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Aggelopoulos, Nikolaos C., Leonardo Franco, and Edmund T.
Rolls. Object perception in natural scenes: encoding by inferior
temporal cortex simultaneously recorded neurons. J Neurophysiol 93:
1342–1357, 2005. First published October 20, 2004; doi:10.1152/
jn.00553.2004. The firing of inferior temporal cortex neurons is tuned
to objects and faces, and in a complex scene, their receptive fields are
reduced to become similar to the size of an object being fixated. These
two properties may underlie how objects in scenes are encoded. An
alternative hypothesis suggests that visual perception requires the
binding of features of the visual target through spike synchrony in a
neuronal assembly. To examine possible contributions of firing syn-
chrony of inferior temporal neurons, we made simultaneous record-
ings of the activity of several neurons while macaques performed a
visual discrimination task. The stimuli were presented in either plain
or complex backgrounds. The encoding of information of neurons was
analyzed using a decoding algorithm. Ninety-four percent to 99% of
the total information was available in the firing rate spike counts, and
the contribution of spike timing calculated as stimulus-dependent
synchronization (SDS) added only 1–6% of information to the total
that was independent of the spike counts in the complex background.
Similar results were obtained in the plain background. The quantita-
tively small contribution of spike timing to the overall information
available in spike patterns suggests that information encoding about
which stimulus was shown by inferior temporal neurons is achieved
mainly by rate coding. Furthermore, it was shown that there was little
redundancy (6%) between the information provided by the spike
counts of the simultaneously recorded neurons, making spike counts
an efficient population code with a high encoding capacity.

I N T R O D U C T I O N

A fundamental issue is how information is encoded by
populations of neurons (Franco et al. 2004; Gawne and Rich-
mond 1993; Rolls and Deco 2002; Shadlen and Movshon 1999;
Singer 1999, 2000; Treves 2000). It has been hypothesized that
synchronization between sets of neurons might be used to
indicate that the features represented by the different neurons
should be grouped or bound together, thus facilitating segmen-
tation of simultaneously present objects from each other and
from the background. The hypothesis is that stimulus-depen-
dent neuronal synchronization (SDS) would be useful, in that
particular sets of features might need to be bound together for
one object, but not for another object (Kayser et al. 2003;
Malsburg 1990; Singer 1999; Singer and Gray 1995). We
specifically address this hypothesis, and more generally, the
relative quantitative contributions of SDS and firing rates to
information encoding, by analyzing the responses of inferior
temporal cortex neurons, where neurons respond to objects and

faces (Desimone et al. 1984; Gross et al. 1972; Perrett et al.
1982, 1992; Rolls 2000; Rolls and Deco 2002; Rolls et al.
1994; Tanaka 1996). We used recently developed information
theoretic methods (Franco et al. 2004; Rolls et al. 1997) to
investigate information encoding when two objects simulta-
neously presented must be discriminated from each other and
segmented from the background. Although SDS has been
found in a number of test situations (Hatsopoulos et al. 1998;
Singer 2000), it is important to know how significant a contri-
bution it makes relative to the spike counts recorded from the
neurons (Dan et al. 1998; Oram et al. 2001; Panzeri et al. 1999;
Rolls et al. 2003b, 2004). Another fundamental issue is the
extent to which neurons encode independent information ver-
sus whether redundancy is present (Gawne and Richmond
1993; Reich et al. 2001; Rolls et al. 2003b, 2004).

We applied information theoretic methods to the responses
of neurons in the inferior temporal visual cortex recorded under
conditions in which feature binding is likely to be needed; that
is, when the monkey had to choose to touch one of two
simultaneously presented objects, with the stimuli presented in
a complex natural background. The investigation is thus di-
rectly relevant to whether SDS contributes to encoding under
natural conditions. Neurons in the inferior temporal visual
cortex respond in some cases to object features or parts and in
other cases to whole objects, provided that the parts are in the
correct spatial configuration (Desimone et al. 1984; Gross et al.
1972; Perrett et al. 1982, 1992; Rolls et al. 1994; Tanaka 1996;
Vogels 1999), and so it is very appropriate to measure whether
SDS contributes to information encoding in the inferior tem-
poral visual cortex when two objects are present in the visual
field and when they must be segmented from the background in
a natural visual scene, which are the conditions in which it has
been postulated that SDS would be useful (Kayser et al. 2003;
Malsburg 1990; Singer 1999; Singer and Gray 1995).

M E T H O D S

Recording techniques

The activity of single neurons was recorded with epoxy-insulated
tungsten microelectrodes in a macaque monkey (Macaca mulatta;
weight, �8 kg) using techniques described previously (Booth and
Rolls 1998). All procedures, including preparative and subsequent
ones, were carried out in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were
licensed under the UK Animals (Scientific Procedures) Act 1986. The
action potentials of single neurons on several microelectrodes were
amplified (Rolls et al. 1979) and viewed on-line during experiments.
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Spikes from single neurons were isolated using Brainwave Enhanced
Discovery data acquisition for off-line data analysis (DataWave),
verifying as a final check that spikes of perfectly isolated neurons had
been recorded by checking that no spikes occurred very close together
in time in the interspike interval histogram. Eye position was moni-
tored and measured with the scleral search coil technique (Judge et al.
1980) using 1-kHz digitization and storage of new values every 20 ms,
with a calibration task performed during each recording session to
provide an accuracy of better than 1°.

Task and stimuli

The monkeys performed a visual search task, in which on any trial,
two images each subtending 9 � 7° were presented simultaneously on
a computer monitor, and the monkey could obtain two to three drops
of fruit juice for every touch of the correct stimulus. On each trial, the
monkey had to search for the position of the reward-related image and
touch the image. A touch to the other stimulus resulted in the delivery
of two to three drops of aversive saline. Different stimuli were used in
different experiments. The monkey learned typically within five trials
which was the reward stimulus of each pair, and data collection from
the set on neurons in any one experiment started only after the
monkey had learned which was the correct and which was the
incorrect stimulus of each pair. This is thus a visual discrimination
task that requires stimulus-reward learning. The monkeys’ perfor-
mance was �95% correct for the first touch. The two stimuli were
placed with their centers 8.75° above and 8.75° below the center of the
screen, with the position of the reward-associated and punishment-
associated image randomized to above or below the screen center on
every trial. The monitor was 23 cm away from the monkey. The whole
screen subtended 55 � 70° at the retina. The grayscale images were
placed on either a blank background of mid-level gray (127/255) or on
a complex natural scene, as shown in Fig. 1. The blank and complex
backgrounds occurred in random order. The stimuli had a resolution
of 64 � 64 pixels, but were prepared in such a way that they could be
presented on either a complex background or a blank background that
had a resolution of 512 � 512 pixels. The stimuli consisted of images
of objects, faces, and geometrical patterns of the type that are effective
in producing responses from inferior temporal cortex neurons (Rolls
and Tovee 1995; Tamura and Tanaka 2001). The complex natural
scene background was uniformly complex and did not allow easy
segmentation in any particular region. If any of the neurons in an
experiment responded to the normal background shown in Fig. 1,
other comparable backgrounds were used, and in no experiment were
different results found for different backgrounds.

In investigation 1, there were two stimulus pairs, and both stimuli
in one simultaneously shown pair were selected to be effective for one
or more of the neurons, and in the other pair, were selected to be
ineffective for one or more of the neurons. As stated above, in each
pair of images, one was rewarded, and the other was associated with
punishment. It was possible to measure the information provided by
the neurons that the image was the first pair of stimuli (the effective
pair) versus the second pair of stimuli (the ineffective pair). This
information was being measured in a task in which the monkey had to
segment the two stimuli from their background and from each other,
identify each stimulus, and decide which stimulus to touch. The
hypothesis being tested in investigation 1 was that SDS might be
present when one pair of the objects was being processed and might
not be present, or might be present between different neuron pairs,
when the second pair of objects was being presented; furthermore,
how the information gained in this way compared with the informa-
tion gained from the firing rates, which for some neurons were high to
both stimuli of one simultaneously presented pair, but not the other
simultaneously presented pair. (This SDS might, if present, be useful
to the monkey in discriminating between the pair of stimuli presented
simultaneously and might be present when the monkey was process-

ing overtly or covertly one member of the pair of simultaneously
presented stimuli.)

