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Abstract

A local unsupervisedprocessingstage is insertedwithin
a neural networkconstructedto recognize facial expres-
sions.Thestageis appliedin orderto reducethedimension-
ality of the input data while preservingsometopological
structure. Thereceptivefieldsof theneuronsin thefirsthid-
denlayerself-organizeaccordingto a localenergyfunction,
takinginto accountthevarianceof theinputpixels.Thereis
just onesynapsegoingout fromeveryinputpixel andthese
weights,connectingthe first two layers, are trainedwith a
hebbianalgorithm. The structure of the networkis com-
pletedwith specializedmodules,trainedwith backpropaga-
tion, that classifythedata into thedifferentexpressioncat-
egories.Thus,theneural netarchitecture includes4 layers
of neurons,thatwetrain andtestwith imagesfromtheYale
FacesDatabase. We obtaina generalizationrateof

����� ���
on unseenfaces,similar to the

�	�
� ���
rate obtainedwhen

usinga similar systembut implementingPCAprocessingat
theinitial stage.

1. Intr oduction

Faceperceptionis a very importantcomponentof hu-
man cognition. Facesare rich in information about indi-
vidual identity, but alsoaboutmoodandmentalstate,be-
ing accessiblewindowsinto themechanismsgoverningour
emotions.Facialexpressioninteractionsarerelevantin so-
cial life, teacher-studentinteraction,credibility in different
contexts,medicine,etc.Faceexpressionrecognitionis also
useful for designingnew interactive devices offering the
possibility of new ways for humansto interactwith com-
putersystems.

From a neurophysiologicalpoint of view facerecogni-
tion appearsto be very important. Experimentsboth in
monkeys andhumansshow the existenceof dedicatedar-

easin thebrainwhereneuronsrespondselectively to faces
([11, 17, 6]). Also it hasbeenshown that complex visual
processingrelatedto discriminationof facesis a very rapid
taskthatcanbecompletedin approximately100msecsug-
gestingthe involvementof a feed-forward neuralmecha-
nism[13].

In this work we constructa modularneuralnetwork in-
cluding two parts,trainedin differentways: first, a hidden
layerof neuronshaving thetaskof reducingthedimension-
ality of the datato a more suitableform, to be classified
by specializedmodules,sometimescalled”experts”,of the
secondpart,trainedwith backpropagation.

Unsupervisedalgorithmshavebeenshown to beveryef-
fectivein thetaskof reducingthehighdimensionalityof the
input data,for examplePCA or ICA algorithms[15, 2]. In
ourwork anunsupervisedprocedureis appliedlocally, pre-
servingsometopologyof the original images.Our choice
is motivatedby biologicalconsiderationsbasedon theidea
thatanetwork will operatebetterif thevariancein theinput
representationis distributedacrossmany inputneurons,and
not just to a few, asaPCA algorithmtendsto do [19].

On the otherhand,modularityappearsto be a very ef-
fectivesolutionto complicatedtasksallowing bettergener-
alizationproperties,reducingthelongertrainingtimes,and
being also adaptive [7, 8]. Modular networks have been
usedsuccessfullyin several taskssuchasspeaker verifica-
tion, facerecognition,timeseriesprediction,etc. [3, 4, 18],
beingalsovery usefultools for exploring hypothesisabout
brainfunction[5, 10].

Dif ferent systemshave beenconstructedto deal with
facial expressions,see for instance[14] and references
therein,but few of them usea neuralnetwork approach.
For example,in [16] a feedforwardnetwork with PCA in-
put encodingof somefacial features(eyes andmouth) is
trainedto classifyemotions,obtainingan84 % generaliza-
tion rate;Lisetti & Rumelhart[14] haveconstructedaback-
propagationnetwork to classify the degreeof expressive-



nessof faces.Our work continuesto explore the potential
of neuralnetworksto performthiskind of task,trying to re-
spectsomebiological constraints,usingthe capabilitiesof
modularsystems,gandreducingto a minimumtheprepro-
cessingstage.

2. The Databaseof Images

TheYaleFaceDatabase[1] contains165grayscaleim-
agesin GIF formatof 15maleindividualsof differentraces
andfeatures(glasses,beard,moustache,etc.).Thereare11
imagesper subjectincluding differentexpressions,views,
illuminationcondition,etc.

We usea subsetof thedatabasethatconsistsof 14 sub-
jectsdisplaying4 facial expressions:neutralface,happy,
sadandsurprised.The imageswerecroppedto obtainin-
put images8 pixels width by 24 pixels height covering a
portionof thefacelocatedon the left side. (SeeFigure1).
Theimageswerecenteredtakingthetip of thenoseasref-
erenceandsomelight illumination correctionwasapplied
to a coupleof images;bothoperationswerecarriedout by
a humanobserver. The resultingimagesweretransformed
to pgm8-bit grayscaleformat,readyto befed into thenet-
work afteralinearlyscaledtransformationof pixel intensity
to theinterval � 
������ .

