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Abstract

A local unsupervisegrocessingtage is insertedwithin
a neural network constructedto recaynize facial expres-
sions.Thestageis appliedin orderto reducehedimension-
ality of the input data while preservingsometopolagical
structue. Thereceptivedieldsof theneuonsin thefirst hid-
denlayerself-olganizeaccodingto alocal enegyfunction,
takinginto accounthevarianceof theinputpixels. Theris
justonesynapseayoingout fromeveryinput pixel andthese
weights,connectinghe first two layers, are trainedwith a
hebbianalgorithm. The structue of the networkis com-
pletedwith specializednodulestrainedwith badkpropaga-
tion, that classifythe datainto the differentexpressioncat-
egories. Thus,the neural netarchitecture includes4 layers
of neuons,that wetrain andtestwith imagesfromthe Yale
FacesDatabase We obtaina genealizationrate of 84.5%
on unseerfaces,similar to the 83.2% rate obtainedwhen
usinga similar systerbut implementing®CAprocessingat
theinitial stage.

1. Intr oduction

Faceperceptionis a very importantcomponentof hu-
man cognition. Facesarerich in information aboutindi-
vidual identity, but also aboutmood and mentalstate,be-
ing accessiblevindows into themechanismgoverningour
emotions.Facial expressioninteractionsarerelevantin so-
cial life, teacherstudentinteraction,credibility in different
contets, medicine etc. Faceexpressiorrecognitionis also
useful for designingnew interactive devices offering the
possibility of new ways for humansto interactwith com-
putersystems.

From a neurophysiologicapoint of view facerecogni-
tion appearsto be very important. Experimentsboth in
monkeys and humansshaw the existenceof dedicatedar

easin the brainwhereneuronsrespondselectvely to faces
([11, 17, 6]). Also it hasbeenshowvn that complex visual
processingelatedto discriminationof faceds a very rapid
taskthatcanbe completedn approximatelyl 00 msecsug-
gestingthe involvementof a feed-forward neuralmecha-
nism[13].

In this work we constructa modularneuralnetwork in-
cludingtwo parts,trainedin differentways: first, a hidden
layerof neuronshaving thetaskof reducingthe dimension-
ality of the datato a more suitableform, to be classified
by specializednodules sometimesalled”experts”, of the
secondart, trainedwith backpropagation.

Unsupervise@lgorithmshave beenshovn to bevery ef-
fectivein thetaskof reducingthehigh dimensionalityof the
input data,for examplePCA or ICA algorithms[15, 2]. In
ourwork anunsupervisegroceduras appliedlocally, pre-
servingsometopology of the original images. Our choice
is motivatedby biological considerationbasedn theidea
thatanetwork will operatebetterif thevariancen theinput
representatiors distributedacrossnary inputneuronsand
notjustto afew, asaPCA algorithmtendsto do[19].

On the other hand,modularity appeardo be a very ef-
fective solutionto complicatedasksallowing bettergener
alizationpropertiesreducingthelongertrainingtimes,and
being also adaptve [7, 8]. Modular networks have been
usedsuccessfullyin severaltaskssuchasspealer verifica-
tion, facerecognition time seriesprediction,etc.[3, 4, 18],
beingalsovery usefultools for exploring hypothesisabout
brainfunction[5, 10].

Different systemshave beenconstructedto deal with
facial expressions,see for instance[14] and references
therein, but few of them use a neuralnetwork approach.
For example,in [16] a feedforward network with PCA in-
put encodingof somefacial features(eyes and mouth) is
trainedto classifyemotions,obtainingan 84 % generaliza-
tion rate;Lisetti & Rumelhar{14] have constructedback-
propagationnetwork to classify the degree of expressve-



nessof faces.Our work continuesto explore the potential
of neuralnetworksto performthiskind of task,trying to re-
spectsomebiological constraintsusingthe capabilitiesof
modularsystemsgandreducingto a minimumthe prepro-
cessingstage.

2. The Databaseof Images

The Yale FaceDatabaségl] contains165gray scaleim-
agesn GIF formatof 15 maleindividualsof differentraces
andfeaturegglassesbeard,moustacheetc.). Therearell
imagesper subjectincluding differentexpressionsyiews,
illumination condition,etc.

We usea subsedf the databasehat consistsof 14 sub-
jectsdisplaying4 facial expressions:neutralface, happy,
sadandsurprised. The imageswere croppedto obtainin-
put images8 pixels width by 24 pixels heightcovering a
portion of thefacelocatedon theleft side. (SeeFigurel).
Theimageswerecenteredakingthetip of the noseasref-
erenceand somelight illumination correctionwas applied
to a coupleof images;both operationsverecarriedout by
a humanobsener. Theresultingimagesweretransformed
to pgm8-bit gray scaleformat, readyto befed into the net-
work afteralinearly scaledransformatiorof pixelintensity
to theinterval [0, 1].

