
Contents

1 Mathematical Preliminaries 3
1.1 Remembering sets and their properties . . . . . . . . . . . . . 3
1.2 Finite and Infinite Sets . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Fundamental proof techniques . . . . . . . . . . . . . . . . . . 13

2 Languages and Grammars 17
2.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Language representation . . . . . . . . . . . . . . . . . . . . . 21
2.3 Cardinality, Representation and Languages . . . . . . . . . . 22
2.4 Language Representation . . . . . . . . . . . . . . . . . . . . . 23
2.5 Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Grammar Classification . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Language Classification . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Basic questions about Languages . . . . . . . . . . . . . . . . 36
2.10 Operations over languages . . . . . . . . . . . . . . . . . . . . 37
2.11 Closure for the different types of languages . . . . . . . . . . . 39

3 Regular Expressions 41
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Properties of Regular Expressions . . . . . . . . . . . . . . . . 43

4 Finite Automata 49
4.1 Deterministic Finite Automata (DFA) . . . . . . . . . . . . . 49
4.2 Non-deterministic Finite Automata (NDFA) . . . . . . . . . . 53
4.3 Minimum Deterministic Finite Automata (MDFA) . . . . . . . 58
4.4 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Regularity conditions 59
5.1 Myhill-Nerode Theorem . . . . . . . . . . . . . . . . . . . . . 59
5.2 Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1



2 CONTENTS

6 Context Free Languages 65
6.1 Parse trees and Ambiguity . . . . . . . . . . . . . . . . . . . . 65
6.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Simplification of Context Free Grammars (CFG) . . . . . . . . 67
6.4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Non-deterministic Pushdown Automata (NDPA) . . . . . . . . 69
6.7 Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 The Turing Machine 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . 76



Chapter 1

Mathematical Preliminaries

We review in this unit some mathematical preliminaries that will be needed
in the rest of the book. We start by defining some basic properies of sets, to
see later issues related to the cardinality of finite and infinite sets.

1.1 Remembering sets and their properties

Definition 1.1 Power set
Given a set A, the power set of A, denoted as 2A, is defined as the set

containing all possible subsets of A:

2A = {B | B ⊆ A}

Note: For every set A, A ∈ 2A and ∅ ∈ 2A (∅ is the empty set).

Definition 1.2 Proper subset
Given a set A, B is a proper subset of A iff B ⊆ A ∧ B 6= A ∧ B 6= ∅.

Notation: 1) B ⊆ A : B is a subset of A. 2) B ⊂ A : B is a proper
subset of A.

Definition 1.3 Partition
Given a set A , Π ⊆ 2A is a partition of A iff the following conditions are

true:

1. ∪
Ai∈Π

Ai = A

2. Ai ∩ Aj = ∅ ∀i 6= j
3. Ai 6= ∅ ∀Ai ∈ Π

3



4 Chapter 1. Mathematical Preliminaries

Definition 1.4 Relation
Given two sets A and B, a relation R from A (initial set) to B (final set)

is a subset of the Cartesian product A×B, i.e., R ⊆ A×B.

Note: The Cartesian product of two sets A and B, denoted by A× B, is
defined as:

A×B = {(a, b) | a ∈ A, b ∈ B}

A × B is the set that includes all pairs such that the first component of
the pair is a member of A while the second component is a member of set B.

Definition 1.5 Binary relation
Given a set A, R is a binary relation on A if R is a subset of the Cartesian

product of A× A (R ⊆ A× A).

Definition 1.6 Properties of Binary relations
Given a set A and a relation R on A, we say that:

R is Reflexive iff (a, a) ∈ R ∀a ∈ A.
R is Symmetric iff (a, b) ∈ R⇒ (b, a) ∈ R.
R is antisymmetric iff (a, b) ∈ R ∧ a 6= b⇒ (b, a) /∈ R.
R is Transitive iff (a, b) ∈ R ∧ (b, c) ∈ R⇒ (a, c) ∈ R.

Definition 1.7 Equivalence relation
An Equivalence relation R on a set A is a relation that is reflexive, sym-

metric and transitive.

Definition 1.8 Equivalence Class
Let A be a set and R an equivalence relation on A. Let a be an element

of A (a ∈ A) . Then, the Equivalence class of a, denoted as [a], is defined
as:

[a] = {b ∈ A | (a, b) ∈ R}

Note: An aquivalence relation on a set A defines a partition of the set
where each element of the partition defines an equivalence class.

