons can be obtained,
and from these the Comfort/Not Comfort condition can be
computed using Eq. 11. This equation, representing the out-
put operation of the neural network, computes the majority
function of the activation of the neurons of the hidden layer
(Y3), such that if three or more of the five factors of the equa-
tion are satisfied (Y; < 0), then the output variable Comfort
is True (and False in any other case, i.¢., two or less number
of true factors)

In a further analyses aimed to understand the obtained
model, we computed the probability of correct decision
when the two first principal components of the inputs are
considered (see also Fig. 5 and related text in relationship to
the PCA). Fig. 7 shows this probability of correct decision
of the designed neural network system generated from the
analysis of the two first principal components from the raw
data: first, the principal component has been obtained for
each input pattern of the data set, to then normalize the space
of the two principal components between — 1 and 1. From
these values, the probability of correct decision is computed
for the whole data set while missing values are computed
using a linear interpolation of the rest of the values. It is
possible to identify in the graph, three areas where the pre-
diction accuracy is lower than the average (approximately
in the range of 0.6). An analysis of the data that corresponds
to these three cases shows that: the two areas with values
around (— 0.5, 0.9) and (0.5, 0.9) corresponds to borderline
situations between Warm/Hot thermal comfort sensation
with high radiance levels and for the case of subject of both
sexes. The region around the point (0, — 0.9) corresponds to

Table 6 Accuracy values for the prediction of perceived comfort sensation in 5 categories according to Fanger, COMFA models and C-Mantec

Method Accuracy MSE # of neurons

Mean Max Min Mean Max Min Mean Max Min
Fanger 0.420 +0.022 0.479 0.369 1.366 +0.123 1.675 1.075 - - -
COMFA 0.244 +0.017 0.284 0.202 9.934+0.517 10.993 8.621 - - -
C-Mantec Model(6 Var) 0.517 +£0.037 0.624 0.422 1.123 £0.248 1.394 0.892 5224249 54 48
C-Mantec Model (9 Var) 0.585+0.048 0.678 0.453 0.805+0.171 1.552 0.526 33.66 +1.38 38 30

C-Mantec performance was analyzed using as inputs the usual six variables (6 Var.) and an extended set of variables (9 Var.) (See text for details)
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Fig. 8 MSE distribution for the four used models for the case of predicting thermal comfort in 5 categories (Cold, Cool, Neutral, Warm and Hot).
Note that the Y-axis scale is different in each case (see text for more details)

a borderline region between Cool/Cold comfort sensation
for the case of no radiation.

In the previous analysis we consider only the situation of
Comfort/ Not Comfort, so we decided to extend the study
of the model prediction for the case of a graded thermal
sensation, using a discretized range of 5 possible response
categories: Cold, Cool, Neutral, Warm and Hot (See Fig. 1
for the range of PMV wvalues and its corresponding PDD
values).

Table 6 shows the accuracy and the mean square error
perform in the thermal comfort analysis according to the 5
possible output states for the neural network model proposed

@ Springer

and for the traditional Fanger and COMFA methods. The
obtained prediction values are for all four cases worse than
those previously obtained for the binary case, and the reason
for this is that correctly predicting the output in 5 categories
is a more difficult task. It can be seen that also in this case
the neural network outperforms the other two traditional
models. The first column in Table 6 shows the method used,;
second and third column show the accuracy and the MSE
respectively, while the last column indicates the number
of neurons that the neural network model needs in order to
carry out the prediction.
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A further analysis was carried out to study how the errors
are distributed for each category and for each of the three
applied methods, and the results are shown in Fig. 8. On
each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25! and 75'"
percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers
are plotted individually using the ‘+’ symbol.

6 Conclusions

A novel study based on the use of a constructive neural net-
work model for the estimation of thermal comfort has been
introduced and applied to new recorded data from several
human subjects under different ambient conditions. The
constructive method employed generates small architec-
tures that permit to generate a relatively simple equation
(Eq. 11) for the estimation of thermal comfort, allowing its
implementation in low-cost hardware devices that might be
incorporated in HVAC systems for its automatic regulation.

In a first binary prediction task of Comfort/No Comfort
the neural network model performed quite well with aver-
age values above 0.83, outperforming the results from the
Fanger and COMFA models. When the prediction task
was extended to 5 categories (Cold, Cool, Neutral, Warm
and Hot), the accuracy reduced much (maximum values
of 0.624) but still the introduced model was quite superior
to Fanger and COMFA models, noting that in this case the
COMFA model performed much worse than the Fanger one.
An analysis carried out on the distribution of MSE shows
that the Fanger model leads to very high error values for
the Hot category, and this indicates that irradiance estima-
tion is not accurately performed. The analysis for the Fanger
and ANN models also show a bias with larger than aver-
age errors but in this case for the COLD category. Fanger
model does not take into account radiation conditions, and
this might explain part of the bias.

Neural network models were trained with standard 6
environment variables and also adding other 3 subject-
related variables (age, sex and BMI). The addition of these
three variables leads to a 1.23% and 13.15% improvement in
the binary and 5-category prediction cases respectively, also
observing the fact that the 9 input variables model needed a
lower number of neurons in both cases, indicating that this
extra information reduces the complexity of the task.

The overall conclusion of the present work is that neural
network-based models seem adequate for the estimation of
thermal comfort perception, leading to more accurate pre-
diction values than standard Fanger and COMFA models.
Nevertheless, the low prediction accuracy values (in the
range of 0.5-0.6) for the 5 categories case might indicate

that further subject or ambient conditions should be taken
into account in order to increase these levels, and in this
sense, it is clear that radiation is a key factor to take into
account in further analysis.
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