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and Air Conditioning (HVAC) design engineers (Acquaah 
et al. 2023; Ono et al. 2022) including systems to predict 
demands for the heating and cooling in cars Chen et  al. 
(2024) among other professions, and have recently attracted 
the attention of climate researchers in relationship to climate 
change issues (Pallubinsky et al. 2023; Nam et al. 2024).

Through the history, different civilizations have taken 
into account thermal comfort in living design in order to 
isolate and control the thermal and humidity qualities of a 
space. However it was not until the twentieth century that 
studies were conducted to provide the basis for modelling 
thermal comfort. Povl Ole Fanger made a breakthrough in 
1970, laying the groundwork for theoretically modelling 
thermal comfort based on the imbalance between the actual 
heat flow from the body in a given thermal environment and 
the heat flow required for optimum comfort (i.e., neutral) 
for a given activity. Fanger devised a “comfort equation” 
mixing ambient parameters (i.e., humidity level, air veloc-
ity, mean radiant temperature and air temperature) in which, 
for a specific grade of activity and type clothing, the high-
est proportion of people are likely to be comfortable Fanger 
(1967). He proposed a related index, named the Predicted 
Percentage Dissatisfied (PPD), which is computed from Pre-
dicted Mean Vote (PMV), in order to measure the quality of 

1  Introduction

Thermal comfort describes the condition of the mind 
in which satisfaction with the thermal environment is 
expressed. To achieve this satisfaction, the first condition is 
“thermal neutrality”, that is, that the person feels neither too 
hot nor too cold. Computing thermal comfort is challeng-
ing because the value involves a subjective sensation, which 
varies from person to person and their activities (work, 
relax, sports activities, etc.) and, also, on the measurement 
of the environment variables such as temperature, humidity 
and wind speed. Issues regarding thermal comfort and its 
applications have been tackled by different point of view: 
building scientists Alghamdi et  al. (2022), urban planners 
Liu et al. (2023), social scientists Lopez and Heard (2023), 
anthropologists Feng et al. (2023) and Heating, Ventilating 
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indoor environments and to evaluate the level of discomfort 
of the inhabitant. The PMV-PPD method, based on Fanger 
theory, has been applied to define comfort zones in inter-
national standards such as the ISO 730:2005 norm, which 
establishes the requirements for general thermal comfort 
and local thermal discomfort Olesen and Parsons (2002) 
and the ASHRAE Standard 55 that specifies the ranges of 
indoor environmental conditions to achieve acceptable ther-
mal comfort for building occupants Ashrae (2010).

Urban planning and efficient architecture are very rel-
evant issues in recent years due to people’s awareness of 
personal welfare associated with thermal comfort Lindberg 
et al. (2018). In outdoor spaces the solar radiation is a fac-
tor affecting thermal comfort, being in many occasions the 
most relevant variable, but nevertheless the Fanger method 
does not take into account for this component. Later studies 
did introduce this factor and for example a model named 
COMFA has been proposed by Brown and Gillespie Brown 
and Gillespie (1986) in 1986 in which this factor becomes 
relevant. Posterior works also consider the inclusion of wind 
and activity effect on the clothing microclimate for building 
an outdoor thermal comfort model aimed for subjects per-
forming physical activity (Kenny et al. 2009a, b).

The Fanger and COMFA models are typically used 
through simple computer programs that, given a specific 
set of conditions, provide an estimate of perceived thermal 
comfort. Artificial Neural Networks (ANNs) Iman et  al. 
(2023), Ganaie et al. (2022) are systems inspired by how 
the human brain works, though not identical, and are often 
used for classification and clustering tasks. They have been 
applied successfully in many areas, such as industrial pro-
cesses, stock market analysis, pattern recognition, medical 
diagnosis, and control systems (Zadmirzaei et al. 2024; Pil-
liza et al. 2018; Bindu and Sastry 2023; Torres-Molina et al. 
2020).