Definition 1.9 Identity relation (I)
Given a set A , the Identity relation I is defined as I = {(a, a) | a ∈ A}.



1.1. REMEMBERING SETS AND THEIR PROPERTIES 5

Definition 1.10 Inverse (or converse) relation (R−1)
Given a set A and a relation R on A the Inverse relation of R is defined

as:

R−1 = {(a, b) | (b, a) ∈ R}

Definition 1.11 Power of a relation (Rn)
Given a set A and a relation R on A, the power of R is defined as:

For n = 1 : R1 = R.

For n ≤ 2 : (a, b) ∈ Rn iff ∃x ∈ A | (a, x) ∈ Rn−1 ∧ (x, b) ∈ R.

Definition 1.12 Closure of a relation
Given a set A and a relation R, we define:

The reflexive closure of R as R ∪ I.
The symmetric closure of R as R ∪R−1.

The transitive closure of R as R∞, where R∞ =
∞
∪

n=1
Rn.

Definition 1.13 Mapping
A mapping f from a set A to a set B, denoted f : A → B is a relation

from A to B such that ∀a ∈ A ∃! (a, b) ∈ f .

Definition 1.14 Function
We will use the term function as a synonym to mapping, and then the

definition of function is the one given previously in 1.13. Usually functions
are seen as input-output process writing f(a) = b instead of (a, b) ∈ f .

Definition 1.15 Domain of a function (also valid for an application)
Given the function f : A → B. The Domain of f (Dom(f) ) is defined

as:
Dom(f) = {a ∈ A | f(a) = b with b ∈ B}.

Definition 1.16 Range, Codomain or Image of a function.
Given the function f : A→ B the range of f ( Rg(f) ) is defined as:

Rg(f) = {f(a) ∈ B | a ∈ A}.

Definition 1.17 Injective function (one-to-one function)
A function f : A→ B is injective iff x 6= z ⇒ f(x) 6= f(z).
Note: f is injective iff f(x) = f(z)⇒ x = z.



6 Chapter 1. Mathematical Preliminaries

Definition 1.18 Onto or surjective function
A function f : A→ B is surjective iff Rg(f) = B.

Definition 1.19 Bijection
Given a function f : A → B, f is a bijection between A and B if it is

both injective and onto.

According to the definition given, in order to demonstrate that a given
function is a bijection we should demostrate that it is both injective (one-
to-one) and onto. To show that f is injective, we write f(x) = f(z) , solve
the Equation , and if there is a single solution such that x = z , then f
is injective. On the other hand, to show that a function is onto we write
f(x) = b, solve in terms of x , and if this is always solvable then function f
is onto.

Example 1.20 Let I be the set of Odd numbers. Let f : N → I a function
defined by f(n) = 2n+ 1 . We will demonstrate that f is a bijection between
N → I .

a) We first show that is injective:
f(x) = f(z) ⇒ 2x + 1 = 2z + 1 ⇒ 2x = 2z ⇒ x = z that is the unique

solution.
b) we then check if the function is onto: f(x) = b ⇒ 2x + 1 = b ⇒

2x = b − 1 ⇒ x = (b − 1)/2 as b is odd, (b − 1) is even, and then always
(b− 1)/2 ∈ N .

Definition 1.21 Internal operation
Let A be a set, every application f : A× A→ A is an internal operation

on A. It can be written as A× A→ A.
Note: The concept of internal operation (binary) can be also extended to

n-ary operations (Unitary, ternary, etc).

Definition 1.22 Associative property
Let A be a set and let • be an internal operation on A (• : A×A→ A) .

The operation • is associative iff (x • y) • z = x • (y • z)∀x, y, z ∈ A.

Definition 1.23 Semigroup
A Semigroup is a pair (A, •), where A is a set and • is an internal asso-

ciative operation on this set.

Definition 1.24 Neutral element (e)
Given an operation • over a set , we say that e ∈ A is the neutral element

for this operation iff ∀a ∈ Aa • e = e • a = a.



1.2. FINITE AND INFINITE SETS 7

Definition 1.25 Monoid
A monoid is a semigroup with neutral element.