In investigation 2, there was one pair of stimuli, and one stimulus
was selected to be effective for one or more of the neurons, and the
other stimulus was selected to be ineffective for one or more of the
neurons. In different experiments, either the effective stimulus, or the
ineffective stimulus, was rewarded. [As shown previously, whether a
stimulus was associated or not with reward in this and similar tasks
does not influence the firing rate response of inferior temporal cortex
neurons (Rolls et al. 1977, 2003a). In particular, Rolls et al.(2003a)
showed that, provided that the monkey fixated a stimulus, the firing of
inferior temporal cortex neurons was unaffected by whether it is a
target being searched for or not, and in this sense, being attended to or
not.] It was then possible to measure the information provided by the
neurons that the stimulus was the effective stimulus at which the
monkey was looking, or the ineffective stimulus. This was achieved
by selecting 100-ms epochs of the firing rate in which the monkey’s
fovea was held still within the boundary of one or other of the stimuli
from within a trial. This experiment thus enabled measurement of the
firing rate of the neurons while the eyes moved from one stimulus to
another dynamically during a trial in, for example, a complex natural
scene, and how the information from the population was provided
while the monkey was segmenting each stimulus from the background
and identifying each stimulus, prior to deciding which stimulus to
touch. An important part of the design was that, on every trial, the
position of the objects was randomized for the upper or lower
position, and the monkey had to find the correct position of the object
that led to a juice reward when touched. The monkey normally fixated
on the object he was about to touch, but before this, typically looked
at both objects to determine where the object to touch was located (as
is clearly shown in Fig. 7). On every trial in both investigations, the
monkey took a decision in the first 300–400 ms about where to touch.
Thus on every trial in this period, the feature binding and segmenta-

FIG. 1. Visual discrimination task. Two objects were presented on a screen
subtending 70 � 55° in either a blank background (left) or a complex natural
scene (right). If the monkey touched 1 of the objects (S�), he obtained 2–3
drops of juice reward. If he touched the other object (the S�), he obtained
saline. Positions of each object were randomized to the position above or
below the screen center on each trial.
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tion required in natural vision conditions is taking place, and this is the
period in which we measured the information available from spike
counts and SDS.

Thus vision for two objects in a complex scene is taking place in
these experiments, and the design was useful for investigating the
neuronal encoding required to implement visual object identification
and selection.

Neurophysiological procedure

No more than six single neuron microelectrodes (tungsten insulated
with epoxylite, 2–5 MOhm, FHC, Bowdinham, MA) were simulta-
neously lowered into the cortex in the superior temporal sulcus (STS)
and the inferior temporal cortex (labeled T in Fig. 9 and defined in this
study as the cortex forming the gyrus of the temporal lobe but lateral
to the perirhinal cortex). The responses of isolated neurons were
measured to a wide variety of small stimuli on the touchscreen. The
isolation of neurons with these relatively high-impedance single
neuron recording microelectrodes with tips of a few microns was
good, in that these microelectrodes typically record from one and
sometimes from two neurons, with signal to noise ratios that were
typically �3:1. Indeed, for the majority of the recordings (78.2% of
the 142 pairs of simultaneously recorded neurons in investigation 1
and for 74.7% of the 95 pairs in investigation 2), the neurons were
obtained from different microelectrodes. The EPS system (Alpha-
Omega) was used to move the electrodes independently until �6
neurons could be recorded at the same time. Stimuli used included
faces, animals, and inanimate objects (for examples, see Rolls and
Tovee 1995). For each experiment it was known that one to two of the
typically three to five neurons did have different firing rates to the
stimuli (quite typical for inferior temporal cortex neurons, which are
likely to respond at �50 spikes/s for the most effective stimulus in a
set), and these one to two neurons, and the other neurons, could have
had stimulus-dependent correlations (although this was not evaluated
at the time of the recording). Thus the sets of simultaneously recorded
neurons were not especially selected to have rate versus synchrony-
related information. Indeed, in both investigations 1 and 2, some of
the simultaneously recorded neurons did not have significant firing
rate responses or significantly different firing rate responses to the two
stimuli, so there was plenty of opportunity for neurons with no rate
information to contribute to the information available. It was also a
condition for running the experiment that the neurons did not respond
to the background. Most anterior inferior temporal cortex neurons at
coordinates that were typically 2–7 mm posterior to the sphenoid
reference (see Fig. 9) did not respond to the background image, which
for all experiments was as shown in Fig. 1.

Neuronal responses were recorded during a sequence of 160–240
presentations (trials). The targets occurred randomly in one of two
positions on the screen, either 8.75° above or 8.75° below the center
of the screen. This was intended to minimize search time so that the
main task would be one of segregating the two stimuli. Each trial was
preceded by a 0.5 s tone cue to enable the monkey to look toward the
center of the screen before the visual display appeared. The monkey
was allowed to touch up to four times to obtain separate aliquots of
fruit juice reward before the next trial. Trials in which the target object
appeared in a blank screen or a natural scene were run in random
order.

Recording sites

X-rays were taken at the end of each recording session to determine
the position of the microelectrode, relative to bony landmarks and the
permanently implanted reference electrodes. At the end of the final
tracks, microlesions were made in the areas of cortex in which
recordings were made to mark typical recording sites (Feigenbaum
and Rolls 1991). Reconstructions of the tracks were made in serial
50-�m histological sections using the positions of the microlesions,

the reference electrodes in the histology, the corresponding X-ray
coordinates, and the X-ray coordinates of all recorded cells to deter-
mine the locations of all the cells.

Data analysis

The aim of the data analysis was to obtain measures of the
information in the firing of the neurons and to separate the information
contained in the firing rates to that contained in the relative timing of
the spikes across neurons. We applied recently developed information
theoretic techniques to quantify these contributions (rate and the
relative timing of spikes from different cells) that use a decoding
method that can operate with large numbers of neurons and spikes
from each neuron (Franco et al. 2004; Rolls et al. 1997). Spikes over
the period starting 100 ms after stimulus onset (the typical latency for
the neuronal responses) were included in the analyses, with the epochs
described in the description of the two investigations. Data collected
were analyzed separately depending on whether the stimuli appeared
against the plain and complex backgrounds.

Information measurement algorithm

The direct approach to compute the information about a set of
stimuli conveyed by the responses of a set of neurons is to apply the
Shannon mutual information measure (Cover and Thomas 1991;
Shannon 1948)

I�s, r�� � �
s�S

�
r�

P�s, r�� log2

P�s, r��

P�s�P�r��
(1)

where P(s, r�) is a probability table embodying a relationship between
the variable s (here, the stimulus) and r� (a vector where each element
is the firing rate of 1 neuron).

However, because the probability table of the relation between the
neuronal responses and the stimuli, P(s, r�), is so large [given that there
may be many stimuli and that the response space is very large,
growing exponentially with the number of neurons for the rate
information (Panzeri et al. 1999; Treves and Panzeri 1995), and even
more if relative spike timing is considered], in practice, it is difficult
to obtain a sufficient number of trials for every stimulus to generate
the probability table accurately, at least with data from mammals, in
which the experiment cannot usually be continued for many hours of
recording from a whole population of cells. To circumvent this
undersampling problem, Rolls et al. (1997) developed a decoding
procedure, in which an estimate (or guess) of which stimulus (called
s�) was shown on a given trial is made from a comparison of the
neuronal responses on that trial with the responses made to the whole
set of stimuli on other trials. One then obtains a conjoint probability
table P(s, s�), and the mutual information Ip based on probability
estimation (PE) decoding between the estimated stimulus s� and the
actual stimulus s that was shown can be measured

Ip � �
s�S

�
s��S

P�s, s�� log2

P�s, s��

P�s�P�s��
� (2)

� �
s�S

P�s��
s��S

P�s��s� log2

P�s��s�
P�s��

(3)

These measurements are in the low-dimensional space of the
number of stimuli, and therefore the number of trials of data needed
for each stimulus is of the order of the number of stimuli, which is
feasible in experiments. In practice, it is found that for accurate
information estimates with the decoding approach, the number of
trials for each stimulus should be at least twice the number of stimuli
(with a minimum of 16 trials for each stimulus) (Franco et al. 2004).
The advantage of the decoding method (Franco et al. 2004) used here
over earlier methods that directly compute the Shannon information
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(Hatsopoulos et al. 1998; Oram et al. 2001; Panzeri et al. 1999; Rolls
et al. 2003b, 2004), is that the decoding method works successfully
with large numbers of simultaneously recorded neurons and with large
numbers of spikes from each neuron. The direct methods (Panzeri et
al. 1999; Rolls et al. 2003b, 2004), even with few stimuli, need many
more trials than are available here if the information is to be measured
from more than very short epochs consisting essentially of one spike
from each neuron, because the probability space between each stim-
ulus and the response measures for every neuron becomes so large
(larger than the number of stimuli) (Rolls et al. 1997; Treves and
Panzeri 1995). It is for this reason that we used the decoding approach
described here, knowing also that it measures information that is close
to what could be measured directly, as shown by Franco et al. (2004).