Neural networks have evolved significantly since their 
inception, taking a great leap in recent years largely, since 
the emergence of deep learning models LeCun et al. (2015) 
that have shown higher performance compared to the Back-
propagation algorithms traditionally used for prediction 
problems. In addition, the emergence not only of these 
new network structures but also of new transfer functions 
(Kisel’ak et al. 2021; López-Rubio et al. 2019), that improve 
performance have made neural networks one of the most 
widely used techniques in the field of computer science. 
However, this growth has created increasingly complex 
systems that need a large amount of processing capacity, 
requiring specific hardware sometimes costly and sensible 
to parameter tuning, making it impossible to implement 
in general distributed or standard real-time systems. Fur-
thermore, the resulting prediction functions are not easily 

interpretable, giving rise to prediction black boxes that are 
difficult to use by people outside the field of computing.

In recent years, neurocomputational models have been 
widely used to estimate thermal comfort in various con-
texts. This includes their application in optimizing heating, 
ventilation, and air conditioning (HVAC) systems (Ferreira 
et  al. 2012; Castilla et  al. 2013), predicting physiological 
variables such as core and local skin temperatures Michael 
et al. (2017), and modeling the distribution of solar spectral 
irradiance Moreno-Sáez and Mora-López (2014).

However, these works have shown methods that improve 
over traditional ones, they still have a high computational 
cost, making them difficult to implement in distributed sys-
tems with a resulting non-interpretable function.

Ortega-Zamorano et  al. (2014) implemented an expert 
system in a low-cost microcontroller which consisted of an 
intelligent sensor/actuator that measures five environmental 
variables and takes a decision taking into account previous 
events through an artificial neural network, achieving a dis-
tributed system where the learning process is done on the 
device itself quickly and inexpensively.

Also, Rodríguez-Alabarce et al. (2016) introduced a neu-
rocomputational model to estimate the thermal comfort in 
order to define the main factors in the equation and how the 
temperature influences in the thermal comfort model.

In this paper, we implement a neurocomputational ther-
mal comfort model using data collected from 49 volunteers 
exposed to different conditions, to obtain a model tested in 
real life. Artificial neural networks implemented through the 
C-Mantec constructive neural network algorithm Subirats 
et al. (2012) have been utilized for the estimation of the sub-
jective thermal comfort, allowing, thanks to the versatility of 
the model, an interpretable and very simple resulting func-
tion that facilitates easy handling of the resulting system by 
people from all fields of science. Also adding new subject-
related variables to the prediction process for comparing the 
predicted values with those perceived by the subjects and to 
the prediction obtained from Fanger and COMFA models, 
in order to obtain an improvement in the calculation of the 
prediction Comfort.

The work is structured as follows: first, we describe 
in Section  2 Fanger and COMFA models, followed by a 
description of the C-Mantec constructive neural network 
algorithm in Section 3. Section 4 gives details of the data 
collection process and equipment used, together with a 
descriptive analysis of the data. Thereafter, the predictions 
obtained by the three models are analyzed and discussed in 
Section 5, to finally extract conclusions in Section 6.
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2  Theoretical models of the thermal comfort

2.1  The fanger model

The Fanger model of thermal comfort is a heat balance 
model that evaluates thermal comfort by considering physi-
ological and environmental factors. It is based on the prin-
ciple that the body regulates its temperature to maintain 
thermal equilibrium, where heat production matches heat 
loss.

Body thermoregulated activity includes natural mecha-
nisms like sweating or shivering to stabilize internal tem-
perature. In thermal equilibrium, these efforts are minimal, 
reducing strain and ensuring comfort. The Fanger model 
predicts and optimizes conditions to achieve this state.

The method represents the mean thermal sensation vote 
on a standard scale, called Predicted Mean Vote (PMV), that 
permits to estimate an index named predicted percentage of 
dissatisfied (PPD) people that can be determined for that 
particular environment conditions by means of the equation:

PDD = 100 − 95 · e(−0.03353·P MV 4−0.2179·P MV 2)� (1)

During his research, two different mechanisms were 
observed by Fanger which are relevant in thermal comfort, 
the sudoration (sweating) and skin mean temperature, which 
are dependent on the physical activity of the person in which 
thermal comfort is determined. A similar relationship exists 

for the skin mean temperature, remarking that skin tempera-
ture decreases as the physical activity increases. From these 
two relationships, Fanger proposed a heat balance equation 
from which a thermal neutrality condition can be obtained, 
taking into account factors as metabolic rate, clothing insu-
lation, air temperature and speed, mean radiation tempera-
ture and relative humidity. The PMV equation described by 
Fanger states that:

PMV = (0.303 · e(−0.36·Ma) + 0.028) · (Ma − A − B − C − D − E − F ) �(2)

where Ma is the metabolic rate and A, B, C, D, E, F are 
heat losses by diffusion through the skin, by sweating, latent 
breathing, dry by breath, by radiation, and by convection 
respectively.