Definition 1.26 Closure of a set for an operation
Let A be a set and • an operation on A , and let B ⊆ A . B is closed

under the • operation iff x • y ∈ B ∀ x, y ∈ B.

Definition 1.27 Strict closure of a set for an operation
Let A be a set and • an operation on A. Let B ⊂ A . The strict closure

of B for •, denoted B• , is defined as:

1. x ∈ B ⇒ x ∈ B•
2. x, y ∈ B• ⇒ x • y ∈ B•
3. No other element is a member of B• .

Definition 1.28 Extended Closure
Let the pair (A, •) be a monoid , and let B ⊂ A . The closure set of B

for the operation • , noted as B • e = B , is defined as :

B • e = B • ∪{e}
where e is the neutral element of the monoid.

Note: Note that the closure for an operation is a property that can be true
or false, while the closure is an operation and not properties.

1.2 Finite and Infinite Sets

Definition 1.29 Equinumerous set
Let A and B be two sets. They are equinumerous if ∃ f : A → B | f is

bijection.

Definition 1.30 Finite set
A set a is finite if it is the empty set or ∃n ∈ N | {1, 2, . . . , n} and A are

equinumerous.

Definition 1.31 Cardinality of non-empty finite sets
The cardinality of a non-empty finite set A is n, denoted ||A|| = n, iff A

and {1, 2, . . . , n} are equinumerous.

Definition 1.32 Cardinality of the empty set
The cardinality of the empty set is zero:

||∅|| = 0

.



8 Chapter 1. Mathematical Preliminaries

Definition 1.33 Infinite set
A set A is infinite iff it is not finite.

Definition 1.34 Countably infinite set
A set A is countable infinite iff A and N are equinumerous.

Definition 1.35 Countable and non countable sets
Let A be a set, we say that is countable in case it is finite or infinite

countable. In any other case we say that it is uncountable.

Proposition 1.36 Every subset of a countable set is countable.

Proof We know that a countable set can be finite or countably infinite. On
one hand, it is trivial to see that every subset of a finite set is also finite,
and thus countable. On the other, a subset of an infinite countable set can
be finite or infinite. The first case corresponds to a countable set. In the
second case, we have a set A that is countably infinite (through the bijection
g : N → A ), and an infinite subset B ⊆ A .

Given D ⊆ A , and defining the minimum of a set D , noted min(D), as:

min(D) = g(min{i ∈ N | g(i) ∈ D})

Defining f : N → B as:

f(n) = min(B − {f(m) | m < n})

that for construction is a bijection implying that B is countable.

Proposition 1.37 The union of any finite number of countably infinite sets
is countably infinite.

Proof We suppose that the sets are countably infinite and disjoints, as in
the former case the demonstration is trivial while in the latter is reducible
to disjoints sets. We a technique of interweaving the enumeration of several
sets known as “dovetailing”. In this way we establish a bijection between the
union of the sets and the set of Natural numbers ( f : A0∪A1∪ . . .∪Ak → N)
according to Fig. 1.1.

The expression of this function for n sets is : fn(aij) = nj + i

Proposition 1.38 The union of a countably infinite collection of countable
sets is countable.



1.2. FINITE AND INFINITE SETS 9

Figure 1.1: Basic dovetailing enumeration technique

Figure 1.2: Dovetailing enumeration technique used to demonstrate propo-
sition 1.38.



10 Chapter 1. Mathematical Preliminaries

Proof Following the same ideas as in the previous demonstration, we con-
struct a bijection between the elements of the union of sets and the set of
natural numbers according to the diagram shown in Figure 1.2

The expression of f in this case is: f(aij) = (i+j)(i+j+1)
2

+ j.

Corollary 1.39 The Cartesian product of two countably sets is countable.

Proposition 1.40 The finite power of a countable set is countable.

Proof We apply the induction technique:

a) N1 = N , it is countable by definition.
b) Let’s suppose that Nn is countable.
c) Nn+1 = Nn ×N ⇒ Nn+1 is countable, because of b) and corol-
lary 1.38.

Note: The induction technique will be seen later in this chapter. The
proposition is also valid for N0, as it is finite and thus countable.

Example 1.41 The set of odd numbers is countable as it is a subset of a
countable set. Thus, we know that there should exist a bijection between this
set and the set of Naturals numbers. A sample of this bijection is f(n) =
2n+ 1.