The decoding procedure essentially compares the vector of re-
sponses on a single trial with the average response vectors obtained
previously to each stimulus. This decoding can be as simple as

measuring the correlation, or dot (inner) product, between the test trial
vector of responses and the response vectors to each of the stimuli. In
this paper, we used a Bayesian procedure based on a Gaussian
assumption of the spike probability distributions as described in detail
by Rolls et al. (1997, 2003b). The new step introduced by Rolls et al.
(2004) and used in this paper is to introduce into the Table Data (s, r�)
new columns containing a measure of the cross-correlation (averaged
across trials) for some pairs of cells (see example in Fig. 2C). The
decoding procedure can take account of any cross-correlations be-
tween pairs of cells and thus measure any contributions to the
information from the population of cells that arise from cross-corre-
lations between the neuronal responses. If these cross-correlations are
stimulus-dependent, their positive contribution to the information
encoded can be measured. We note that the information measured
with any decoding procedure provides a lower bound on the true
information that might be measured directly but that the decoding

FIG. 2. Example of a set of neurons with cross-
correlations that are not stimulus-dependent recorded in
investigation 1 in a blank background. A and B: cross-
correlogram for a pair of neurons from experiment
bj287 for 2 different stimulus pairs (1 and 2). Peak in
the cross-correlogram located at lag 0 is present in both
conditions and so is not stimulus-dependent. Number of
spikes from each neuron used to construct the cross-
correlograms is shown. Dashed horizontal lines show
the 95% CI of the cross-correlation estimate. C: left:
average firing rate (or equivalently spike count) re-
sponses of each of 3 cells (labeled as Rate Cell 1,2,3) to
a set of 2 stimuli, St 1 and St 2. Right: measure of the
cross-correlation (averaged across trials) for some pairs
of cells (labeled as Corrln Cells 1–2 etc.). Variability of
responses is indicated by the horizontal dashed line
showing the SD of the mean calculated across the 40
trials available. From the responses on a single trial,
probability P(s�) obtained by decoding the stimulus s
was computed, based on values of both rates and
cross-correlations. D: total information available from
both rate and correlations, rate information (obtained
from the number of spikes), information from any
stimulus-dependent cross-correlations, and rate covaria-
tion redundancy between the neurons, is shown. Anal-
ysis epoch was 400 ms (experiment bj287).
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procedure has been validated and shown to be efficient by Franco et
al. (2004).

Further details of the decoding procedures (which have been
validated by Franco et al. 2004) are as follows. The full probability
table estimator (PE) algorithm uses a Bayesian approach to extract
P(s��r�), for every single trial from an estimate of the probability P(r��s�)
of a stimulus-response pair made from all the other trials (as shown in
Bayes’ rule—Eq. 4) in a cross-validation procedure

P�s��r�� �
P�r��s��P�s��

P�r��
(4)

where P(r�) (the probability for the vector r� containing the firing rate
of each neuron) is obtained as

P�r�� � �
s�

P�r��s��P�s�� (5)

This requires knowledge of the response probabilities P(r��s�), which
can be estimated for this purpose from P(r�, s�), which is equal to
P�s���cP�rc�s��, where rc is the firing rate of cell c. We note that
P(rc�s�) is derived from the responses of cell c from all of the trials
except for the current trial, for which the probability estimate is being
made. The probabilities P(r�, s�) are fitted with a Gaussian distribution
whose amplitude at rc gives P(rc�s�). By summing over different test
trial responses to the same stimulus s, we can extract the probability,
that by presenting stimulus s, the neuronal response is interpreted as
having been elicited by stimulus s�

P�s��s� � �
r� test

P�s��r��P�r��s� (6)

After the decoding procedure, the estimated relative probabilities
(normalized to 1) were averaged over all “test” trials for all stimuli to
generate a (regularized) table PN

R�s,s�� describing the relative proba-
bility of each pair of actual stimulus s and posited stimulus s�
(computed with N trials). From this probability table, the mutual
information measure Ip was calculated as described in Eq. 3. We note
that any decoding procedure can be used in conjunction with infor-
mation estimates both from the full probability table (to produce Ip)
and from the most likely estimated stimulus for each trial in a
frequency table PN

F �s,s� (to produce Iml).
Because the probability tables from which the information is

calculated may be unregularized with a small number of trials, a bias
correction procedure to correct for the undersampling is applied
(Panzeri and Treves 1996; Rolls et al. 1997). The correction term, C1,

to be used takes the form

C1 �
1

2Nlog�2�
�

s

P�s��
s�

�QN
R�s,s��

PN
R�s,s��

�
PN

R�s,s��

P�s� �
�

1

2Nlog�2�
�
s�

�QN
R�s��

PN
R�s��

� PR
N�s��� (7)

where QN
R�s,s�� is the table obtained analogously to PN

R�s,s��, but
averaging over all test trials P2(s��r) instead of P(s��r), and where care
has to be taken in performing the sums over s�, to avoid including
stimuli posited to have zero probability. For a derivation of this and
other correction terms, and for that required to correct I(s, sP), we refer
to Panzeri and Treves (1996). In practice, the bias correction that is
needed with information estimates using the decoding procedures
described here and by Rolls et al. (1997) is small, typically 	10% of
the uncorrected estimate of the information, provided that the number
of trials for each stimulus is in the order of twice the number of stimuli
(with a minimum of 16 trials for each stimulus).

We note that if Bayesian decoding is used, an assumption is that the
joint probability distribution of the spike count responses of the cells
is approximated by the product of the separate probability distribu-

tions for each cell. This approximation holds if the distributions are
independent and may be less exact if there are correlations between
the neurons’ responses. In practice, this is not a limitation of the
method in that the level of correlations found in practice produce only
a relatively small distortion of the probability values used to compute
the information, partly because these probability values are normal-
ized before being used, reducing the distortion especially when
relatively few (e.g., 40) trials of data per stimulus are used.

The data from the neuronal activity used to compute the joint
probability distribution PN

R�s,s�� was as follows. From the response of
each cell c to each stimulus, we extracted a single mean spike count
in a fixed time window (or firing rate, rc, expressed in spikes per
second).

The measure of the cross-correlation that was introduced into the
Table Data (s, r�) on each trial was the value of the Pearson cross-
correlation coefficient calculated for that trial at the appropriate lag for
cell pairs that had significant cross-correlations. This value of this
Pearson cross-correlation coefficient for a single trial was calculated
from pairs of spike trains on a single trial by forming for each cell a
vector of 0s and 1s, the 1s representing the time of occurrence of
spikes with a temporal resolution of 1 ms. Resulting values within the
range �1 to 1 were shifted to obtained positive values. An advantage
of the Pearson cross-correlation coefficient is that it measures the
amount of synchronization between pairs of neurons independently of
the firing rate of the neurons. The lag at which the cross-correlation
measure was computed for every single trial, and whether there was
a significant cross-correlation between neuron pairs, was identified
from the location of the peak in the cross-correlogram taken across all
trials. (In all 28 significant cross-correlations of the 284 tested in
investigation 1, all 28 were located at a lag of 0 ms, and the same was
the case in investigation 2.) The cross-correlogram was calculated by,
for every spike that occurred in one neuron, incrementing the bins of
a histogram that corresponded to the lag times of each of the spikes
that occurred for the other neuron, with a precision of 
1 ms. (This
3-ms bin width was sufficient to encompass the width of the cross-
correlations found in the neurons described in this paper. Furthermore,
we confirmed that extending the bin width to 7 ms did not increase the
SDS-related information.) The raw cross-correlogram was corrected
by subtracting the “shift predictor” cross-correlogram (which was
produced by random re-pairings of the trials) to produce the corrected
cross-correlogram. It was normalized to be in the range 
1. When
calculating the stimulus-dependent cross-correlation information, we
followed the procedure described by Franco et al. (2004) of including
subtraction of any chance contribution to the stimulus-dependent
correlation information using trial shuffling within a stimulus. The
values of the correlations between the spike timings measured on
every trial were shown (Franco et al. 2004; Hatsopoulos et al. 1998)
to follow an approximately Poisson distribution, as did the firing rate
counts, and the decoding algorithm used here has been shown to
operate efficiently with such data (Franco et al. 2004). The decoding
was performed by a truncated Gaussian fit to the data values obtained,
because this has one more parameter than a Poisson fit and so can be
more accurate, especially because the firing rate counts are distributed
with slightly more variability than would be predicted from a Poisson
distribution (see paragraph on the Fano factor in RESULTS). Full details
and validation are provided by Franco et al. (2004).