Figurel shovs a sampleof thedifferentexpressionglis-
playedby oneof thesubjectsln theleftmostimagethearea
of thefacecroppedandusedasinputis shovn.

Figure 1. Sample subject showing the four

full face expressions (neutral, happy, sad
and surprised). The white rectangle inside
the rightmost figure corresponds to the area
cropped and used as input for the neural net-
work.

3. Network Structure

The network consistsof a 4 layer modularneuralstruc-
ture composedf sigmoidalunits. Theinputlayerhas192
units correspondingo the 24x8 pixels of the areacropped
from the original images.Every input neurontransmitsin-
formationthrougha single hebbianweight, projectingto a
specificneuronin thefirst hiddenlayer, selectedaccording
to aself-oganizedorocessThusonehasatthislevel anew

reducedepresentationf theimages48 neuronsthatpre-
senessometopologicalaspectof the original input. The
whole network architectureis shawvn in figure 2, whereat
thetopwe shav asampldnputimagefollowedby thestruc-
ture of thereceptve fields correspondingo thefirst hidden
layerneurons.

After this unsupervisedompressiorthe network splits
into threemodulescorrespondindo the expressiongiffer-
ent from the neutralface: happy, sadandsurprised. The
structureof the modulescould dependon the emotionthey
specializen; in the casewe considetherethey have all the
sametype of architectureonehiddenlayerfully connected
with oneoutputunit. Thereis a differencein the numberof
hiddenneuronsgelongingto eachmodulessincetherecog-
nition of happy andsurprisedacesis mucheasierthanthe
recognitionof sadones,a fact that was previously known
from experimentsboth with humansandcomputerg5]. It
wasnecessaryo put 4 hiddenneuronsfor sadfaceswhile
3 neuronswere enoughfor happy and surprisedones. In
this way the output of the whole network has3 neurons
that shouldbe all OFF when a neutralfaceis presented,
while whenafacedisplayinganemotionis shovn, thecor
respondingnoduleunit shouldbe ON.

Table 1. Generalization error rates for the
modules, specializ ed in happy, sad and sur-
prise faces, and for the whole net using first
layer self-or ganizing receptive fields-hebbian
(SORF-Hebbian), PCA, and random process-
ing. The generalization error is measured
after the training procedure succeeds, when
the training error per example turns out to be
around 0.02.

Expression Error Error Error
Module (SORF-Hebbian) (PCA) (Random)
Happy 0.057 0.082 0.089
Sad 0.044 0.032 0.154
Surprise 0.053 0.053 0.071
Total 0.154 0.167 0.314

3.1 Self-organization of receptwve fields

As we mentionedbefore,thefirst layer of weightsself-
organizesaccordingto thevarianceof theinput pixels,with
theaim of obtaininga distributedactivity in thefirst hidden
layerof neuronslnitially, thereceptvefieldsof first hidden
layerneuronsaresquareblocksof 2 x 2 pixelsof theinput
images.

The receptve fields evolve accordingto the following
dynamics:a neuronfrom the first hiddenlayeris selected,
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Figure 2. Schematic structure of the network architecture used to perform facial expression recog-
nition. The network has 192 inputs corresponding to the part of the face considered and being
projected via hebbian weights to 48 neurons in the first hidden layer, with self-or ganiz ed receptive
fields. The modules, specializ ed in the diff erent expressions: happy, sad and surprise , have a one
hid den layer structure with an output that should be activ ated when a face displa ying its correspond-
ing expression is presented at the input. At the top, one of the input sample images is shown.



thenthe corvenienceof increasingits receptve field size,
by absorbinga weightfrom a contiguouspixel at the input
level,is computed A possiblemodificationof thereceptie
field is evaluatedthrougha simulatedannealingorocedure
[12] involving alocalenegy functioncalculatedor thetwo
receptvefieldsinvolved,onethatmayincreasethatwe call
RF* andtheotherthatcould decreaséts size, RF~. The
changén theconfigurationis alwaysacceptedf theenegy
differencebetweeninitial and modified statesis negative
but couldalsobeacceptedn casethe differenceis positive,
dependingpn a time decreasingrobability. We definethe
enegy of thereceptvefields, E(RF?), as:

2

Z Var; | — NVar| ,
JERF?

E(RFY) =

whereVar; is the varianceof a pixel belongingto the re-
ceptie field 4+ underconsiderationVar is a constantthat
we setto the meanvarianceof all the pixels,and N; is the
numberof pixelsformingthereceptvefield.