Figure  1 shows the relationship between the predicted 
percentage of dissatisfied (PPD) people from a group in 
relationship to PMV values ranging from − 3 to 3.

PMV values are widely used for setting international 
ergonomic ambient standards in indoor spaces (ANSI/
AHSRAE 55 and ISO 7730) and have also been used for 
tuning self-regulated cooling-heating systems HVAC4.

2.2  The COMFA model

Due to the fact that the Fanger model does not take into 
account surrounding and solar radiation, this model has 
been employed in indoor environments, giving accuracy 
problems when is used in outdoor environments. In order 
to model these tasks, an equation was introduced in 1986 
by Robert Brown and Terry Gillespie for the estimation 
of thermal comfort known as COMFA method Brown and 
Gillespie (1986) in which the solar radiation is taking into 
account.

The COMFA models compare the relationship of energy 
balance between a person and the ambient, introducing the 
coefficient of energy balance between absorbed surrounding 
and solar radiation which allows its use in outdoor areas. 
According to the COMFA method the energy balance can 
be calculated as:

Balance = M + R − E − C − L ,� (3)

where M is the metabolic heat, R is the absorbed surround-
ing and solar radiation, E is the evaporation energy, C refers 
to convective energy and L is the emitted radiation.

All sources of heat are expressed in W/m2, and so is the 
final balance relationship. The energy balance can then be 
related to thermal comfort sensation using the relationship 
shown in Table 1.

The COMFA model has undergone some modifications 
by adjusting the parameters that relates the factors with the 

Table 1  Thermal comfort in relationship to the energy balance obtained 
from the COMFA scale
Balance (B) Sensation
150 < B Very Hot
50< B< 150 < Hot
− 50 < B < 50 < Comfort
− 150 < B < − 50 < Cold
B< − 150 < Very Cold

Fig. 1  Predicted Percentage of Dissatisfied (PPD) people from a group 
in relationship to the PMV value in the range [− 3,3]
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network are compared to their real category, essentially 
analyzing whether the network correctly predicts or not the 
category label of the test patterns. In Fig. 6, an architecture 
created using C-Mantec is shown for the problem of esti-
mating thermal comfort. The functioning of the C-Mantec 
architecture is as follows: the binary activation state (S) of 
the neurons in the hidden layer depends on the N input sig-
nals coming from the input layer, ψi, and on the actual value 
of the N synaptic weights (ωi) and bias (b), which connects 
the input layer with the hidden neurons:

S =
{

1 if h ≥ 0
0 otherwise � (4)

where h represents the synaptic potential of a hidden neu-
ron, defined as:

h =
N∑

i=0
ωi ψi� (5)

According to the thermal perceptron rule, the synaptic 
weights ∆ωi are updated on-line, immediately after pre-
senting a single input pattern, following the equation:

∆ωi = (t − S) ψi Tfac,� (6)

where t is the target value of the input presented, and ψ 
denotes the input value of the unit i, which is connected to 
the output through the weight ωi. A distinctive aspect of the 
thermal perceptron compared to the standard perceptron 
learning rule is the inclusion of the Tfac factor, which is 
calculated as shown in Eq. 7 as a function of the synaptic 
potential and a temperature parameter (T) that is introduced 
artificially during learning.

Tfac = T

T0
e− |h|

T ,� (7)

The value of T decreases as the learning process is carried 
out, according to Eq.  8, following a gradual temperature 
reduction strategy.