We estimated the redundancy in the rate information by shuffling
the order of the trials within a stimulus and comparing this to the
measured rate information. We use the term “rate covariation redun-
dancy” for this in this paper, because the term captures the extent to
which the firing rate responses of the neurons covary within a trial and
interact with the similarity of the average response profiles of the
neurons to the set of stimuli (see Franco et al. 2004 for details of this
term, also referred to as the stimulus-independent rate information in
Oram et al. 1998, and Rolls et al. (2003b, 2004) for further discussion
of the underlying concepts).
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R E S U L T S

Investigation 1

It was possible to complete 31 experiments in which with 2–4
electrodes, 2–5 neurons were simultaneously recorded in the
inferior temporal visual cortex for �40 trials while the monkey
performed the visual discrimination task, touching the screen on
every trial to obtain rewards if the correct image of the two being
shown on the screen was touched. The total number of neurons in
the sample was 109. All neurons recorded in any one experiment
that had significant differences of firing rates to the stimuli, or
significant cross-correlations, were included in the analysis. In this
experiment, there were two stimulus pairs, as shown in Fig. 1, and
both stimuli in one simultaneously shown pair were selected to be
effective for one or more of the neurons, and in the other pair,
were selected to be ineffective for the one or more of the neurons.
It is emphasized that, on each trial, the monkey had to discrimi-
nate between the two stimuli being shown, in that a touch to one
was rewarded and to the other was punished, so that the test
conditions are directly relevant to testing the hypotheses in the
Introduction that binding between features of an object and to
perform segmentation from the background might be imple-

mented by SDS. The trials with a plain or complex background
(see Fig. 1) were shown in random sequence.

The results for an experiment (bj287) in which cross-corre-
lograms were present between some of the neuron pairs, but
were not stimulus-selective, are shown in Fig. 2. Figure 2, A
and B, shows the cross-correlations for one pair of neurons in
the blank background. The cross-correlations were measured
over an epoch of 400 ms starting 100 ms after stimulus onset.
The cross-correlation was located at 0 ms and was significant.
(The dashed horizontal lines show the 95% CI of the cross-
correlation estimate.) Figure 2C shows the average firing rates
of each of the neurons to each of the stimuli, and at the right
of the diagram, the average cross-correlation values from the
three pairs of neurons with the highest values. It is clear that at
least some of the neurons had different firing rates to the two
stimuli. The decoding algorithm (Bayesian full probability
estimation) was applied to the data to estimate for each trial
which stimulus (s�) was shown by comparison with the data
from all the other trials (which have values close to those
shown in Fig. 2C, which is the average response over all trials).
The results of calculating the information I(s, s�) in a 400-ms
epoch from the spike counts only was 0.41 bits, from the

TABLE 1. Experiment 1: information available in 400 ms about which stimulus was shown in experiment 1

Rate Info
Stimulus-dep

Correlation Info

Rate
Covariation
Redundancy Total Info

Rate
Info

Stimulus-dep
Correlation Info

Rate
Covariation
Redundancy

Total
Info

Plain Plain Plain Plain Complex Complex Complex Complex

bj272 0.22 0.02 0.03 0.22 0.03 0.00 0.00 0.03
bj274b 0.11 0.00 �0.02 0.11 0.23 0.00 �0.04 0.23
bj274c 0.17 0.00 0.01 0.17 0.11 0.00 0.00 0.11
bj275a 0.18 0.00 �0.02 0.18 0.18 0.00 �0.01 0.18
bj275b 0.60 0.04 0.00 0.60 0.30 0.04 �0.02 0.30
bj277 0.86 0.00 �0.07 0.86 0.74 0.03 �0.11 0.74
bj279 0.42 0.02 �0.02 0.44 0.16 0.00 �0.02 0.16
bj280a1 0.84 0.00 �0.04 0.84 0.69 0.03 0.00 0.69
bj280a2 0.55 0.01 0.05 0.56 0.43 0.01 �0.05 0.44
bj280b 0.44 0.01 0.00 0.44 0.29 0.00 0.04 0.29
bj283 0.07 0.03 0.01 0.13 0.21 0.02 0.01 0.23
bj284 0.08 0.00 0.00 0.08 0.01 0.00 0.00 0.01
bj285a 0.73 0.03 �0.01 0.73 0.76 0.00 �0.04 0.76
bj285b 0.56 0.06 �0.05 0.56 0.26 0.00 0.00 0.26
bj287 0.41 0.04 0.00 0.41 0.21 0.00 �0.05 0.22
bj288 0.59 0.01 0.03 0.59 0.41 0.01 �0.06 0.41
bj289a 0.48 0.04 �0.08 0.52 0.05 0.00 0.01 0.05
bj289b 0.28 0.00 �0.06 0.28 0.01 0.00 0.00 0.01
bj292 0.22 0.00 0.01 0.22 0.08 0.00 0.00 0.08
bj293a 0.66 0.00 0.02 0.66 0.51 0.00 �0.04 0.51
bj293b 0.76 0.00 �0.01 0.77 0.40 0.03 �0.05 0.43
bj297 0.61 0.00 0.01 0.61 0.38 0.00 0.02 0.38
bj298a 0.56 0.04 �0.06 0.58 0.12 0.04 0.02 0.13
bj298b 0.42 0.05 0.01 0.42 0.01 0.00 0.00 0.01
bj320 0.65 0.01 0.00 0.65 0.59 0.02 �0.06 0.59
bj365a 0.61 0.05 �0.04 0.61 0.02 0.00 0.00 0.02
bj365b 0.65 0.03 �0.09 0.66 0.34 0.01 0.00 0.35
bj372 0.38 0.00 �0.03 0.38 0.60 0.02 �0.07 0.60
bj387a 0.16 0.00 �0.02 0.16 0.12 0.00 0.00 0.12
bj390 0.41 0.05 �0.02 0.41 0.09 0.01 �0.01 0.11
bj397 0.26 0.05 0.02 0.29 0.08 0.02 �0.02 0.10
Averages 0.449 0.018 �0.014 0.455 0.272 0.009 �0.018 0.275
Percentage of total 98.7% 4.0% �3.1% 100% 98.9% 3.3% �6.5% 100%

The contributions in bits of different components of the information extracted using a decoding algorithm. The information available in a 400-ms time window
starting 100 ms after the stimulus onset for the cases of complex and plain backgrounds from 31 sets of 2–4 simultaneously recorded inferior temporal cortex
neurons when presented with a pair of stimuli.
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cross-correlations only was 0.04 bits, and with the total infor-
mation using both spike counts and cross-correlation informa-
tion was 0.41 bits, as shown in Fig. 2D and Table 1. Thus, in
the blank background, most of the information was available in
the spike counts, with much less in the cross-correlations. In
addition, Fig. 2D shows that the rate covariation redundancy in
the spike counts across neurons (related to any similarity of the
firing rate tuning profiles of the set of neurons to the different
stimuli and the trial-by-trial covariation of the rates of the
different neurons) was very low (0.0 bits). (Negative informa-
tion in the rate covariation column of Tables 1 and 2 indicates
redundancy, that is, that there is less information with simul-
taneously recorded neurons because of covariations of the
firing rates of the different neurons on a trial by trial basis.)

The corresponding data from the same experiment (bj287)
performed in the complex natural background are shown in
Fig. 3. The cross-correlations between the same pair of neurons
were similar in the complex (Fig. 3, A and B) and plain (Fig. 2,
A and B) backgrounds, and the firing rates were also compa-
rable (Fig. 3C vs. 2C) in the two backgrounds. The results of
calculating the information I(s, s�) in the complex background
from the spike counts only was 0.21 bits, from the cross-

correlations only was 0.0 bits, and with the total information
using both spike counts and cross-correlation information was
0.21 bits, as shown in Fig. 3D and Table 2. Thus also in the
complex background, most of the information was available in
the spike counts, with much less in the cross-correlations. In
addition, Fig. 3D shows that the rate covariation redundancy
was higher (�0.05 bits). Comparison of the analyses summa-
rized in Figs. 2 and 3 show that, in this experiment, less
information was available in the complex background, and that
this was due to the greater variability of the neuronal response
(in particular in this experiment of cell 2) in the complex
background than in the plain background.

The results of comparable analyses on a set of neurons (in
experiment bj293b) with clear stimulus-dependent cross-cor-
relations between some of the neuron pairs are shown in Figs.
4 and 5. Figure 4, A and B, shows that the cross-correlation
between cells 1 and 2 was not very significant in the blank
background but may have been greater for stimulus pair 1 than
stimulus pair 2. The firing rates of the cells to the different
stimuli were clearly different (Fig. 4C). The results of calcu-
lating the information I(s, s�) in a 400-ms epoch in the plain
background from the spike counts only was 0.76 bits, from the

TABLE 2. Experiment 1: information available in 100 ms about which stimulus was shown in experiment 1