Throughthis procedurewe obtain nen reomganizedre-
ceptive fields with a variabledimensionthat we constrain
betweenl to 10 pixels. The dynamicstendsto form small
receptve fields containingpixels with high varianceand
largerreceptve fieldsincluding mary low variancepixels.
In thisway moreimportances givento pixelswith ahigher
variancebut at the sametime it is possibleto obtaina dis-
tributedresponseat thefirst hiddenlayer units, by cluster
ing mary low variancepixelsin somereceptve fields.

In figure3 areshovn threestatesorrespondingo initial,
intermediateandfinal stageof the self-oganizingprocess.
Differentcolour meana differentreceptve field, the mean
varianceof the constitutingpixels being indicatedby the
brightness:the darker tonescorrespondo a lower mean
variance.Note thatthe size of the darker clustersis larger
comparedo theclearerones.

4. Training procedure

As theamountof dataavailablefor trainingandtestingis
limited (14 subjects56 images)we decidedto usea cross-
validationtest, normally usedin similar situations.In this
procedurel3 out of the 14 available subjectsare chosen
to train the network andthe 4 unseerfacesof the remain-
ing subjectareusedto testthe generalizatiorability of the
system. This procedurds repeatedL4 times,onefor each
subjectbeingkeptout of thetraining set.

Thefirst layer of 192 weights,onefor eachinput pixel,
is trainedwith anunsupervisethebbiamalgorithm.

The Hebbianrule usedis Oja’s rule, known to tendto
a principal componentanalysisof the input vectors,con-
verging to the largesteigervector while normalizationis

Figure 3. Receptive field evolution at diff erent
stages of the self-or ganizing process a) Initial
state b) Intermediate state c) Final state. The
mean variance of the input pixels correspond-
ing to the receptive fields is indicated by the
level of brightness, with darkest pixels being
the low variance ones.

ensured15, 9]. The changein the weight valuescanbe
written as,

Aw; =0V (& — V), (1)

wherew; is oneof theweightsconnectinganinput neuron
with value¢; to afirst hiddenlayer neuron,with netinput
v,

4
V= Zgiwia (2)
i=1

ands is alearningconstanthatwaskeptfixedto 0.05.

Therestof theweights,thosebelongingto the modules,
weretrainedwith the standardbackpropagatiomlgorithm
(Hertz,Krogh & Palmer, 1993; Haykin, 1995). To prevent
overtrainingandto permita bettergeneralizatiorcapacity
we monitor the training error on eachinput image,to stop
the training on suchimage when this error is lower than
0.10. Sincethe backpropagatiotrainingis anon-line pro-
cedureattheendof thetrainingphaseheaverageerrorper
exampleis decreasetb 0.02, approximately

All layersof weightsweretrainedatthe sametime upon
thepresentatiomf aninputimage.



5. Resultsand Discussion

We explorethegeneralizatiorability of amodulameural
systemto classifyfacial expressionsUsing a mixedlearn-
ing schemecomposedy unsupervised-superviséeining,
we obtaina generalizatiorability on novel facesof 84.5%,
comparedo a83.2% whenreplacingthe unsupervisegro-
cedureby a principal componen{PCA) one. Thegeneral-
ization error ratesproducedby the threemodulesspecial-
izedin differentexpressionsreshavn in tablel. We com-
paredthe resultsfrom our mixed "Self OrganizedRecep-
tive Fields- Hebbian"(SORF-Hebbiangchemédo thoseob-
tainedreplacingheunsupervisegrocessvith PCAprepro-
cessingandalsowith asetof randonweightsandreceptve
fieldsin theinitial configuration(see3a). For thecaseof us-
ing the PCA analysiswe projecttheinput dataontothe N
principal componentand train the backpropagatiomod-
uleswith the resultingdata. We experimentwith different
valuesof N, obtainingthe bestresultswith N = 36. The
randomprocessingasecorrespondso settingthe weights
of the first layer to randomvaluesuniformly within the
range[0 — 0.7], while no learningis applied. This proce-
durehasshown to performbetterthanthe simpleaverageof
weights,andit is shavn herejust for comparison.

Self organizationand Hebbianlearning,in our caseap-
plied locally, confirmto beinterestingproceduregor com-
pressingdatain a morebiologicalway, comparedo a PCA
approach.

Theadwantageof themodularapproachs thatit permits
the additionof new modulesto recognizedifferentexpres-
sionsthatcould betrainedseparately

We are currently consideringmary possibleextensions
of thiswork, trying to implementtheunsupervisegrocess-
ing stagethrougha competitve learningschemeand also
to testthe systemwith a moreextensve databaselt would
alsobe desirablethat the network itself shouldbe capable
of performingtheidentificationof afacein acomplecinput
image,permiting the useof the systemin a morerealistic
way, for exampleto mountit onarobot.
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