T = T0· (1 − I

Imax
),� (8)

where I denotes the index of the current iteration within a 
learning cycle, and Imax sets the upper limit on the total 
number of iterations allowed during the training process. A 
learning cycle begins when a randomly selected pattern is 
presented to the network and ends when the network output 
matches the target of that pattern, or when a selected neuron 

estimated value, in order to develop several new models 
from the original model. We have used the most realistic 
COMFA model in outdoor environments to compare with 
our proposed system to obtain a fair comparison Sang-
kertadi and Syafriny (2014).

3  Artificial neural network models and the 
C-Mantec algorithm

Artificial neural network models are mathematical models 
inspired in the functioning of the brain that can be used for 
clustering and classification tasks (Haykin 1998; Mehrotra 
et al. 1997; Reed and Marks 1998). Several neural network 
models have been developed in the past, but in particular 
for classification tasks the most used architectures are those 
using a feed-forward processing of the information. Among 
them, multilayer perceptrons trained by the back-propaga-
tion algorithm or the more recent Deep Learning architec-
tures, are the most popular methods. However, in almost all 
cases, choosing a particular neural architecture for a given 
problem is a complex and time-consuming task, and thus 
alternative models have been proposed that automatically 
build the architecture Franco et al. (2010). C-Mantec Subi-
rats et al. (2012) (Competitive Majority Network Trained by 
Error Correction) is a constructive neural network algorithm 
designed to automatically build compact single-hidden-layer 
architectures with strong predictive performance for super-
vised classification tasks. Unlike traditional approaches, 
C-Mantec constructs the network topology dynamically 
during the training process, as input patterns are presented, 
thus eliminating the need to predefine the architecture. A key 
innovation of C-Mantec compared to earlier constructive 
models is that its hidden layer neurons compete to learn the 
data using a modified perceptron learning rule known as the 
thermal perceptron Frean (1990), which has been shown to 
produce highly compact architectures Gómez et al. (2020).

The classification/prediction process for a neural net-
work or any other alternative model generally involves at 
least two phases: training, where the internal parameters of 
the model (the synaptic weights connecting the neurons) are 
adjusted according to the training data, and the test phase 
in which the performance of the model is evaluated on data 
not previously used in the training phase. C-Mantec gener-
ates during the training phase feed-forward neural network 
architectures that includes an input layer of non-processing 
units that only have the function to insert the pattern infor-
mation into the system, a single hidden layer of binary units, 
and an output layer with a single neuron that computes the 
majority function according to the activation of the neurons 
in the previous layer. In the test phase, the synaptic weights 
are kept fixed, and the test pattern responses output by the 
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larger than the gfac parameter of the algorithm, a condition 
included to prevent the unlearning of previous stored infor-
mation. If no thermal perceptron meeting these criteria is 
found, a new neuron is added to the network, starting a new 
learning cycle that includes the resetting of all neurons tem-
perature to T0. Also at the end of a cycle the noisy patterns 
filtering procedure (Eq.  9) is applied. The algorithm con-
tinues its operation iteratively repeating the previous stages 
until all patterns in the training set are correctly classified by 
the network. During the learning process catastrophic for-
getting is prevented as synaptic weights are only modified if 
the change involved is small (controlled by the value of gfac 
and by an annealing process that reduces the temperature as 
learning proceeds), as if this is not the case, the algorithm 
introduces a new neuron in the architecture.

The work that explains in detail the design of the C-Man-
tec algorithm Subirats et al. (2012)shows how the algorithm 
is very stable in reference to the parameters to be set at the 
time of starting the learning procedure. This work describes 
in detail the selection of parameters, and these parameters 
must be within the following ranges:

	– gfac ∈ {0.05 − 0.5}.

	– Imax ∈ {1000 − 100000}.

	– ϕ ∈ {1 − 3}.

Although the algorithm has proven to have very little vari-
ability when the parameters are changed, a series of runs 
with different settings have been launched. The different 
configurations have been gfac = {0.1, 0.2, 0.3, 0.4, 0.5}, 
Imax = {1000, 5000, 10000, 20000} and ϕ = {1, 2, 3} result-
ing in results without statistical difference. The parameters 
that we have finally selected, because it is the configuration 
that provides the best efficiency values between classifica-
tion measures and computing time, have been: gfac = 0.5., 
Imax = 10000., ϕ = 2.

(either the one with the highest Tfac value or a newly added 
one) updates its synaptic weights to learn the presented 
input.