Rate Info
Stimulus-dep

Correlation Info

Rate
Covariation
Redundancy Total Info

Rate
Info

Stimulus-dep
Correlation Info

Rate
Covariation
Redundancy

Total
Info

Plain Plain Plain Plain Complex Complex Complex Complex

bj272 0.07 0.01 0.00 0.07 0.00 0.00 0.00 0.00
bj274b 0.01 0.00 0.00 0.01 0.13 0.02 �0.02 0.13
bj274c 0.14 0.01 0.00 0.14 0.02 0.00 �0.01 0.02
bj275a 0.06 0.00 �0.01 0.06 0.17 0.01 �0.01 0.17
bj275b 0.26 0.02 0.00 0.28 0.15 0.01 0.00 0.15
bj277 0.51 0.06 0.00 0.52 0.23 0.00 �0.07 0.23
bj279 0.25 0.02 0.04 0.27 0.03 0.01 �0.01 0.03
bj280a1 0.39 0.00 0.04 0.39 0.45 0.00 0.03 0.45
bj280a2 0.10 0.00 �0.03 0.10 0.06 0.00 �0.01 0.06
bj280b 0.20 0.00 �0.04 0.20 0.27 0.00 �0.03 0.27
bj283 0.02 0.01 0.00 0.04 0.02 0.01 0.00 0.02
bj284 0.02 0.00 0.00 0.02 0.04 0.01 �0.02 0.05
bj285a 0.28 0.00 0.01 0.28 0.38 0.00 �0.01 0.38
bj285b 0.17 0.04 0.00 0.20 0.02 0.01 0.00 0.03
bj287 0.09 0.00 �0.01 0.09 0.06 0.00 0.01 0.06
bj288 0.40 0.00 0.03 0.40 0.09 0.00 0.02 0.09
bj289a 0.13 0.01 0.02 0.13 0.01 0.00 0.00 0.01
bj289b 0.05 0.00 0.00 0.05 0.01 0.02 0.00 0.03
bj292 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00
bj293a 0.17 0.00 �0.05 0.17 0.12 0.00 �0.01 0.12
bj293b 0.12 0.00 �0.01 0.12 0.06 0.00 0.01 0.06
bj297 0.32 0.02 0.03 0.33 0.10 0.00 0.01 0.10
bj298a 0.12 0.00 0.00 0.12 0.00 0.00 0.00 0.00
bj298b 0.15 0.00 0.04 0.15 0.00 0.00 0.00 0.00
bj320 0.17 0.00 0.00 0.17 0.26 0.04 �0.04 0.26
bj365a 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
bj365b 0.28 0.04 �0.01 0.28 0.09 0.00 �0.03 0.09
bj372 0.33 0.00 0.00 0.33 0.27 0.00 �0.01 0.27
bj387a 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
bj390 0.16 0.01 0.01 0.16 0.01 0.00 0.00 0.01
bj397 0.15 0.01 0.00 0.16 0.04 0.00 0.00 0.04
Averages 0.166 0.008 0.001 0.170 0.099 0.005 �0.006 0.100
Percentage of total 97.6% 4.7% 0.6% 100% 99.0% 5.0% �6% 100%

The contributions in bits of different components of the information extracted using a decoding algorithm. The information available in a 100-ms time window
starting 100 ms after the stimulus onset for the cases of complex and plain backgrounds from 31 sets of 2–4 simultaneously recorded inferior temporal cortex
neurons when presented with a pair of stimuli.

1348 N. C. AGGELOPOULOS, L. FRANCO, AND E. T. ROLLS

J Neurophysiol • VOL 93 • MARCH 2005 • www.jn.org

 on M
arch 1, 2005 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


cross-correlations only was 0.0 bits, and with the total infor-
mation using both spike counts and cross-correlation informa-
tion was 0.77 bits (Fig. 4D).

Figure 5, A and B, shows that the cross-correlation in the same
experiment between cells 1 and 2 was strongly stimulus-depen-
dent, with a high and very significant cross-correlation only for
stimulus pair 1. The firing rates of the cells to the different stimuli
were clearly different (Fig. 5C). The results of calculating the
information I(s, s�) in the complex background from the spike
counts only was 0.40 bits, from the cross-correlations only was
0.03 bits, and with the total information using both spike counts
and cross-correlation information was 0.43 bits (Fig. 5D). It is of
interest that even though this set of neurons showed clear stimu-
lus-dependent cross-correlations between some of its members,
the amount of information they provided was quite low (0.03 bits)
relative to that provided by the spike counts (0.41 bits).

Table 1 and Fig. 6 (top) summarize the data across all exper-
iments in investigation 1 with a 400-ms analysis epoch, shown

separately for plain and complex backgrounds. First, it is clear
that, on average across the 31 experiments, the information related
to the firing rate (0.449 bits) was much greater than the stimulus-
dependent cross-correlation information (0.018 bits; for the plain
background). This difference is also evident in the complex
background (average rate information across experiments �
0.272 bits and average stimulus-dependent cross-correlation in-
formation � 0.009 bits). Second, in the plain background, the rate
covariation redundancy was quite low (�0.014 bits compared
with the rate information of 0.449 bits). In the complex back-
ground, the average rate covariation redundancy was a little
higher (�0.018 bits compared with the rate information of 0.272
bits). This reflects greater redundancy in the complex background
(6.6 vs. 3.1% in the plain background), which could arise not only
because the tuning profiles to the stimuli become more similar in
the complex background, but also perhaps because of any minor
common response of the neurons to the background stimulus
itself. Third, we note that the rate information shown in Table 1 in

FIG. 3. Example of a set of neurons recorded with
cross-correlations that are not stimulus-dependent in in-
vestigation 1 in a complex background. Conventions as in
Fig. 2 (experiment bj287).
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the first two columns does include the rate covariation redundancy
that arises from the interaction between the within trial covariation
of the response rates of the neurons and the correlations of their
response tuning profiles (see Rolls et al. 2003b, 2004). Fourth, a
further contribution to the generally lower information in the
complex than the plain background (compare Tables 2 and 1) was
the greater variability of the neuronal response in the complex
background than in the plain background. To quantify this, we
calculated the Fano factors (defined as the variance/mean rate,
although calculated here from the slope of the variance with
respect to the mean for all the cells to enable the especially
variable high rates in the neuronal data to be taken into account,
as they are relevant to the information calculation), and found an
average in the plain background of 1.56 
 0.04 (SE) and in the
complex background of 1.72 
 0.05 (in a 400-ms epoch; P 	
0.001). (The corresponding Fano factors for the cross-correlation
measure were 0.97 
 0.07 and 1.02 
 0.08.) The fact that there

was more variability (and less information) in the complex back-
ground is attributable to the low discriminability of the objects
against the complex background (see Fig. 1). Indeed, there was
behavioral evidence for the latter, in that the mean latency for the
first correct touch of a stimulus was 615 ms with a blank
background and 784 ms in the complex background (P 	 0.02,
t-test).

Table 2 and Fig. 6 (bottom) summarize the results for the
same series of experiments, but with an analysis epoch of 100
ms. The same conclusions as those evident from Table 1 with
the 400-ms epoch can be made. In addition, comparison of
Table 2 with Table 1 shows that, on average, in a 100-ms
epoch, 37.0% of the rate information relative to that in a
400-ms epoch was obtained (in a plain background). The
corresponding figure for the complex background is 36.4%.
Thus much of the information is available in quite short
analysis periods.

FIG. 4. Example of a set of neurons recorded with
cross-correlations that are stimulus-dependent in investi-
gation 1 in a plain background. Conventions as in Fig. 2
(experiment bj293b).
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We did apply the method used in investigation 2 of measur-
ing the information about which image was being viewed in a
simultaneously presented pair of images by taking data epochs
only when the monkey was looking at one or the other of the
images. Very little information was available about which of a
particular pair of images was being viewed, consistent with the
fact that, in investigation 1, at least some of the simultaneously
recorded neurons were preselected to have similar firing rates
to each member of a simultaneously presented pair. This
finding is consistent with the overall result found for inferior
temporal cortex neurons based on the results of both investi-
gation 1 and investigation 2, that the information is available
mainly in the rates and much less in any SDS that may be
present. Indeed, we show in investigation 2 that there is
information about which of two members of a simultaneously
presented pair of images in a complex natural scene is being

viewed, provided that there are firing rate differences to the
two images.

Investigation 2

It was possible to complete 30 experiments in which with
2–4 electrodes, 2–5 neurons were simultaneously recorded for
�80 trials while the monkey performed the visual discrimina-
tion task, touching the screen on every trial to obtain rewards
if the correct image of the two being shown on the screen was
touched. The total number of neurons in the sample was 89. In
investigation 2, there was one pair of stimuli, and one stimulus
was selected to be effective for one or more of the neurons, and
the other stimulus was selected to be ineffective for one or
more of the neurons. In different experiments, either the
effective stimulus, or the ineffective stimulus, was rewarded.

FIG. 5. Example of a set of neurons recorded with
cross-correlations that are stimulus-dependent in investi-
gation 1 in a complex background. Conventions as in Fig.
2. A: peak in the cross-correlogram located at lag 0 is
clearly present for the case of 1 of the pairs of stimuli (1).
There is no cross-correlation at this lag for stimulus pair 2.
No clear cross-correlations were present for the same
neuron with the plain background (see Fig. 4) (experiment
bj293b).
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Part of the interest of investigation 2 was that, in the image
being shown, only one of the objects was effective for one (or
more) of the neurons, and so it was possible to address how
looking at one versus the other in a scene provided information
that discriminated between the two objects in a single scene.

