Data Discretization Using the Extreme Learning
Machine Neural Network

Juan Jesus Carneros, José M. Jerez, Ivan Gémez, and Leonardo Franco

Universidad de Malaga, Department of Computer Science, ETSI Informatica, Spain
jcarnego@hotmail.com, {jja,ivan,lfranco}@lcc.uma.es

Abstract. Data discretization is an important processing step for sev-
eral computational methods that work only with binary input data. In
this work a method for discretize continuous data based on the use of
the Extreme Learning Machine neural network architecture is developed
and tested. The new method does not use data labels for performing the
discretization process and thus is suitable for supervised and supervised
data and also, as it is based on the Extreme Learning Machine, is very
fast even for large input data sets. The efficiency of the new method is
analyzed on several benchmark functions, testing the classification accu-
racy obtained with raw and discretized data, and also in comparison to
results from the application of a state-of-the-art supervised discretization
algorithm. The results indicate the suitability of the developed approach.

Keywords: Neural networks, Supervised learning, Extreme learning
machine, Generalization, Discretization.

1 Introduction

Discretization techniques play an important role in the areas of data mining and
knowledge discovery. Not only they help to produce a more concise data repre-
sentation but also are a necessary step for the application of several classification
algorithms, like Decision Trees, Logical Analysis of Data, DASG algorithm, etc.
[1/8]. Discretization methods can be characterized according to at least five dif-
ferent features: supervised or unsupervised, static or dynamic, global or local,
bottom-up or top-down, and direct or indirect methods. We will not do an in-
depth analysis of these characteristics (see [6] for a more detailed analysis) but
will mention the relevant ones in relationship to the method to be proposed
below. The use or not of the label (or class) of the data for the discretization
process distinguish a supervised from an unsupervised method; global methods
use all set of features and data for the processing while local methods use only a
portion of them; direct methods requires the user to decide on the characteristics
of the output while, in general, incremental methods works by applying some
predefined conditions towards the fulfillment of a goal. We present in this work
a discretization algorithm constructed by using the Extreme Learning Machine
(ELM) model that will be unsupervised, local and incremental. The ELM al-
gorithm proposed by Huang et al. [B/4], as a fast and accurate neural network

T. Huang et al. (Eds.): ICONIP 2012, Part IV, LNCS 7666, pp. 281-{288] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

282 J.J. Carneros et al.

based classification system, construct feedforward neural network architectures
containing a single hidden layer of neurons with the peculiarity that only the set
of synaptic weights connecting the hidden layer to the output need to be learnt,
as the connections between the input and the middle layer have randomly chosen
values. In this way, not only the process is much faster but also can be performed
deterministically by solving a system of equations, without depending on gra-
dient descent based algorithms. Despite its simplicity, and the use of random
weights in the first layer, the results obtained when using the ELM are sur-
prisingly good, in most cases reaching a similar level of performance than more
complex algorithms. The ELM normally uses continuos valued neurons in the
middle layer but a version operating with discrete neurons has been proposed
[4], and it is this version that we used to build a discretization algorithm.

2 Methods

2.1 A Discretizer Based on the Extreme Learning Machine

The Extreme Learning Machine is a neural based architecture for classification
problems that can be trained in a supervised way. The network architecture
contains a single layer of neurons that receive the information from the input
neurons through random valued weights, and thus the training of the network
only involves finding the value of the synaptic weights connecting the middle
layer to the output neurons. This training process can be performed very fastly
and straightforward as essentially consists in a matrix inversion.