The C-Mantec algorithm requires three parameters to be 
set at the beginning of the learning process. Various experi-
ments have demonstrated its robustness, showing that it 
performs reliably across a wide range of parameter values. 
These parameters are the following:

	– Imax: maximum number of learning iterations allowed 
for each neuron in one learning cycle.

	– gfac: growing factor that determines when to stop a 
learning cycle and include a new neuron in the hidden 
layer.

	– ϕ: determines in which case an input example is con-
sidered as noise and removed from the training dataset 
according to the following condition: 

delete(xi) | NLT ≥ (µ + ϕ σ),� (9)

where xi represents an input pattern, N is the total number 
of patterns in the data set, NLT  is the number of times that 
pattern xi has been presented to the network in the current 
learning cycle, and where µ and σ correspond to the mean 
and variance of the distribution for all patterns on the num-
ber of times that the algorithm has tried to learn each pattern 
in a learning cycle. The learning procedure starts with one 
neuron present in the single hidden layer of the architecture 
and an output neuron that computes the majority function 
of the responses of the hidden neurons (a voting scheme). 
The process continues by presenting an input pattern to the 
network and if it is misclassified, it will be learned by one of 
the present neurons whose output did not match the target 
pattern value if certain conditions are met, otherwise a new 
neuron will be included in the architecture to learn it. Among 
all neurons that misclassified the input pattern, the one with 
the largest Tfac will learn it but only if this Tfac value is 

Fig. 2  Devices used to control the environmental variables, (a) CSI-OQ-1000 Thorn lamp (radiation), (b) Industrial fan mf-30p (wind), (c) Haier 
Brezza-12K HVAC system (temperature and humidity), and (d) humidifier Beurer LB-88 ( humidity)
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configured by the researchers using several devices (lamp, 
fan, air conditioner and humidifier) described below.

4.1  Control elements of environmental variables

The Fig.2a shows lamp CSI-OQ-1000 Thorn used to simu-
late different irradiance levels and different elevations and 
solar azimuth. The Fig.2b shows the industrial fans, mf-30 
p, used to generate wind conditions with different speed 
levels. The Fig.2c shows the air conditioner Haier Brezza-
12K installed in the space to cool or heat depending on the 
analyzed scenario for characterize. The Fig.2d shows the 
humidifier Beurer LB-88 employed in the regulation of the 
relative humidity of the air (Table 2 shows the main charac-
teristics of the used devices.)

4.2  Measuring elements of environmental variables

Several devices have been used to measure the variables 
involved in the study of the thermal comfort. Fig.3a shows 
the environment meter PCE-EM882for measuring tempera-
ture and humidity. This device can also measure the light 
and the sound level but these functions were not used in this 
experiment. Fig.3b shows the portable Solarimeter Kimo 
SL 100 used to measure the solar radiant flow received by 
unit area. The Fig.3c shows the portable anemometer PCE-
AM81 used to to measure wind speed. The main character-
istics of these used devices are shown in Table 3.

4.3  Study group

Several tests carried out with the participation of 49 vol-
unteers of different ages and body constitutions were per-
formed in different environmental controlled conditions. 
Each person has been exposed to 15 experiments under 
variations of solar radiation, humidity, temperature, wind, 

4  Experimental study with volunteers

For training and test the different thermal comfort models, 
a set of data is required, and thus a series of experiments 
with human subjects have been carried out. In order to do 
this and with the aim of testing different scenarios, a space 
was prepared in which the environmental variables are 

Table 2  Characteristics of elements used to control the environmental 
variables, (a) irradiance levels control device, (b) wind condition con-
trol device, (c) the temperature sensation control device and (d) the 
humidity condition control device
Characteristic Value
(a)
Dimension (380 x 262 x 350) mm
Consumption 1kW
Power 1kW
Luminous Flux 21500 lm
Color Temp. 2900 K
(b)
Dimension (990 x 940 x 300) mm
Consumption 378 kW
Max. airflow 19.200 m3/h

Diameter 750 mm
Rotation 360◦

(c)
Dimension (855 x 204 x 280) mm
Consumption 1350 W
Cooling 3600 W
Heating 3700 W
Max. airflow 650 m3/h

