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Abstract. Microarray data analysis is attracting increasing attention in
computer science because of the many applications of machine learning
methods in prediction problems. The process typically involves a feature
selection step, important in order to increase the accuracy and speed
of the classifiers. This work analyzes the characteristics of the features
selected by two wrapper methods, the first one based on artificial neural
networks (ANN) and the second in a novel constructive neural network
(CNN) algorithm, to later propose a hybrid model that combines the
advantages of wrapper and filter methods. The results obtained in terms
of the computational costs involved and the prediction accuracy reached
show the feasibility of the hybrid model proposed here and indicate an
interesting research line for the near future.
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1 Introduction

DNA microarray technology has opened up new research directions and signif-
icant opportunities in biomedical sciences. DNA microarray technology makes
possible to measure simultaneously the expressions levels of thousands of genes
in a single experiment, providing unique and useful data for a wide range of ex-
perimental research, e.g., predicting disease outcome in patients. However, due
to the large number of features (in the order of thousands) and the small number
of samples (mostly less than a hundred) in this data, microarray data analysis
face the “large-p-small-n” paradigm [9] also known as the curse of dimensionality.
Generally, most of these features are irrelevant to a specific study and represent
noise for most of the prediction systems, therefore the application of machine
learning techniques [5] are becoming increasingly needed in order to enhance the
speed and accuracy in prediction systems.

The microarray data analysis usually involves a preprocessing step, which
consists in the selection of features (genes) relevant for the classification step.



These feature selection algorithms are grouped into two categories, filter meth-
ods and wrapper methods [3]. Filter methods selects relevant features based on
general characteristics of the training data. Wrapper methods requires an specific
classifier algorithm to evaluate the suitability of each subset of features found.
As a result of using the classifier in the feature subset evaluation, wrapper meth-
ods tend to outperform the prediction accuracy of the filter methods, but the
constantly training of the classifier leads to a high computational cost for the
wrapper methods, which makes them not much used in microarray data analy-
sis [2]. On the other hand, filter methods are fast and computationally simple,
making them more suitable for tasks on high-dimensional datasets.

A recent proposal made by Urda et al. [8] shows how constructive neural
networks (CNN) algorithm can reduce time and increase accuracy in microarray
data analysis, in particular in comparison to ANN. Using a novel constructive
algorithm (C-Mantec) [7] to predict estrogen receptor status, Urda et al. [8]
improves the results achieved by Lancashire et al. [4] using a stepwise forward
selection artificial neural network approach. Despite the results obtained by [8],
the solution still suffers the drawbacks of the wrapper methods making the search
in feature space very time-consuming.

The combination of filter and wrapper approaches has led to alternative
proposals [6][1] looking to overcome the disadvantages of the two methods sep-
arately. Hybrid models incorporate the relationship of the wrappers with the
classifiers, in order to increase the accuracy prediction of the selected subset and
use the analysis of the properties of the data set, performed by the filters, to
achieve speed and scalability. In this work we present an hybrid wrapper-filter
model using a constructive neural network algorithm to build a classifier using
the information from the training patterns in order to facilitate its adaptation
to a given problem. The proposal is based on the use of a recently introduced
constructive neural network algorithm (C-Mantec) [7] and on the use of a sim-
ple correlation measure to rank the features in the dataset, in order to avoid
redundancy in the selected features.

2 Materials and Methods

2.1 Materials

The dataset used in this work comes from the study published by West et al. [10]
(http://data.cgt.duke.edu/west.php). This study used microarray technology to
analyze primary breast tumors in relation to estrogen receptor (ER) status. The
dataset contains the expression levels of a total of 7129 genes measured in 49
breast tumor samples (25 ER+ and 24 ER- cases).

2.2 Methods

We first analyze in this work two previous studies [4] [8] where feature selection
is implemented and characterize the process measuring the prediction ability of



using the individual genes and the correlation between the selected features, to
use later these two characteristics of the dataset to test three different strate-
gies. For measuring the generalization ability of the individual genes for the
selection process and for estimating the predictive accuracy of using all the se-
lected variables we used C-Mantec, a constructive neural network algorithm that
generates very compact neural architectures with state-of-the-art generalization
capabilities [7] .