For N input patterns (x;,t;), where x; = [x;1, 0, . .. ,xm]T € R" and t; =
[ti1, tio, - - - ,tim]T € R™, the output vector o; of an ELM with L neurons in the
hidden layer and activation function g(x) can be modelled mathematically as:

L
D Big(wix;+bi)=o0; j=1,...,N, (1)
i=1
where w; = [w;1, w2, . . . ,win]T is the vector of synaptic weights connecting the
it" hidden neuron to the input neurons, 8; = [Bi1, Bia, - - - ﬁim]T is the vector

connecting the hidden neurons to the output ones, and b; indicates the bias of
the 7" hidden neuron. An ELM with m output neurons that can approximate
N patterns with zero error implies that the Zfil llo; — t;|| = 0, expression that
can be written in matrix form as:

H3 =T, (2)

where H represents the activity of the hidden neurons when an input pattern
is presented, T represents the target outputs, and 3 are the weights to be find
in order to verify the learning of the input-output relationship. The value of
with smallest norm that verifies in the minimum square sense the previous lineal
system is:

B=H'T, (3)

Data Discretization Using the ELM 283

Fig. 1. Structure of an ELM used for data discretization. The number of output neurons
is equal to the number of inputs and for each pattern of the data set the desired outputs
(targets) are equal to the input values. Using discrete units in the hidden layer permits
to obtain after training the network a discrete representation of the inputs.

where H is the Moore-Penrose generalized inverse of matrix H [5l4]. In the
original ELM architecture [5] the activation function of the neurons in the middle
layer is continuous valued but binary units can be used, and it has been shown
that its functioning and the results that can be obtained are quite similar [4].

To build a discretizer based on the ELM, it is only necessary to use discrete
valued hidden units, select the number of neurons to include in this hidden layer,
and train the network as described above, with patterns that have the same output
as the input. A network architecture of a discretizer constructed for the case of
input vectors of length 2 is depicted in Figure[Il where the hidden layer, from which
the discretized representation will be obtained, contains 3 neurons in this example.
If the total error of the network, measured as the difference between input and
output across all training patterns, is zero then the discretization obtained in the
hidden layer contains all the information of the original input; in other cases the
error quantifies the information loss during the discretization process.

2.2 The CAIM Discretization Algorithm

We briefly explain some characteristics of the CAIM discretization algorithm
because it will be used as a reference for comparing the efficiency of the new
developed algorithm. The CAIM algorithm is a supervised discretization method
that tries to maximize the class-attribute interdependency by exploring a series of
discretization points, to choose those that optimize an heuristic measure related
to the dominancy of a given class in the created intervals, including also a factor
so to minimize the number of intervals [6]. It is a local algorithm that consider
the input attributes independently, usually generating for each input variable a

284 J.J. Carneros et al.

discrete representation with a length equal to the number of output classes (e.g.,
twice the original number of attributes for a binary output). The algorithm
has been extensively tested leading to very good results and in several cases
leading to classification rates larger than those obtained with the original data,
fact that can be due to a noise-filtering process produced as a side-effect in the
discretization process.

2.3 The C-Mantec Constructive Neural Network Algorithm

C-Mantec is a recently introduced neural based constructive algorithm for super-
vised learning tasks that generates very compact neural network architectures
with high generalization capabilities [7J9] . A difference with previous construc-
tive algorithms is that C-Mantec permits the architectures to grow as required
by the learning of patterns but without freezing the values of existing synaptic
weights, in a scheme where the neurons compete for the incoming knowledge
and in which the learning at the level of individual neurons is performed by the
thermal perceptron. The algorithm is used in this work to test the generaliza-
tion ability of the several representation of the data obtained by applying the
ELM discretizer because of its observed good generalization capabilities but also
because training computational are much reduced in comparison to traditional
MLPs.

2.4 The Generalization Complexity Measure

The GC measure was introduced by Franco and colleagues [2] and was derived
from evidence that pairs of bordering examples, those lying closely at both sides
of the separating hyperplanes that classify different regions, play an important
role on the generalization ability obtained in classification problems when neural
networks are used as predictive methods. The idea behind the GC measure is to
build an estimate of the generalization ability that can be obtained beforehand
but also to be used to estimate the size of an adequate neural architecture [3].
As the GC measure has been defined only for binary input values, we used it
in this work as an additional test of the quality of the representations obtained
using the ELM discretizer developed.