(d)
Dimension (295 x 195 x 280) mm
Consumption 16-280 W
Capacity 550 ml/h
Deposit 6 l

Fig. 3  Devices used for measuring 
the variables involved in the study: 
(a) environment meter PCE-EM882 
(temperature), (b) solarimeter Kimo SL 
100 (irradiance level), (c) PCE-AM81 
portable anemometer (wind speed)

 

1 3

4678



Efficient thermal comfort estimation employing the C-Mantec constructive neural network model

clothing and activity in which values have been precisely 
monitored used the equipment described previously. Table 4 
shows the range of values of the variables used in the exper-
iments. The Body Mass Index (BMI) has been measured for 
all subjects as it can influence the thermal sensation. Blood 
Pressure (BP) was also measured during the experiments by 
means of the portable monitor “Beurer Medical BC32” but 
was not used for predicting thermal comfort. In the experi-
ments the subjects have to indicate after a minimum of 120 
seconds its comfort sensation in range of continuum values 
according to the ASHRAE scale.

Table 3  Characteristics of the devices used to measure the solar radia-
tion (a), wind speed (b) and temperature and humidity (c)
Characteristic Value
(a)
Dimension (50 x 120 x 33) mm
Weight 150g
working temp. −10◦C+50◦C

Range of measurement 1-1300 W/m2

Frequency of calculation 2/s
Accuracy 5% mm
(b)
Dimension (156 x 60 x 33) mm
Weight 160g
Range of measurement 0.4...30.0 m/s
Resolution 0.1 m/s
Accuracy ±3%( < 20 m/s)

±4%( >20 m/s)
Characteristic Value Characteristic  Value

Humid. Temp.
(c)
Dimension (251 x 

64 x 40) 
mm

Range of 
measurement

25-95 % 
H.r

− 20 
+200 
◦C

Resolution 0.1% ± 3 %
Weight 250g Accuracy ±5% ± 3,5 

%

Table 4  Set of standard and new variables and their range (or category) 
used for the estimation of thermal comfort sensation in the different 
experiments

Variable Range/Categories
Standard Radiation {15, 250, 550, 850}W/m2

Humidity [33 − 45] %
Temperature [18 − 32]oC

Wind [0 − 4]m/s
Clothing [Winter, Spring, Summer]
Activity [None, office type]

New Age [22 − 50] Years
Sex {Male, F emale}
BMI [19 − 34]Kg/m2

Fig. 4  Percentage of variance explained by each of the principal com-
ponents (vertical bars) and the accumulated value (solid line)
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Comfort =[(Y1 ≥ 0) + (Y2 ≥ 0) + (Y3 ≥ 0) + (Y4 ≥ 0) + (Y5 ≥ 0)] ≥ 5/2 � (11)

A Principal Component Analysis (PCA) has been applied 
to the data obtained from the experiments. PCA is a sta-
tistical procedure that uses a linear orthogonal transforma-
tion to convert a set of observations of possibly correlated 
variables into a set of uncorrelated variables called principal 
components. The full set of principal components is as large 
as the original set of variables, but it is commonplace for the 
sum of the variances of the first few (two or three) princi-
pal components to exceed 80% of the total variance of the 
original data.
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705 observations recorded from the experiments as a func-
tion of the two principal components.

5  Results

One of the principal aims of this work is to test the pre-
diction accuracy of a constructive neural network model 
(C-Mantec) regarding the thermal comfort sensation felt 
by subjects in different ambient conditions, and compare it 
to those that can be obtained from the Fanger and COMFA 
models.