The well known linear correlation coefficient (r), computed for a pair of
variables (X ;Y ) and shown below in equation 1, was used for estimating the
redundancy among a set of variables.

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
, (1)

where x̄ is the mean of X , and ȳ is the mean of Y . The value of r belongs to
interval [−1, 1]. If r is zero then X and Y are totally independent. The closer
is the value of r to the extremes of the interval [−1, 1], the closer X and Y
to a perfect linear relationship. As we need to measure the redundancy of one
feature to a set of features, we computed the correlation of variable X and a set
of n variables (Y1, Y2, . . . , Yn) as the mean of the correlation value of each pair
(X,Yi).

3 Experiments and Results

We have first analyzed the set of features selected in the studies by Lancashire
et al. [4] and Urda et al. [8], where the datasets have been selected using for-
ward selection methods based only in measuring prediction accuracy, in order
to measure the relevance of individual generalization and correlation. Table 1
shows the features selected by Lancashire et al. with their respective measures
of correlation and generalization, while table 2 shows the same analysis for
the variables selected by Urda et al. Both tables show first the values for the
correlation measured as an average between pairs of variables, indicating the ob-
tained correlation coefficient, then a rank position between 1 and 7129 (number
of features of the dataset) and a normalized rank between 0 and 1. The three
rightmost columns of the table show the generalization ability obtained when
the C-Mantec algorithm is trained only with a single variable, and the columns
show the absolute value, rank position and normalized rank.

The data shown in the tables indicate that the variables selected in the Lan-
cashire analysis present relatively high individual generalization values (average
normalized rank equals to 0.1579) while correlation among variables is high (av-
erage normalized rank equals to 0.7614), indicating a large redundancy between
the selected variables. For the features selected in the Urda et al. study the cor-
relation between variables is lower (average normalized rank equals to 0.2247)
but the generalization measure of the individual variables is higher (0.2990 for
the normalized rank). Surprisingly, even if both sets of variables were chosen
using a forward selection method the characteristics of the selected variables are



Table 1. Features selected in the work of Lancashire et al. [4] ranked according to the
correlation measure used in the present work (see the text for more details).

Correlation measure Generalization measure
Probe Set ID correlation coefficient rank position rank [0-1] mean % rank position rank [0-1]

1 X58072 at – – – 86.0 4 0.0004
2 Z29083 at 0.3302 6402 0.898 83.4 9 0.0011
3 M81758 at 0.1763 5033 0.706 52.6 4550 0.6382
4 M60748 at 0.1520 3515 0.493 60.2 1419 0.1989
5 M74093 at 0.1835 4590 0.644 81.8 15 0.0020
6 U22029 f at 0.2175 5484 0.769 58.0 2242 0.3144
7 U96131 at 0.2657 6625 0.929 73.2 131 0.0182
8 M96982 at 0.2391 6353 0.891 64.4 642 0.0899

mean 0.2235 5429 0.761 69.9 1126 0.1579

Table 2. Features selected in the work of Urda et al. [8] ranked according to the
correlation coeffficient averaged among variables and the generalization ability (see the
text for more details).

Correlation measure Generalization measure
Probe Set ID correlation coefficient rank position rank [0-1] mean % rank position rank [0-1]

1 X76180 at – – – 85.6 6 0.0007
2 HG4749-HT5197 at 0.0566 1785 0.250 59.2 1742 0.2442
3 M31520 rna1 at 0.1043 1431 0.201 55.2 3383 0.4745
4 U20325 at 0.1265 1592 0.223 55.2 3399 0.4767

mean 0.0958 1603 0.225 63.8 2132 0.2990

different. It is worth noting that the Lancashire et al. work used ANN as classifi-
cation algorithm while in the Urda et. al. analysis C-Mantec algorithm was used.
Given this discrepancy between the observed characteristics of the datasets, we
have decided to propose and test three different strategies in order to develop
a selection method:

Relevance only (ROnly) It is the simplest of the three strategies, aimed to
select those features with the highest generalization over the test data subset.
The pseudocode of this strategy is presented below as Algorithm 1.