The set of odd numbers larger than 100 is countable, as it is a subset
of a countable set. The bijection with the naturals numbers in this case is
f(i) = i+ 100.

For the same reason, the set of numbers multiple of seven and larger
than seventeen is also countable. A bijection with the naturals numbers is
f(n) = 7n+ 21.

Definition 1.42 Cardinal of the set of Natural Numbers
||N || = ℵ0 (aleph zero).

Theorem 1.43 Cantor’s Theorem: The cardinal of the set of Real numbers
is not equal to the cardinal of the set of Natural numbers: ||N || 6= ||R||.

Proof : To show that ||N || 6= ||R|| instead of using the whole real line we
will work only with the (0, 1) interval, as this interval is equinumerous to the
set of Real numbers R. The following function:

g(x) = tg

[(
x− 1

2

)
Π

]
establishes a bijection between (0, 1) and R .



1.2. FINITE AND INFINITE SETS 11

	
  

Figure 1.3: Tangent function

The demonstration that the interval (0, 1) is not countable will be based
on a contradiction that arises if we suppose the opposite.

Thus, let’s assume that the interval (0, 1) is equinumerous to N . There
shoud be a bijection f : N → (0, 1) between these two sets. Let’s denote ri
to f(i), to have:

0→ f(0) = r0

1→ f(1) = r1

2→ f(2) = r2

. . .

If the previous enumeration is holds, then we can assert that all real
numbers in the interval (0, 1) there will be included in the folowing list:

r0 = 0, d00 d01 d02 d03 . . .

r1 = 0, d10 d11 d12 d13 . . .

r2 = 0, d20 d21 d22 d23 . . .

r3 = 0, d30 d31 d32 d33 . . .

. . .

where each dij (with i, j ∈ N ) is the j-th digit in the complete decimal
expression of the real number ri (the i-th real number of the list). For the



12 Chapter 1. Mathematical Preliminaries

real numbers with two different decimal expressions (infinite zeros or nines
to the right) we choose the expression with infinite number of nines.

Let r = 0, d0 d1 d2 d3 . . . ∈ (0, 1) where

∀ i ≤ 0

{
di = 4 if dii 6= 4

di = 5 if dii = 4
(1.1)

(dii is the i-th digit in the diagonal of the previous list).

Thus, di 6= dii ∀ i ≤ 0⇒ r 6= ri ∀ i ≤ 0⇒ r is not in the previous list.
But this contradicts the initial supposition, as we said that all real num-

bers where in the list. Then we conclude that f is not a bijective function
and then R is no equinumerous to N .

Definition 1.44 Cardinal of R
The Cardinal of the set of Real numbers R is aleph one: ||R|| = ℵ1.

Definition 1.45 Transfinite numbers
ℵi ( aleph i ) is the i-th transfinite number. The set {ℵi | i ∈ N} is the

set of all transfinite numbers.

Definition 1.46 Cardinal of infinite sets
The cardinal of an infinite set A is ℵi iff is equipotential to a set with

known cardinal ℵi. We denote it as: ||A|| = ℵi, with i ∈ N .

Example 1.47 All three sets of the example 1.41 have cardinal ℵ0 as bijec-
tion can be established between each of them and the set of naturals numbers.

The interval (0, 1) has cardinality ℵ1 , as a bijection can be established
between this set and the set of real numbers. A function for such bijection is
f(x) = tg[(x− 0.5) π].

The interval (0, 2) has cardinality ℵ1, as there exists a bijection between
this set and the interval (0, 1), which we know its cardinality (ℵ1). A function
to establish the bijection is f(x) = 2x.

Working with infinte sets can be sometimes counterintutive. The best way
to understand it, could be to think the cardinality of infinite sets as a measure
of its “density”. The cardinality of N is known as the number Aleph zero
(ℵ0), the first transfinite number (the “less dense” infinite). Also ||Q|| = ℵ0

as a/b can be considered like a different notation for (a, b) ∈ N ×N .

Finally, two more results we need to know: ℵ1 − ℵ0 = ℵ1 and 2ℵ0 = ℵ1 .



1.3. FUNDAMENTAL PROOF TECHNIQUES 13

1.3 Fundamental proof techniques

We are going to analyze three fundamental proof techniques: the induction
principle, the pigeonhole principle and the diagonalization technique. We
will show by contradiction the validity of the use of the three techniques.