3 Results

We have applied the ELM discretizer using several size architectures to a set
of 20 benchmark data sets. To choose the number of neurons in the hidden
layer of the ELM, i.e., the size of the representation, we took the number of
neurons generated by CAIM and consider this value as a reference, and thus we
try representations with the same number of units used by CAIM, twice and
five times this number, and also consider a number of hidden units necessary to
achieve a 0.01 level of error.

Data Discretization Using the ELM 285

Table 1. Characteristics of the 20 data sets selected from the PROBEN1 benchmark
set to carry out the tests (see the text for more details)

Id Set Patterns|Class distribution |Inputs|Neurons Neurons
% (0/1) CAIM |ELM (Error < 0.01)
f1| cancerl 699 65 - 35 9 18 527
f2| cardl 690 45 - 55 51 100 641
f3 |diabetesl| 768 35 - 65 8 16 818
fa| genela 3175 76 - 24 120 240 2977
f5| genelb 3175 76 - 24 120 240 2600
fe | genelc 3175 48 - 52 120 240 2600
f7| glassla 214 67 - 33 9 18 215
fs | glassla 214 64 - 36 9 18 243
fo| glasslb 214 92 -8 9 18 251
fio| glasslc 214 94 -6 9 18 235
fi1| glassld 214 96 - 4 9 18 243
fi2| glassle 214 86 - 14 9 18 251
fi3| heartla 920 44 - 56 35 67 824
fia| heartclb | 303 54 - 46 35 59 300
fi5| horsela 364 38 - 62 58 116 347
fi6| horselb | 364 75 - 25 58 116 347
fi7| horselc 364 85 - 15 58 116 347
fig|thyroidla| 7200 97 - 13 21 42 538
fio|thyroidlb| 7200 95-5 21 42 529
f20|thyroidlc| 7200 7-93 21 42 520

Table [shows the characteristics of the 20 binary output data sets taken from
the Proben benchmark set used for testing the discretization performance of the
proposed algorithm. The first column of the table indicates the identification ref-
erence of the data set, and the rest of columns indicate its the name, the number
of patterns available, the class distribution, the number of inputs, the number
of discretization intervals (or equivalently the number of neurons) needed by the
CAIM algorithm, and the number of neurons used in the developed discretizer
needed to achieve a codification error below 0.01.

Table 2] shows the generalization ability results obtained in a ten fold cross-
validation approach. The first column indicates the function used and the rest of
columns the generalization ability obtained using the several representations of
the function: the original continuous input data, the CAIM discretized inputs,
the ELM based discretization with the same number of neurons as used with
CAIM, twice and five times the previous value and finally with a number of
attributes needed to achieve a 0.01 or less of training error (value indicated in
the last column of Table [T).

Regarding the computational costs involved in the tests carried out, we report
the average CPU times needed on an Intel Core 2 Duo E7300 PC running at
2.66GHz with Windows Vista OS for discretizing the 20 data sets analyzed. On
average the CAIM algorithm needed 24.03 seconds per function, while the ELM
based discretizer needed 0.05, 0.30 and 1.91 seconds respectively for the case of

286 J.J. Carneros et al.

Table 2. Generalization ability obtained for the 20 benchmark functions extracted
from the Proben benchmark set. The function identifier is shown in the first column,
and the rest of values shown indicate the generalization for the original continuous
input data (no discretization applied), for the discretization obtained from CAIM, and
for the ELM based discretizer with the different representations sizes considered. (See
the text for details).