Algorithm 1 Pseudocode of the ROnly algorithm.
1: for each feature fi in dataset D do

2: {Create model for fi and compute its generalization performance on D}
3: g(i) ← CMantec(fi, T0, Imax, gfac);

4: end for
5: n ← size(D)

6: for j = 1 to 10 do

7: {Select the feature with the highest generalization performance on D}
8: Set(j) ← {fi ∈ D : ∀x ∈ {1, . . . , n}(g(i) ! g(x))};
9: g(i) ← 0

10: end for
11: return Set

Relevance first, then redundancy (RelevanceF) This strategy consists in
selecting the ten percent of the most relevant features from the data set (those
with the highest generalization value over the test data subset) and then within
that ten percent select the feature that is less redundant with the subset of
variables already selected for classification. Algorithm 2 specifies the pseudocode
for this strategy.



Algorithm 2 Pseudocode of the RelevanceF algorithm.
1: for each feature fi in dataset D do

2: {Create model for fi and compute its generalization performance on D}
3: g(i) ← CMantec(fi, T0, Imax, gfac);

4: end for
5: n ← size(D)

6: {Select the ten percent of features with the highest generalization performance on D}
7: for j = 1 to n ÷ 10 do

8: T (j) ← {fi ∈ D : ∀x ∈ {1, . . . , n}, (g(i) ! g(x))};
9: g(i) ← 0

10: end for
11: Set(1) ← T (1)

12: for j = 2 to 10 do

13: {Select the feature less redundant to features in Set}
14: Set(j) ← {fi ∈ T : ∀x ∈ {1, . . . , n}, (r̄(fi, Set) " r̄(fx, Set))};
15: end for
16: return Set

Redundancy first, then relevance (RedundancyF) Contrary to the previ-
ous strategy, this algorithm select first a ten percent of the features that are less
redundant to the features already selected for classification and within this ten
percent the most relevant attribute (high generalization) is chosen. Algorithm 3
shows pseudocode for this strategy.

Algorithm 3 Pseudocode of the RedundancyF algorithm.
1: for each feature fi in dataset D do

2: {Create model for fi and compute its generalization performance on D}
3: g(i) ← CMantec(fi, T0, Imax, gfac);

4: end for
5: n ← size(D)

6: {Select the feature with the highest generalization performance on D}
7: Set(1) ← {fi ∈ D : ∀x ∈ {1, . . . , n}, (g(i) ! g(x))};
8: g(i) ← 0

9: for j = 2 to 10 do

10: {Select the ten percent of features less redundant to features in Set}
11: for t = 1 to n ÷ 10 do

12: R(t) ← {fi ∈ D : ∀x ∈ {1, . . . , n}, (r̄(fi, Set) " r̄(fx, Set))};
13: end for
14: {Select the feature with the highest generalization performance on D}
15: Set(j) ← {fi ∈ R : ∀x ∈ {1, . . . , n}, (g(i) ! g(x))};
16: end for
17: return Set

In all cases the C-Mantec algorithm was the classification method used, with
the following values for the parameters: gfac = 0.2 (network growing factor),
Imax = 100, 000 (maximum number of iterations), while T0 (initial tempera-
ture) was set equal to the number of input variables. A ten-fold cross validation
approach was used and the results obtained are indicated in table 3 and in
figure 1. Table 3 shows the mean and the standard deviation across the set of
ten observed values for the three algorithms, with best value highlighted. We
can observe that the third algorithm (Redundancy first, then relevance) outper-
formed the other two achieving the highest generalization and also showing the



lowest standard deviation. (Figure 1), and thus we choose this algorithm as our
proposal for the feature selection process.

Table 3. Mean and standard deviation observed for the three algorithms

Algorithm Generalization C-Mantec
ROnly 89.18 ± 1.03
RelevanceF 84.72 ± 1.92
RedundancyF 92.82 ± 0.51
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Fig. 1. Results of ten-fold cross validation of the C-Mantec algorithm applied to the
test dataset using the features selected by the three algorithms. Error bars represent
standard error of the mean expressed in percentage.