Figure1 showsasampleof thedifferentexpressionsdis-
playedby oneof thesubjects.In theleftmostimagethearea
of thefacecroppedandusedasinput is shown.

Figure 1. Sample subject sho wing the four
full face expressions (neutral, happ y, sad
and surprised). The white rectangle inside
the rightmost figure corresponds to the area
cropped and used as input for the neural net-
work.

3. Network Structure

Thenetwork consistsof a 4 layermodularneuralstruc-
turecomposedof sigmoidalunits. The input layerhas192
unitscorrespondingto the 24x8pixelsof theareacropped
from theoriginal images.Every input neurontransmitsin-
formationthrougha singlehebbianweight,projectingto a
specificneuronin thefirst hiddenlayer, selectedaccording
to aself-organizedprocess.Thusonehasat this level anew

reducedrepresentationof theimages,48 neurons,thatpre-
servessometopologicalaspectsof the original input. The
whole network architectureis shown in figure 2, whereat
thetopweshow asampleinputimagefollowedby thestruc-
tureof thereceptivefieldscorrespondingto thefirst hidden
layerneurons.

After this unsupervisedcompressionthe network splits
into threemodulescorrespondingto theexpressionsdiffer-
ent from the neutralface: happy, sadandsurprised. The
structureof themodulescoulddependon theemotionthey
specializein; in thecasewe considerherethey have all the
sametypeof architecture:onehiddenlayerfully connected
with oneoutputunit. Thereis a differencein thenumberof
hiddenneuronsbelongingto eachmodulessincetherecog-
nition of happy andsurprisedfacesis mucheasierthanthe
recognitionof sadones,a fact that waspreviously known
from experimentsbothwith humansandcomputers[5]. It
wasnecessaryto put 4 hiddenneuronsfor sadfaceswhile
3 neuronswere enoughfor happy andsurprisedones. In
this way the output of the whole network has3 neurons
that shouldbe all OFF when a neutral face is presented,
while whena facedisplayinganemotionis shown, thecor-
respondingmoduleunit shouldbeON.

Table 1. Generalization error rates for the
modules, specializ ed in happ y, sad and sur -
prise faces, and for the whole net using fir st
layer self-or ganizing receptive fields-hebbian
(SORF-Hebbian), PCA, and random process-
ing. The generalization error is measured
after the training procedure succeeds, when
the training error per example turns out to be
around 
 � 
 � .
Expression Error Error Error
Module (SORF-Hebbian) (PCA) (Random)
Happy 0.057 0.082 0.089
Sad 0.044 0.032 0.154
Surprise 0.053 0.053 0.071
Total 0.154 0.167 0.314

3.1. Self-organizationof receptivefields

As we mentionedbefore,the first layerof weightsself-
organizesaccordingto thevarianceof theinputpixels,with
theaimof obtainingadistributedactivity in thefirst hidden
layerof neurons.Initially, thereceptivefieldsof first hidden
layerneuronsaresquareblocksof

�����
pixelsof theinput

images.
The receptive fields evolve accordingto the following

dynamics:a neuronfrom the first hiddenlayer is selected,
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Figure 2. Schematic structure of the netw ork architecture used to perf orm facial expression recog-
nition. The netw ork has 192 inputs corresponding to the par t of the face considered and being
projected via hebbian weights to 48 neur ons in the fir st hid den layer, with self-or ganiz ed receptive
fields. The modules, specializ ed in the diff erent expressions: happ y, sad and surprise , have a one
hid den layer structure with an output that should be activ ated when a face displa ying its correspond-
ing expression is presented at the input. At the top, one of the input sample images is sho wn.



thenthe convenienceof increasingits receptive field size,
by absorbinga weight from a contiguouspixel at the input
level, is computed.A possiblemodificationof thereceptive
field is evaluatedthrougha simulatedannealingprocedure
[12] involving alocalenergy functioncalculatedfor thetwo
receptivefieldsinvolved,onethatmayincrease,thatwecall�����

andtheotherthatcoulddecreaseits size,
�����

. The
changein theconfigurationis alwaysacceptedif theenergy
differencebetweeninitial and modified statesis negative
but couldalsobeacceptedin casethedifferenceis positive,
dependingon a time decreasingprobability. We definethe
energy of thereceptivefields, � � ����!#" , as:

� � ��� ! "%$ &')(*,+-�.	/1032 V 465 -879;:=< ! V 4�5?>@
A �

whereV 4�5 - is the varianceof a pixel belongingto the re-
ceptive field B underconsideration,V 4�5 is a constantthat
we setto themeanvarianceof all thepixels,and < ! is the
numberof pixelsforming thereceptivefield.