In a first analysis we test the accuracy of the models for 
correctly predicting whether a given subject under defined 
ambient conditions feels in comfort or not (i.e., a binary pre-
diction task). As the output of the registered data set (PMV) 
is continuous and the proposed model is binary, the data set 
has been discretized, selecting two different possible out-
puts, comfort (− 0.5 < PMV < 0.5) or not comfort (rest of 
the values) (in relationship to Fig. 1, comfort corresponds 
to the neutral indicated zone, and not comfort to the outside 
region). The whole data set was divided in training and test 
data sets, using 60% and 40% of the total cases. The C-Man-
tec neural network algorithm was run with the following 
standard configuration for the parameters: gfac = 0.05, 
Imax = 1000, ϕ = 2; and two models were considered: one 
with the standard six input variables used by the theoreti-
cal models (Fanger and COMFA) denoted as ‘6 Var’ model, 
and a second one that also includes as input variables Age, 
Sex and the Body Mass Index indicated as ‘9 Var.’ model. 
The results are shown in Table  5 where the first column 
indicates the used method; the second column shows the 
accuracy obtained for which the mean value plus standard 
deviation are indicated ( maximum and minimum values 
are also shown). The last column indicates the number of 
neurons that the C-Mantec model automatically choose, and 
this column also contains three sub-columns with mean plus 
standard deviation, maximum and minimum values. 100 
randomly runs for the indicated data split scheme were per-
formed for each model.

One of the main advantages of using the proposed neu-
ral network model is that, as it usually generates architec-
tures with a low number of neurons, a relatively simple 

Fig. 4 shows the percentage of variance explained by each 
principal component (vertical bar) and the accumulated 
value of the previous components (solid line). The first two 
components explains approximately 60% of the total vari-
ance while using the three first components takes this level 
up to approximately 80%. Because 3-dimensional graph-
ics are not well displayed in paper support document, we 
decided to perform an analyses of the subjects’ data with 
only the 2 first components. Fig. 5 shows all nine experi-
mental variables (subject and environmental conditions 
data), represented in this graph by a vector, which direction 
and length indicate how each variable contributes to the two 
principal components. The first principal component, on the 
horizontal axis, has positive coefficients for the majority of 
the variables, in particular for all of them except BMI and 
Clothing, being the largest coefficients corresponding to 
Humidity and Temperature. However, the second principal 
component, on the vertical axis, has positive coefficients for 
all variables except for the variable sex. The Activity vari-
able, that can be hardly seen in the graph, contributes almost 
nothing to the two main principal components, and this is 
due to the fact that its contribution is related to the third 
component (not shown) that represents approximately 20 % 
of the total variance. The red dots in the figure represent the 

Table 5  Accuracy values for the prediction of Comfort Not Comfort sensation according to the theoretical methods (Fanger and COMFA) and 
proposed neurocomputational method (C-Mantec)
Method Accuracy # of neurons

Mean ± Std Max Min Mean ± Std Max Min
Fanger 0.5287 ± 0.0226 0.5816 0.4645 – – –
COMFA 0.5698 ± 0.0235 0.6277 0.5248 – – –
C-Mantec Model (6 Var) 0.8335 ± 0.0208 0.8723 0.7801 10.89 ± 1.1538 14 9
C-Mantec Model (9 Var) 0.8438 ± 0.0212 0.9113 0.7872 6.17 ± 0.4935 7 5
C-Mantec performance was analyzed using as inputs the usual six variables (6 Var.) and an extended set of variables (9 Var.) (See text for details)

Fig. 5  PCA representation of the data. All eight variables (solid lines) 
and recorded subject data (red dots) are represented in the bi-dimen-
sional space of the first and second Principal Components
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matrix M (learnt during training), the 5 hidden layer neu-
rons (Yi) and the single binary output. Eq.  11 represents 
mathematically the final operation of the shown architec-
ture, with Yi with i = 1, . . . , 5 values representing the out-
put of the equation  10, obtained through a multiplication 
between a matrix of the synaptic weights (M) of the neural 
architecture and a vector of inputs (X1, X2, ..., X9)(the − 1 
term at the last component of the vector corresponds to a 
fixed bias term). The nine Xi inputs represent the ambient 
and subject variables which are Solar Radiation, Humid-
ity, Temperature, Wind, Clothing, Activity, Sex, BMI, and 
Age, respectively. Thus by multiplying the learned synap-
tic weights matrix by the ambient and subject variables, 
the response of 5 intermediate neurons can be obtained, 
and from these the Comfort/Not Comfort condition can be 
computed using Eq. 11. This equation, representing the out-
put operation of the neural network, computes the majority 
function of the activation of the neurons of the hidden layer 
(Yi), such that if three or more of the five factors of the equa-
tion are satisfied (Yi ≤ 0), then the output variable Comfort 
is True (and False in any other case, i.e., two or less number 
of true factors)