Induction principle
Let A a set of natural numbers for which:

a) 0 ∈ A ;
b) {0, 1, . . . , n} ⊆ A⇒ n+ 1 ∈ A ∀n ∈ N .

Then A = N .

Proof Let A ⊆ N and let conditions a) and b) be true. Suppose that A 6= N ,
then:

using condition a):
A 6= N ⇒ N − A 6= ∅ ⇒ ∃ m /∈ A | m = min(N − A)⇒ m 6= 0,
and using condition b):
⇒ {0, 1, . . . ,m− 1} ⊆ A⇒ m ∈ A⇒ A = N

The induction technique is used to demonstrate statements as: “For all
natural numbers, property P is true”.

The principle is applied to the set A = {n | P is true of n} = {n|P (n)}
following the three next instructions:

Basis step (B.S.): We show that P (0) is true (sometimes we can use
P (n) with n > 0 )
Induction Hypothesis (I.H.): Let’s suppose that ∃ n ≤ 0 | P (i)
∀ i = 0, 1, . . . , n
Induction step (I.S.): Demostrate using the I.H. that P (n+1) is true.

Then because of the induction principle A = N , i.e., ∀nP (n) .

Example 1.48 Show that 1 + 2 + . . .+ n = n2+n
2

, ∀ n ≤ 0

B.S.: Trivial for n = 0
I.H.: Let’s suppose that ∃n ≤ 0 such that 1 + 2 + . . .+m = m2+m

2

with m ≤ n
I.P.: We show the validity for n+ 1 using the I.H.:
1 + 2 + . . .+ n+ (n+ 1) = (1 + 2 + . . .+ n) + (n+ 1) =

= n2+n
2

+ (n+ 1) = n2+n+2n+2
2

= n2+2n+1+n+1
2

= (n+1)2+(n+1)
2

Pigeonhole principle



14 Chapter 1. Mathematical Preliminaries

Let A,B be finite sets, such that ||A|| > ||B|| > 0, and let f be a function
from A to B. Then the function f is not injective.

Proof We will use the induction principle applied to the cardinal of B.

B.C.: Let A,B be finite sets, such that ||A|| > ||B|| = 1(i.e, B =
{b}) , and let f be equal to f : A→ B.
f : A→ B ⇒ ∃ a1, a2 ∈ A |f(a1) = f(a2) = b,with a1 6= a2 ⇒ f
is not injective.
I.H.: If A,B are finite sets, and ||A|| > ||B|| = n , with n ≥ 1,
and f is a function f : A→ B, then f is not injective. (We do not
need to demonstrate this, we just suppose is valid)
I.S.: Let A,B be finite sets, ||A|| > ||B|| = n+ 1 , with n ≥ 1, and
f is a function f : A→ B.

Let be b ∈ B .
We know that B − {b} 6= ∅ because ||B|| ≥ 2.
Let’s analyze the set f−1(b) = {a ∈ A | f(a) = b}.
There are two possible cases:
||f−1(b)|| ≥ 2 and ||f−1(b)|| ≤ 1 .

If ||f−1(b)|| ≥ 2⇒ ∃ a1, a2 ∈ A | f(a1) = f(a2) = b, with a1 6= a2

⇒ f is not injective.
If ||f−1(b)|| ≤ 1 then,
let g be g : A− f−1(b)→ B−{b} | g(a) = f(a)∀ a ∈ A− f−1(b) .
But as ||f−1(b)|| ≤ 1⇒ ||A− f−1(b)|| ≥ ||A|| − 1,
and also ||A|| > ||B|| = n+ 1⇒ ||A|| − 1 > ||B − {b}|| = n
both conditions ⇒
||A− f−1(b)|| > ||B − {b}|| = n, using the I.H ⇒
g is not injective ⇒
∃a1, a2 ∈ A − f−1(b) | g(a1) = g(a2) = c, with a1 6= a2 and
c ∈ B − {b} ⇒ f(a1) = f(a2) ⇒ f is not injective.

Example 1.49 Demonstrate that every proper subset of a finite set is not
equinumerous to it.