An example of the data acquisition with this experimental
design is shown in Fig. 7. Eye positions and neuronal response
data collection during the performance of the visual search task
for two simultaneously recorded neurons are shown. Separate
traces show the distance of the eyes from the target (rewarded)
search object (S�) and from the distractor object (S�). Ras-
tergrams for two simultaneously recorded neurons are shown
above, with each vertical line representing an action potential
from a neuron. The visual display was switched on at time 0.
It can be seen that the neuron labeled 21 responded while the
monkey looked at the S� and fired less when the monkey
looked at the S�. Conversely, neuron 31 fired rapidly while the
monkey looked at the S� and fired less when the monkey
looked at the S�. There was less firing of this neuron when the
monkey was fixating the other stimulus (which in this case was
the S�). The neuronal activity in 100-ms epochs was collected
for each of the stimuli while the monkey was looking with the
eyes still within 3° of the center of each stimulus. [There could
be several such epochs on a single behavioral trial. The epoch
of data collection was delayed by 100 ms from the relevant eye
position values to allow for the fact that inferior temporal
cortex neurons have response latencies in the order of 100 ms
(Baylis et al. 1987) and respond in a complex background
�100 ms after the eyes land on an effective target, as shown in
Fig. 7 and by Rolls et al. 2003a.]

Table 3 and Fig. 8 summarize the data across all experiments
in investigation 2 using the 100-ms analysis epoch, shown
separately for plain and complex backgrounds. First, it is clear
that, on average, across the 30 experiments, the information
related to the firing rate (0.056 bits) was greater than the
stimulus-dependent cross-correlation information (0.008 bits;
for the plain background). Expressed at a percentage of the

total information (0.061 bits), the rate information thus pro-
vided 91.3%. The SDS-related information provided 13.6% of
the total information, although only 8.7% was independent of
the firing rate–dependent information. This difference is also
evident in the complex background (average rate information
across experiments � 0.039 bits and average stimulus-depen-
dent cross-correlation information � 0.005 bits). In the com-
plex background, expressed as a percentage of the total infor-
mation (0.041 bits), the rate information provided 94.4%. The
SDS-related information provided 11.3% of the total informa-
tion, although only 5.6% was independent of the firing rate–
dependent information. [The rate and total information were
lower in investigation 2 than investigation 1 (cf. Tables 2 and
3), and perhaps this was not surprising, because the informa-
tion being measured in investigation 2 between two stimuli
simultaneously presented sufficiently close for the receptive
fields to overlap. Indeed, in the complex scene in investigation
2, the mean firing rate to the more effective stimulus of a pair
was 26.2 spikes/s and to the less effective was 20.7 spikes/s
compared with 27.4 and 16.3 spikes/s, respectively, for inves-
tigation 1.] Second, there was somewhat less information in the
complex background. [We did not measure the rate covariation
redundancy in investigation 2 because we used the maximum
likelihood decoding method, because this has the advantage of
high sensitivity when information values are low; they were in
investigation 2 partly because we used a short analysis epoch,
partly because some of the 100-ms epochs were after the
neuron had already been firing for �100 ms to the stimulus
when the firing rates tend to be a little lower, as shown in
typical peristimulus time histograms (Rolls and Deco 2002),
and partly because the objects had low discriminability against
the complex background. The full probability estimation de-
coding method used in investigation 1 uses the full stimulus-
response probability table, and in using more of the values,
provides a more smoothed estimate of the information that we
have found to be useful when quantifying redundancy (Franco
et al. 2004).]

FIG. 6. Investigation 1. Average across 31 experiments each with 2–4 simultaneously recorded neurons of different components of the information about
which stimulus was shown. Separate summaries are shown for 400- and 100-ms epochs.
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The sets of simultaneously recorded neurons were not espe-
cially selected to have rate versus synchrony-related informa-
tion. [During each experiment, it was known that 1 to 2 of the
typically 5 neurons did have different firing rates to the stimuli
(which is quite typical for inferior temporal cortex neurons),
and they, and the other neurons, could have had stimulus-
dependent correlations (although this was not evaluated at the
time of the recording) and were therefore included in the
information theoretic analyses.] If we ask the biased question
of, for just those experiments in which the neurons conveyed
any stimulus-dependent information, what proportion was
stimulus-dependent and what was rate-dependent, the results
are not strikingly different from the proportions above. For
example, in 16 experiments with the complex scene from Table
3 in which the neuron ensemble had any SDS-related informa-
tion, expressed at a percentage of the total information (0.071
bits), the rate information thus provided 86%. The SDS-related
information provided 22% of the total information, although
only 14% was independent of the firing rate–dependent infor-
mation. We further note that the information (both rate and

SDS) was present to similar extents early on and later in a trial,
so that possible decision-related factors occurring early in a
trial (in the 1st fixation on an image) compared with later in the
trial did not have clear effects on the responses of the inferior
temporal cortex neurons described here.

Although the results presented so far were in one monkey,
and thus the results from different experiments can be directly
compared, we have been able to establish that the results are
replicable, in that, in a second monkey, we have been able to
perform seven further experiments in which 23 further neurons
were analyzed in investigation 2. The results were very similar
to those reported above. In particular, for the plain background,
the rate information provided 92.7% of the total information.
The SDS-related information provided 15.2% of the total
information, although only 7.3% was independent of the firing
rate–dependent information. In the complex background, the
rate information provided 98.0% of the total information. The
SDS-related information provided only 4.6% of the total in-
formation, and only 2.0% was independent of the firing rate
information. Thus the findings on the relative contributions of

FIG. 7. Investigation 2. Eye positions and neuronal re-
sponse data collection during the performance of visual search
task for 2 simultaneously recorded neurons. Horizontal and
vertical eye position traces are calibrated with respect to the
center of the screen in degrees (with �35° horizontal and
�35° vertical being the lower left of the screen). Separate
traces show the distance of the eyes from the target (rewarded)
search object (S�) and from the distractor object (S�). Ras-
tergrams for the 2 simultaneously recorded neurons are shown
above, with each vertical line representing an action potential
from a neuron. Visual display was switched on at time 0.
Neuron 21 responded when the monkey looked at the S�, and
neuron 31 when the monkey looked at the S�. The monkey
made multiple touches of the S� (each indicated by a long
vertical line) of the object to obtain fruit juice. Diagram at top
shows a reconstruction of eye positions on an enlarged part of
display with numbers keying each position on the reconstruc-
tion to eye position plots shown below.
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firing rate and SDS effects to the total information have been
confirmed in two different monkeys, in which 221 neurons
were analyzed in 68 different experiments.

Figure 9 shows the recording sites. Reconstructed histolog-
ical coronal sections show, with filled circles, the sites at which
the neurons analyzed in this paper were recorded. Numbers
below the sections indicate the distance (in mm) posterior to
the sphenoid bone reference point (which is at approximately
the anterior-posterior level of the anterior commissure), and
these distances are further shown in the top left of the figure in
the lateral view. A full coronal section is shown at the top right,
and the area of cortex investigated in this study is indicated by
the shaded region encompassing the STS and the lateral portion
of the inferior temporal gyrus (IT). Recording tracks were
made over an extensive portion of the inferior temporal cortex,
from the upper and lower banks and fundus of the superior
temporal sulcus, through the middle temporal gyrus to just
lateral to the middle temporal sulcus. As can be seen in Fig. 9,
the cells are distributed from lateral of the middle temporal
sulcus to the lower bank of the STS, and the investigated area
of cortex is indicated by the shaded bounding box in the
coronal section shown in the top right of Fig. 9.

D I S C U S S I O N

Both investigations 1 and 2 used displays with two objects in
complex scenes, in which the monkey had to segment the two

objects from the background, and from each other, and after
object recognition, reach to touch the object that was associ-
ated with reward. This is an interesting situation in which to
test neural encoding because the visual system is operating
under natural visual conditions in which, to the extent that this
is required with natural vision, features must be segmented
from the background and bound together if the features are part
of the same object. Under these natural visual conditions, we
found that inferior temporal cortex neurons encode objects in
such a way that 93–99% of the total information is available
from the firing rate (or spike counts), with the stimulus-
dependent cross-correlations adding only 1–6% of indepen-
dent information. Even when only the information available
from the stimulus-dependent cross-correlations was measured,
it amounted to only 3–11% of the total information. Thus spike
counts across a population of neurons provide much more
information than stimulus-dependent cross-correlations, and to
the extent that stimulus-dependent cross-correlations provide
information, it is not fully independent from the rate informa-
tion. We note that if more neurons are recorded simulta-
neously, that the numbers of pairwise cross-correlations in-
creases according to n(n � 1)/2 where n is the number of
neurons, and that although there is some potential for the
information available from stimulus-dependent cross-correla-
tions to rise, there is, in fact, the likelihood that all these
correlations would not be independent of each other and thus

TABLE 3. Experiment 2: the contributions in bits of different components of the information extracted using a decoding algorithm

Rate Info
Stim-dep.

Correlation Info Total Info Rate Info
Stim-dep.