In a further analyses aimed to understand the obtained 
model, we computed the probability of correct decision 
when the two first principal components of the inputs are 
considered (see also Fig. 5 and related text in relationship to 
the PCA). Fig. 7 shows this probability of correct decision 
of the designed neural network system generated from the 
analysis of the two first principal components from the raw 
data: first, the principal component has been obtained for 
each input pattern of the data set, to then normalize the space 
of the two principal components between − 1 and 1. From 
these values, the probability of correct decision is computed 
for the whole data set while missing values are computed 
using a linear interpolation of the rest of the values. It is 
possible to identify in the graph, three areas where the pre-
diction accuracy is lower than the average (approximately 
in the range of 0.6). An analysis of the data that corresponds 
to these three cases shows that: the two areas with values 
around (− 0.5, 0.9) and (0.5, 0.9) corresponds to borderline 
situations between Warm/Hot thermal comfort sensation 
with high radiance levels and for the case of subject of both 
sexes. The region around the point (0, − 0.9) corresponds to 

logical equation can be extracted, that in the present case 
corresponds to the comfort equation. Equations 10 and 11 
show the logical function for the comfort / not comfort case 
in which a model with only 5 neurons in the hidden layer 
has been chosen in order to simplify the model as much 
as possible (this model achieves a probability of success 
of 89.57%). Fig.  6 shows such a network comprising the 
9 input neurons (plus the bias term), the synaptic weights 

Table 6  Accuracy values for the prediction of perceived comfort sensation in 5 categories according to Fanger, COMFA models and C-Mantec
Method Accuracy MSE # of neurons

Mean Max Min Mean Max Min Mean Max Min
Fanger 0.420 ± 0.022 0.479 0.369 1.366 ± 0.123 1.675 1.075 – – –
COMFA 0.244 ± 0.017 0.284 0.202 9.934 ± 0.517 10.993 8.621 – – –
C-Mantec Model(6 Var) 0.517 ± 0.037 0.624 0.422 1.123 ± 0.248 1.394 0.892 52.2 ± 2.49 54 48
C-Mantec Model (9 Var) 0.585 ± 0.048 0.678 0.453 0.805 ± 0.171 1.552 0.526 33.66 ± 1.38 38 30
C-Mantec performance was analyzed using as inputs the usual six variables (6 Var.) and an extended set of variables (9 Var.) (See text for details)

Fig. 7  Probability of correct decision of the designed neural network 
system according to the first two Principal components of the input 
patterns

 

Fig. 6  Neural network architecture generated by the C-Mantec algo-
rithm for estimating as a function of the 9 input variable whether a 
human subject is in a Comfort or No Comfort situation
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and for the traditional Fanger and COMFA methods. The 
obtained prediction values are for all four cases worse than 
those previously obtained for the binary case, and the reason 
for this is that correctly predicting the output in 5 categories 
is a more difficult task. It can be seen that also in this case 
the neural network outperforms the other two traditional 
models. The first column in Table 6 shows the method used; 
second and third column show the accuracy and the MSE 
respectively, while the last column indicates the number 
of neurons that the neural network model needs in order to 
carry out the prediction.

a borderline region between Cool/Cold comfort sensation 
for the case of no radiation.

In the previous analysis we consider only the situation of 
Comfort/ Not Comfort, so we decided to extend the study 
of the model prediction for the case of a graded thermal 
sensation, using a discretized range of 5 possible response 
categories: Cold, Cool, Neutral, Warm and Hot (See Fig. 1 
for the range of PMV values and its corresponding PDD 
values).

Table 6 shows the accuracy and the mean square error 
perform in the thermal comfort analysis according to the 5 
possible output states for the neural network model proposed 

Fig. 8  MSE distribution for the four used models for the case of predicting thermal comfort in 5 categories (Cold, Cool, Neutral, Warm and Hot). 
Note that the Y-axis scale is different in each case (see text for more details)
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that further subject or ambient conditions should be taken 
into account in order to increase these levels, and in this 
sense, it is clear that radiation is a key factor to take into 
account in further analysis.
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