Function|Continuos|{ CAIM |ELM nh|ELM 2nh|ELM 5nh ELM
id input (Error < 0.01)
f 96.19 96.57 | 93.05 95.24 94.57 94.76
fo 74.20 75.56 | 70.05 74.88 72.46 72.85
f3 54.96 75.13 | 67.57 68.78 60.17 54.26
fa 85.15 86.09 | 80.55 82.00 82.92 83.34
f5 79.24 81.37| 75.84 77.21 78.28 77.65
fe 78.38 78.32 | 71.66 73.93 75.82 75.80
fr 69.69 80.31 | 67.19 75.31 74.06 73.44
fs 66.88 78.75 | 66.56 68.13 71.25 70.94
fo 84.06 88.44 | 93.13 90.94 90.00 90.63
fio 94.69 91.88 | 94.38 93.44 93.75 96.88
fua 97.50 99.38 | 95.63 97.19 97.50 96.56
fi2 94.06 95.31| 95.31 95.31 95.00 95.63
fis 67.68 72.68 | 63.12 67.03 64.35 64.49
f1a 74.73 80.00 | 73.85 70.77 76.48 73.63
fis 68.07 70.28 | 68.26 67.34 68.81 68.62
fie 74.68 76.51 | 74.31 72.84 76.33 74.50
fi7 85.14 85.32 | 81.28 82.39 82.02 84.22
fis 98.59 99.03 | 97.90 94.72 98.05 98.30
fio 93.85 97.35| 94.63 91.29 94.69 94.48
f20 93.10 98.95| 92.61 90.82 92.73 92.87

Mean 81.54 85.36 | 80.84 81.48 81.96 81.69

networks having the same number of outputs than the CAIM algorithm, twice
and five times this value respectively.

Further, we have computed the Generalization Complexity (GC) of the sev-
eral data sets used. This measure is related to the generalization ability that
can be expected when a function is implemented in a neural network or other
prediction system. The GC measure has been defined only for Boolean inputs
and thus it is useful to analyze the values obtained with the different discretized
representations considered previously. Table Bl shows the value obtained for the
Generalization complexity for the 20 functions indicated in the first column.
Columns 2 to 5 show the values of GC using the 5 considered discretization
schemes: CAIM, ELM with same number of attributes than CAIM, twice and
five times the previous value, and with a number of neurons enough to reduce
the representation error below 0.01. The last row of the table shows the average
of column values.

As the GC measure can only be computed for binary data, given a continu-
ous input data it is not clear its true value as the data needs to be transformed.

Data Discretization Using the ELM 287

Table 3. The Generalization Complexity values computed the 20 test data sets using
5 different discretization representation: CAIM, ELM nh, ELM 2nh, ELM 5nh, ELM
with an error less than 0.01. Average column values are indicated in the last row.

Function| CAIM|ELM nh|ELM 2nh|ELM 5nh ELM
id (Error < 0.01)
fi 0.0525| 0.1440 | 0.0700 0.0473 0.0401
f2 0.2033| 0.2191 | 0.1969 0.2053 0.2109
f3 0.3761| 0.4481 | 0.4219 0.3356 0.3027
fa 0.1617| 0.2139 | 0.1860 0.1854 0.1761
fs 0.1764| 0.2334 | 0.2059 0.1792 0.1762
fe 0.2417| 0.2935 | 0.2763 0.2744 0.2601
fr 0.3105| 0.3860 | 0.3397 0.2823 0.2103
fs 0.4048| 0.4263 | 0.3765 0.2614 0.2240
fo 0.1570| 0.1543 | 0.1262 0.1262 0.1090
fio 0.0591| 0.1210 | 0.0944 0.0380 0.0506
S 0.0566| 0.0768 | 0.0613 0.0389 0.0257
fi2 0.0573| 0.1801 | 0.0491 0.0254 0.0288
fi3 0.2412] 0.2562 | 0.2381 0.2579 0.2458
fia 10.2333| 0.2693 | 0.2294 0.2393 0.2525
fis 0.3097| 0.3300 | 0.3574 0.3810 0.3537
fi6 0.2454| 0.2689 | 0.2889 0.2540 0.2807
fiz 10.1861| 0.1832 | 0.1964 0.1882 0.1850
fis 0.0120| 0.0503 | 0.0271 0.0172 0.0130
fio 0.0553| 0.0915 | 0.0917 0.0919 0.0819
f20 0.0543| 0.1266 | 0.1269 0.1052 0.0878
f 0.1797| 0.2236 | 0.1980 0.1767 0.1657

Nevertheless, as the GC measure has been validated before [2] as a good predictor
for the generalization ability, we computed the correlation between the general-
ization ability obtained using the original continuos data and the GC obtained
from the several discretization schemes. The results show a strong correlation
value in all cases (measured by the absolute value of the Pearson correlation
coefficient), with largest values observed for the case of the CAIM discretized
data (r=0.89) and also for the ELM based discretizer with twice as much bits
as those generated by CAIM (r=0.86).