Throughthis procedurewe obtainnew reorganizedre-
ceptive fields with a variabledimensionthat we constrain
between1 to 10 pixels. Thedynamicstendsto form small
receptive fields containingpixels with high varianceand
larger receptive fields including many low variancepixels.
In thiswaymoreimportanceis givento pixelswith ahigher
variancebut at thesametime it is possibleto obtaina dis-
tributedresponse,at thefirst hiddenlayerunits,by cluster-
ing many low variancepixelsin somereceptivefields.

In figure3 areshown threestatescorrespondingto initial,
intermediateandfinal stagesof theself-organizingprocess.
Differentcolourmeana differentreceptive field, the mean
varianceof the constitutingpixels being indicatedby the
brightness:the darker tonescorrespondto a lower mean
variance.Note that the sizeof the darker clustersis larger
comparedto theclearerones.

4. Training procedure

As theamountof dataavailablefor trainingandtestingis
limited (14subjects,56 images),wedecidedto useacross-
validationtest,normally usedin similar situations.In this
procedure13 out of the 14 available subjectsare chosen
to train the network andthe 4 unseenfacesof the remain-
ing subjectareusedto testthegeneralizationability of the
system.This procedureis repeated14 times,onefor each
subjectbeingkeptout of thetrainingset.

Thefirst layerof 192weights,onefor eachinput pixel,
is trainedwith anunsupervisedhebbianalgorithm.

The Hebbianrule usedis Oja’s rule, known to tend to
a principal componentanalysisof the input vectors,con-
verging to the largesteigenvector, while normalizationis

a)

b)

c)

Figure 3. Receptive field evolution at diff erent
stages of the self-or ganizing process a) Initial
state b) Intermediate state c) Final state . The
mean variance of the input pix els correspond-
ing to the receptive fields is indicated by the
level of brightness, with darkest pix els being
the low variance ones.

ensured[15, 9]. The changein the weight valuescanbe
writtenas, CED ! $GFIH �KJ ! : H D ! " � (1)

where

D ! is oneof theweightsconnectinganinput neuron
with value J ! to a first hiddenlayer neuron,with net inputH

, HL$ M+ !ON)P J !
D ! � (2)

and
F

is a learningconstantthatwaskeptfixedto 
 � 
 � .
Therestof theweights,thosebelongingto themodules,

were trainedwith the standardbackpropagationalgorithm
(Hertz,Krogh & Palmer, 1993;Haykin, 1995). To prevent
overtrainingandto permit a bettergeneralizationcapacity
we monitor the training error on eachinput image,to stop
the training on such imagewhen this error is lower than
 � ��
 . Sincethebackpropagationtraining is anon-linepro-
cedure,at theendof thetrainingphasetheaverageerrorper
exampleis decreasedto 
 � 
 � , approximately.

All layersof weightsweretrainedat thesametimeupon
thepresentationof aninput image.



5. Resultsand Discussion

Weexplorethegeneralizationability of amodularneural
systemto classifyfacialexpressions.Usinga mixedlearn-
ing schemecomposedby unsupervised-supervisedtraining,
we obtaina generalizationability on novel facesof

����� ���
,

comparedto a
�	�
� ���

whenreplacingtheunsupervisedpro-
cedureby a principal component(PCA) one. Thegeneral-
ization error ratesproducedby the threemodulesspecial-
izedin differentexpressionsareshown in table1. We com-
paredthe resultsfrom our mixed ”Self OrganizedRecep-
tiveFields- Hebbian”(SORF-Hebbian)schemeto thoseob-
tainedreplacingtheunsupervisedprocesswith PCAprepro-
cessing,andalsowith asetof randomweightsandreceptive
fieldsin theinitial configuration(see3a).For thecaseof us-
ing thePCA analysiswe projectthe input dataonto the <
principal component,and train the backpropagationmod-
uleswith the resultingdata. We experimentwith different
valuesof < , obtainingthebestresultswith < $ �	Q

. The
randomprocessingcasecorrespondsto settingtheweights
of the first layer to randomvaluesuniformly within the
range � 
 : 
 �SR � , while no learningis applied. This proce-
durehasshown to performbetterthanthesimpleaverageof
weights,andit is shown herejust for comparison.

Self organizationandHebbianlearning,in our caseap-
plied locally, confirmto beinterestingproceduresfor com-
pressingdatain a morebiologicalway, comparedto a PCA
approach.

Theadvantageof themodularapproachis thatit permits
theadditionof new modulesto recognizedifferentexpres-
sionsthatcouldbetrainedseparately.

We arecurrentlyconsideringmany possibleextensions
of thiswork, trying to implementtheunsupervisedprocess-
ing stagethrougha competitive learningschemeandalso
to testthesystemwith a moreextensivedatabase.It would
alsobe desirablethat the network itself shouldbe capable
of performingtheidentificationof a facein acomplex input
image,permitingthe useof the systemin a morerealistic
way, for exampleto mountit on a robot.
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