Table 4 shows the characteristic of the selected variables chosen by the Re-
dundacyF algorithm. The average normalized rank is much lower for both corre-
lation between features (0.069) and individual prediction accuracy (0.025) than
in the previous analyzed studies [4] and [8].

As a final comparison, table 5 shows the generalization ability obtained using
C-Mantec on a 10-fold cross validation scheme including all the selected features
chosen by the three studies (Lancashire et al., Urda et al., and the present pro-
posal) . Given that the proposed approach (RedundancyF) only uses C-Mantec
in the first phase of the algorithm (estimation phase) and that the second phase
(selection phase) consumes an average of 0.4 seconds of CPU time to find each
new feature, the execution time remains almost invariable as the number of se-
lected features increases, while this is not the case for the previous proposals
[8] and [4]. This make our algorithm a more feasible choice to scale on high-
dimensional datasets. A simple mathematical analysis shows below that for the
forward selection methods used in [4] [8] the computational costs approximately
scale with both the total number of features available (NI) and with the number



Table 4. Features selected by RedundacyF algorithm, ranked according to the corre-
lation measure used in the present work (see the text for more details).

Correlation measure Generalization measure
Probe Set ID correlation coefficient rank position rank [0-1] mean % rank position rank [0-1]

1 X03635 at – – – 87.6 1 0
2 M85289 at 0.0052 234 0.033 72.0 157 0.0219
3 U60269 cds2 at 0.0250 371 0.052 67.4 379 0.0530
4 L08044 s at 0.0857 540 0.076 79.4 32 0.0043
5 U41371 at 0.0761 354 0.050 69.4 254 0.0355
6 L13278 at 0.0884 446 0.062 68.2 317 0.0443
7 X06614 at 0.1137 563 0.079 73.2 132 0.0184
8 L37199 at 0.1147 651 0.091 72.0 156 0.0217
9 HG2279-HT2375 at 0.1186 631 0.088 73.8 116 0.0161
10 S77410 at 0.1184 649 0.091 69.4 251 0.0351

mean 0.0829 493 0.069 73.2 179 0.0250

Table 5. Percentage accuracy using C-Mantec on a 10-fold cross validation scheme
using all the selected features chosen in each work.

Method Percentage accuracy
Urda et al. [8] 0.950 ± 0.103
Lancashire et al. [4] 0.946 ± 0.091
RedundancyF 0.922 ± 0.099

of features to be selected (NV ), while for the hybrid method proposed the com-
putationally costs scale linearly only with the total number of available features.
The following equations shows the calculation involved:

CPUtime(FSel) =
V∑

i=1

(NI − i + 1)NV Tgen(i) ∼ NINV Tgen (2)

CPUtime(Hybrid) = NI(Tgen(V = 1) +NV Tcor) ∼ NITgen(V = 1), (3)

where Tgen(i) is the time needed to compute the generalization ability of a given
model using i input variables (Tgen indicates averaging). For the hybrid model
Tcor indicates the CPU time needed to compute a correlation measure between
pair of variables. In our case Tcor was very small and thus the total CPU time
depends mainly on the computational cost of computing the generalization of
the model. The validity of the previous analysis was checked for some particular
values but lack of space in the present work leaves a more detailed analysis to
be published elsewhere.

4 Conclusions and Further Work

In this work we have first carried out an analysis of the characteristics of the
features selected by two recent publications, to further propose and test three
strategies for selection of informative genes in DNA microarray experiments
through applying a hybrid model of constructive neural network algorithm and
a simple correlation-based algorithm. Even though the new introduced models
do not reach the level of effectiveness of the reviewed approaches (Table 5),
we must emphasize that a major goal of this research was firstly to reduce
the computational cost of the feature selection task and on the other hand to
analyze whether both correlation between features and level of generalization of



individual features are important characteristics for the feature selection task,
fact that the obtained results seems to confirm. Further work will be centered
on extensions of the RedundancyF algorithm in order to increase its speed and
prediction accuracy on DNA microarray prediction problems. Better measures
for estimating feature redundancy will be tested, as they may permit to capture
nonlinear correlation effects, and additionally, tests on different databases using
different classifiers will be conducted to fully validate the approach.
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