4 Conclusions

We have tested in this work the implementation of a non-supervised discretiza-
tion algorithm based on the ELM neural network architecture and compared
the results with those obtained using a supervised discretization method, named
CAIM, known for its good performance. To compare the quality of the represen-
tations obtained we have analyzed the generalization ability using 20 benchmark
data sets. The results show that the same of level of generalization than for the
case of using the original continuous data can be obtained by using approxi-
mately five times more neurons than those selected by the CAIM algorithm,

288 J.J. Carneros et al.

that normally chooses a representation two times larger than the number of in-
put features for binary classification problems, as it is the case of the analyzed
data sets. Considering that the CAIM algorithm is a supervised method, the
previous result can be considered useful, also because of the speed of the ELM
based discretizer, several times faster in comparison to the CAIM algorithm. A
further test of the quality of the discretization representation obtained with the
ELM-based discretizer comes from an experiment carried to measure the value
of the Generalization Complexity of the data sets, finding results quite close to
those obtained when using the CAIM algorithm. As an overall conclusion we can
state that the experiments carried out in this work shows the suitability of us-
ing the ELM as a discretization algorithm, highlighting that even if it generates
larger data representations in comparison to a performant supervised algorithm
like CAIM, the process is much faster and permits to work both with supervised
and unsupervised data.

Acknowledgements. The authors acknowledge support from CICYT (Spain)
through grants TIN2008-04985 and TIN2010-16556 (including FEDER funds)
and from Junta de Andalucia through grant P08-TIC-04026.

References

1. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.B.: An
Implementation of Logical Analysis of Data. IEEE Trans. Knowl. Data Eng. 12,
292-306 (2000)

2. Franco, L., Anthony, M.: The Influence of Oppositely Classified Examples on the
Generalization Complexity of boolean functions. IEEE Trans. Neural Netw. 17(3),
578-590 (2006)

3. Goémez, 1., Franco, L., Jerez, J.M.: Neural Network Architecture Selection: Can
Function Complexity Help? Neural Proc. Lett. 30, 71-87 (2009)

4. Huang, G.B., Zhu, Q.Y ., Mao, K.Z., Siew, C.K., Saratch, P., Sundararajan, N.: Can
Threshold Networks be Trained Directly. IEEE Trans. Circuits Syst. II. 53, 187-191
(2006)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: A New Learning
Scheme of Feedforward Neural Networks. In: Proc. Int. Joint Conf. Neural Networks,
pp. 985-990 (2004)

6. Kurgan, L.A., Cios, K.J.: Caim Discretization Algorithm. IEEE Trans. on Knowl.
and Data Eng. 16(2), 145-153 (2004)

7. Subirats, J.L., Franco, L., Jerez, J.M.: C-mantec: a Novel Constructive Neural Net-
work Algorithm Incorporating Competition between Neurons. Neural Networks 26,
130-140 (2012)

8. Subirats, J.L., Jerez, J.M., Franco, L.: A New Decomposition Algorithm for Thresh-
old Synthesis and Generalization of Boolean Functions. IEEE Trans. on Circuits and
Systems 55-1(10), 3188-3196 (2008)

9. Urda, D., Canete, E., Subirats, J.L., Franco, L., Llopis, L., Jerez, J.M.: Energy
Efficient Reprogramming in wsn Using Constructive Neural Networks. International
Journal of Innovative Computing, Information and Control 8 (2012)

	Data Discretization Using the Extreme Learning Machine Neural Network
	Introduction
	Methods
	A Discretizer Based on the Extreme Learning Machine
	The CAIM Discretization Algorithm
	The C-Mantec Constructive Neural Network Algorithm
	The Generalization Complexity Measure

	Results
	Conclusions