Correlation Info Total Info

Plain Plain Plain Complex Complex Complex

bj215 0.04 0 0.04 0.08 0.01 0.08
bj244b 0 0.03 0 0 0 0
bj247a 0.04 0.01 0.05 0 0 0
bj253f 0.24 0 0.24 0.04 0 0.04
bj253g 0.16 0 0.16 0.07 0 0.07
bj253i 0.14 0.01 0.14 0.03 0.03 0.03
bj253j 0.36 0.02 0.36 0.19 0.02 0.19
bj270a 0.03 0 0.03 0.1 0 0.1
bj270b 0 0 0 0.06 0 0.06
bj272 0.03 0 0.03 0 0 0
bj273a 0.06 0 0.06 0.05 0 0.05
bj273b 0.09 0 0.09 0 0 0
bj273c 0.08 0.01 0.08 0.03 0 0.03
bj274b 0.01 0 0.01 0.08 0.01 0.08
bj275a 0.1 0.08 0.18 0 0 0
bj276 0 0 0 0.05 0 0.05
bj277 0.06 0.01 0.07 0.09 0 0.09
bj280a1 0.02 0.02 0.02 0.06 0 0.06
bj280b 0 0.03 0.03 0.02 0 0.02
bj284 0.04 0 0.04 0 0.03 0.03
bj285a 0 0 0 0.05 0 0.05
bj285b 0 0 0 0 0.03 0.03
bj288 0 0.01 0.01 0 0.01 0.01
bj289a 0.08 0.01 0.09 0 0 0
bj290 0.03 0 0.03 0.05 0 0.05
bj291 0 0 0 0.03 0 0.03
bj292 0.01 0.01 0.02 0.02 0 0.02
bj320 0.03 0 0.03 0.05 0 0.05
bj365a 0.02 0 0.02 0.02 0 0.02
bj387a 0.01 0 0.01 0 0 0
Averages 0.056 0.008 0.061 0.039 0.005 0.041
Percentage of total 91.3% 13.6% 100% 94.4% 11.3% 100%

Maximum likelihood, with a criterion of I � 0.01 bits. All the information values shown are for 100-ms epochs.
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might not lead to a rapid increase in the information available
from the stimulus-dependent cross-correlations. In contrast, we
do expect that the information from the firing rates will grow
approximately linearly with the number of neurons considered
(Abbott et al. 1996; Rolls et al. 2004).

The information theoretic method we used for measuring the
relative contributions of spike counts and stimulus-dependent
neuronal synchrony in populations of neurons shows how these
contributions can be quantitatively compared (Franco et al.
2004; for earlier approaches, see Gawne and Richmond 1993;
Hatsopoulos et al. 1998; Oram et al. 1998; Reich et al. 2001;
Rolls et al. 2003b, 2004). In previous studies, it has been
shown that SDS is a property of neuronal firing under partic-
ular conditions (e.g., Singer 1999, 2000); however, this is not
sufficient to show how quantitatively important it is. To answer
that question, it is necessary to know how much information
can be gained on a single trial from SDS, as the variability in
the SDS is extremely relevant to how much information can be
gained from it. An important conclusion from the findings
reported in this paper is that, even when the SDS may look
strong in a cross-correlogram (and even may look smooth if
hundreds of trials are used), there may be rather little informa-
tion available from SDS on a single trial basis. In contrast,
much more information is available on a single trial basis from
the spike counts. Even if some earlier stage of the visual
system than the inferior temporal visual cortex might perform
feature binding by SDS, we note that this general point, about
how much can be learned from spike counts versus SDS even
when the latter is present, is very important. However, the
inferior temporal cortex, with its receptive fields that are large

enough to encompass whole objects and where neurons can
respond to features of objects as well as to objects (Desimone
et al. 1984; Gross et al. 1972; Perrett et al. 1982, 1992; Rolls
et al. 1994; Vogels 1999), does seem a candidate for a visual
cortical area in which feature binding is needed and where the
SDS hypothesis can be tested.

Although we have discussed the finding so far when objects
are being segmented from natural backgrounds as well as
separated from each other, we note that, in the plain back-
ground, most of the total information came from the spike
counts (98%), leaving only �2% of independent information
from SDS.

The information theoretic approach we used also allowed us
to show that there was little rate covariation redundancy
between the information provided by the spike counts of the
simultaneously recorded neurons, making spike counts a pow-
erful population code. In the complex background, the redun-
dancy averaged 6.3%, and in the plain background, 1.2% (see
Tables 1 and 2). There was less information, on average, from
the groups of neurons about the stimuli in the complex than in
the plain background. This probably arose from lower single
cell information in the complex background, evident as smaller
firing rate differences between effective and less effective
stimuli when tested in the complex versus the plain back-
ground. This is probably related to the fact that the stimuli we
used in this experiment were intentionally not highly discrim-
inable from the complex background (see Fig. 1), to make the
objects difficult to segment, to increase the chance that SDS, if
used in segmentation, would be measured in this investigation.
The greater rate covariation redundancy with the complex
background probably was related to the greater similarity of the
responses of the neuronal populations to the two stimuli in the

FIG. 9. Reconstructed histological coronal sections show the neuronal re-
cording sites (filled circles). Numbers below sections indicate distance (in mm)
posterior to the sphenoid bone reference point (which is at approximately the
anterior-posterior level of the anterior commissure), and these distances are
further shown in the top left of the figure in the lateral view. A full coronal
section is shown at the top right, and the area of cortex investigated in this
study is indicated by the shaded region encompassing the superior temporal
sulcus (STS) and the lateral portion of the inferior temporal gyrus (IT).

FIG. 8. Investigation 2. Average across 30 experiments each with 2–4
simultaneously recorded neurons of different components of the information
about which stimulus was shown in 100-ms epochs in which the monkey was
fixating 1 of the 2 stimuli.
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complex background, due to the smaller firing rate response
differences in the complex background (i.e., the profiles of the
responses of the population of neurons to the two stimuli
become more similar in the complex background).

Comparison of Table 2 with Table 1 shows that, on average,
in a 100-ms epoch, 37.0% of the rate information relative to
that in a 400-ms epoch was obtained (in a plain background).
The corresponding figure for the complex background is
36.4%. For the case of SDS-related information, the values are
44% for the plain background and 56% for the complex
background. Thus much of the information is available in quite
short analysis periods. The extension to earlier work (Tovee
and Rolls 1995) is that this is now supported by the new
recordings and analyses with simultaneously recorded popula-
tions of neurons.

It is interesting and important that, when visual search is
being performed for objects shown in complex scenes, the
tuning of inferior temporal cortex neurons to the objects
remains relatively unaffected (Rolls et al. 2003a; Sheinberg
and Logothetis 2001), although the receptive fields become
much smaller in a complex scene than against a plain back-
ground (Rolls et al. 2003a). These results are complemented by
the findings of DiCarlo and Maunsell (2000) and Missall et al.
(1999) that inferotemporal cortex neurons respond similarly to
an effective shape stimulus for a cell even if some distractor
stimuli are present a few degrees away. This finding might be
called “background invariance”, to capture the point that the
tuning of many inferior temporal cortex neurons is invariant
when the stimuli are shown against a background. This study
quantifies for the first time the effects on the amount of
information represented in plain versus complex scenes. The
total information available is somewhat less in complex (0.041
bits in a 100-ms epoch in investigation 2 as shown in Table 3)
than in plain backgrounds (0.061 bits). This was true to a
similar extent for the rate and the synchrony-related informa-
tion. With respect to the rate information, there was a small
reduction of firing rate to the effective stimulus in the complex
scene (28.5-25.4 spikes/s), but some of the reduction of infor-
mation must have been related to increased trial by trial
variability.

One of the conclusions of this paper is that little stimulus-
dependent information from the cross-correlations was avail-
able about which stimulus was shown from the neurons re-
corded in the inferior temporal visual cortex, even under
natural vision conditions. Could this be because the code is so
sparse that it is difficult to detect and might require simulta-
neous recordings from very large numbers of neurons to be
detected? Although this is certainly possible, we would argue
that considerable information was available from the spike
counts of the simultaneously recorded neurons about which
stimulus was shown, and that this information could be easily
decoded by receiving neurons, which might be more difficult if
the code was very sparse. It certainly remains a possibility that
SDS, perhaps measured with different techniques, and in per-
haps other more artificial visual testing conditions, might be
important in information encoding. We have measured syn-
chrony with the normal cross-correlation method, and under
natural vision conditions, and this is why the results are of
interest. The other main conclusion is that considerable infor-
mation is available on the spike counts (or firing rates) of
inferior temporal cortex neurons about the object being viewed

in a complex scene and that there is little “rate covariation”
redundancy across at least small numbers of simultaneously
recorded neurons. Furthermore, we note that the rate informa-
tion we described in this paper is from the number of spikes
available from each of a large number of neurons, such as
might be presented to a receiving neuron, in a short epoch. In
this paper, we have analyzed an epoch as short as 100 ms, and
the results are likely to generalize to shorter time intervals such
as 20 ms, given what we know about the encoding of infor-
mation by single neurons (Tovee and Rolls 1995). Thus we do
not envision that a receiving neuron would need to make an
accurate measurement over, for example, 500 ms of the firing
rates of its inputs. Instead, many sending neurons would each
provide zero, one, or two spikes in a 20-ms period, a typical
integration period for a receiving neuron, and this would be
how the firing rate information that we have shown is available
is being used.

G R A N T S

This research was supported by the Wellcome Trust and the Medical
Research Council Interdisciplinary Research Centre for Cognitive Neuro-
science.

R E F E R E N C E S

Abbott LF, Rolls ET, and Tovee MJ. Representational capacity of face
coding in monkeys. Cereb Cortex 6: 498–505, 1996.

Baylis GC, Rolls ET, and Leonard CM. Functional subdivisions of temporal
lobe neocortex. J Neurosci 7: 330–342, 1987.

Booth MCA and Rolls ET. View-invariant representations of familiar objects
by neurons in the inferior temporal visual cortex. Cereb Cortex 8: 510–523,
1998.

Cover TM and Thomas JA. Elements of Information Theory. New York:
Wiley, 1991.

Dan Y, Alonso JM, Usrey WM, and Reid RC. Coding of visual information
by precisely correlated spikes in the lateral geniculate nucleus. Nature
Neurosci 1: 501–507, 1998.

Desimone R, Albright TD, Gross CG, and Bruce C. Stimulus-selective
properties of inferior temporal neurons in the macaque. J Neurosci 4:
2051–2062, 1984.

DiCarlo JJ and Maunsell JHR. Form representation in monkey inferotem-
poral cortex is virtually unaltered by free viewing. Nature Neurosci 3:
814–821, 2000.

Feigenbaum JD and Rolls ET. Allocentric and egocentric spatial information
processing in the hippocampal formation of the behaving primate. Psycho-
biology 19: 21–40, 1991.

Franco L, Rolls ET, Aggelopoulos NC, and Treves A. The use of decoding
to analyze the contribution to the information of the correlations between the
firing of simultaneously recorded neurons. Exp Brain Res 155: 370–384,
2004.

Gawne TJ and Richmond BJ. How independent are the messages carried by
adjacent inferior temporal cortical neurons? J Neurosci 13: 2758–2771,
1993.

Gross CG, Rocha Miranda CE, and Bender DB. Visual properties of
neurons in inferotemporal cortex of the macaque. J Neurophysiol 35:
96–111, 1972.

Hatsopoulos NG, Ojakangas CL, Paninski L, and Donoghue JP. Informa-
tion about movement direction obtained by synchronous activity of motor
cortical neurons. Proc Natl Acad Sci USA 95: 15706–15711, 1998.

Judge SJ, Richmond BJ, and Chu FC. Implantation of magnetic search coils
for measurement of eye position: an improved method. Vision Res 20:
535–538, 1980.

Kayser C, Salazar RF, and Konig P. Responses to natural scenes in cat V1.
J Neurophysiol 90: 1910–1920, 2003.

Malsburg CVD. A neural architecture for the representation of scenes. In:
Brain Organization and Memory: Cells, Systems and Circuits, edited by
McGaugh JL, Weinberger NM, and Lynch G. New York: Oxford University
Press, 1990, p. 356–372.

Missall M, Vogels R, Chao-Yi L, and Orban GA. Shape interactions in
inferior temporal neurons. J Neurophysiol 82: 131–142, 1999.

1356 N. C. AGGELOPOULOS, L. FRANCO, AND E. T. ROLLS

J Neurophysiol • VOL 93 • MARCH 2005 • www.jn.org

 on M
arch 1, 2005 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


Oram MW, Foldiak P, Perrett DI, and Sengpiel F. The ‘ideal homunculus’:
decoding neural population signals. Trends Neurosci 21: 259–265, 1998.

Oram MW, Hatsopoulos NG, Richmond BJ, and Donoghue JP. Excess
synchrony in motor cortical neurons provides redundant direction informa-
tion with that from coarse temporal measures. J Neurophysiol 86: 1700–
1716, 2001.

Panzeri S, Schultz SR, Treves A, and Rolls ET. Correlations and the
encoding of information in the nervous system. Proc Roy Soc B Lond 266:
1001–1012, 1999.

Panzeri S and Treves A. Analytical estimates of limited sampling biases in
different information measures. Network 7: 87–107, 1996.

Perrett DI, Hietanen JK, Oram MW, and Benson PJ. Organisation and
functions of cells responsive to faces in the temporal cortex. Philo Trans Roy
Soc Lond 335: 23–30, 1992.

Perrett DI, Rolls ET, and Caan W. Visual neurones responsive to faces in the
monkey temporal cortex. Exp Brain Res 47: 329–342, 1982.

Reich DS, Mechler F, and Victor JD. Independent and redundant information
in nearby cortical neurons. Science 294: 2566–2568, 2001.

Rolls ET. Functions of the primate temporal lobe cortical visual areas in
invariant visual object and face recognition. Neuron 27: 205–218, 2000.

Rolls ET, Aggelopoulos NC, Franco L, and Treves A. Information encoding
in the inferior temporal cortex: contributions of the firing rates and corre-
lations between the firing of neurons. Biol Cybern 90: 19–32, 2004.

Rolls ET, Aggelopoulos NC, and Zheng F. The receptive fields of inferior
temporal cortex neurons in natural scenes. J Neurosci 23: 339–348, 2003a.

Rolls ET and Deco G. Computational Neuroscience of Vision. Oxford:
Oxford, 2002.

Rolls ET, Franco L, Aggelopoulos NC, and Reece S. An information
theoretic approach to the contributions of the firing rates and the
correlations between the firing of neurons, J Neurophysiol 89: 2810 –
2822, 2003b.

Rolls ET, Judge SJ, and Sanghera M. Activity of neurones in the infero-
temporal cortex of the alert monkey. Brain Res 130: 229–238, 1977.

Rolls ET, Sanghera MK, and Roper-Hall A. The latency of activation of
neurons in the lateral hypothalamus and substantia innominata during
feeding in the monkey. Brain Res 164: 121–135, 1979.

Rolls ET and Tovee MJ. Sparseness of the neuronal representation of stimuli
in the primate temporal visual cortex. J Neurophysiol 73: 713–726, 1995.

Rolls ET, Tovee MJ, Purcell DG, Stewart AL, and Azzopardi P. The
responses of neurons in the temporal cortex of primates, and face identifi-
cation and detection. Exp Brain Res 101: 473–484, 1994.

Rolls ET, Treves A, and Tovee MJ. The representational capacity of the
distributed encoding of information provided by populations of neurons in
the primate temporal visual cortex. Exp Brain Res 114: 149–162, 1997.

Shadlen M and Movshon J. Synchrony unbound: a critical evaluation of the
temporal binding hypothesis. Neuron 24: 67–77, 1999.

Shannon CE. A mathematical theory of communication. AT&T Bell Lab Tech
J 27: 379–423, 1948.

Sheinberg DL and Logothetis NK. Noticing familiar objects in real world
scenes: the role of temporal cortical neurons in natural vision. J Neurosci 21:
1340–1350, 2001.

Singer W. Neuronal synchrony: a versatile code for the definition of relations?
Neuron 24: 49–65, 1999.

Singer W. Response synchronisation: a universal coding strategy for the
definition of relations. In: The New Cognitive Neurosciences, edited by
Gazzaniga M. Cambridge, MA: MIT Press, 2000, p. 325–338.

Singer W and Gray CM. Visual feature integration and the temporal corre-
lation hypothesis. Annu Rev Neurosci 18: 555–586, 1995.

Tamura H and Tanaka K. Visual response properties of cells in the ventral
and dorsal parts of the macaque inferotemporal cortex. Cereb Cortex 11:
384–389, 2001.

Tanaka K. Inferotemporal cortex and object vision. Annu Rev Neurosci 19:
109–139, 1996.

Tovee MJ and Rolls ET. Information encoding in short firing rate epochs by
single neurons in the primate temporal visual cortex. Vis Cogn 2: 35–58, 1995.

Treves A. Information coding in higher sensory and memory areas. In:
Handbook of Biological Physics, edited by Moss F and Gielen S. Amster-
dam: Elsevier, 2000, p. 803–829.

Treves A and Panzeri S. The upward bias in measures of information derived
from limited data samples. Neural Comput 7: 399–407, 1995.

Vogels R. Effect of image scrambling on inferior temporal cortical responses.
Neuroreport 10: 1811–1816, 1999.

1357OBJECT PERCEPTION IN NATURAL SCENES

J Neurophysiol • VOL 93 • MARCH 2005 • www.jn.org

 on M
arch 1, 2005 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org