Let ||A|| = n and let B be a proper subset of A ⇒ ||A|| > ||B|| > 0⇒
Using the Pigeonhole pronciple :
There is no injective function from A to B ⇒
there is no possible bijection between A and B ⇒ A and B are not equinu-

merous.

Diagonalization principle
Let R be a binary relation defined on a set (R ⊆ A× A) .
Let D be the diagonal set of R, defined as: D = {a ∈ A|(a, a) /∈ R} .
Let Ra = {b ∈ A | (a, b) ∈ R} , then D 6= Ra ∀a ∈ A.



1.3. FUNDAMENTAL PROOF TECHNIQUES 15

Proof ∀a ∈ A we have that:
(a, a) ∈ R⇒ (a ∈ Ra) ∧ (a /∈ D)⇒ Ra 6= D
Ra 6= D ∀a ∈ A
(a, a) /∈ R⇒ (a /∈ Ra) ∧ (a ∈ D)⇒ Ra 6= D

Example 1.50 Demonstrate that 2N is not countable.
Suppose that 2N is countably infinite, then ∃ f : N → 2N | f is a bijection.
Thus 2N can be ordered as 2N = {S0, S1, S2, . . .} , where Si = f(i) ∀ i ∈ N

.

a) Demonstration with implicit use of the principle:
Let D = {n ∈ N | n /∈ Sn} As D ⊆ N ⇒ D ∈ 2N ⇒ ∃!K ∈
N |D = Sk But, does k ∈ Sk ?
If k ∈ Sk ⇒ k /∈ D ⇒ k /∈ Sk ⇒ D 6= Sk ∀k ∈ N ⇒ D /∈ Rg(f)⇒
D = Sk f is not a bijection ⇒ 2N is uncountable.
If k /∈ Sk ⇒ k ∈ D ⇒ k ∈ Sk

b) Demonstration with explicit use of the principle:
Let R = {(i, j) | j ∈ f(i)} on N .
Let D be the diagonal set of R : D = {n ∈ N | (n, n) /∈ R}.
As Si = f(i) we have that Ri = {j ∈ N | (i, j) ∈ R} is Si.
The diagonalization principle tell us that:
Rn 6= D ∀ n ∈ N ⇒ D /∈ Rg(f)⇒ f is not a bijective function ⇒
2N is not countable.

The previous example is known as Cantor’s theorem named on the honour
of George Cantor, even if in reality the proper Cantor’s theorem is a gener-
alization of the previous example that states: “For every set, the cardinal of
its power set is larger than the cardinal of the set”.



16 Chapter 1. Mathematical Preliminaries



Chapter 2

Languages and Grammars

2.1 Languages

Definition 2.1 Alphabet

An alphabet is a finite non-empty set whose elements are symbols. We
normally use the capital greek letter Sigma (Σ) to represent an alphabet, even
if sometimes we may use latin capital letters as well.

Definition 2.2 Strings

A string over an alphabet is a finite sequence of symbols from the same
alphabet. Usually, we will use letters from the u and so on (v, w, x, y, z) to
represent strings and also letters of the Greek alphabet (α, β, ...).

Definition 2.3 The empty string

The empty string is a string containing no symbol. We denote it by the
greek letter epsilon ε .

Definition 2.4 Σ∗,Σ+

Σ∗ : set of all possible strings (including the empty string) over an alpha-
bet Σ .

Σ+ : set of all possible strings, excluding the empty string over an alphabet
Σ .

Definition 2.5 Length of a string (|x|)
The length of a string is defined as the number of symbols it contains.

17



18 Chapter 2. Languages and Grammars

Example 2.6 Given the alphabet Σ = {a, b} :

|ε| = 0

|a| = 1

|abab| = 4

If w = aba, then |w| = 3

Definition 2.7 Ocurrences of a symbol
The symbol a ∈ Σ ocurrs in the j-th position of chain w ∈ Σ+ iff the j-th

symbol of w is a . We use the notation w(j) = a, with 0 < j ≤ |w|. There is
no symbol ocurrencies in the empty string. The number of times a symbol a
appears in a chain w ∈ Σ∗ is indicated by |w|a .

Note: |ε|a = 0 ∀a ∈ Σ.

Example 2.8 Given Σ = {a, b, c} and w ∈ Σ∗ with w = aba , then:

w(1) = a & |w|a = 2

w(2) = b & |w|b = 1

w(3) = a & |w|c = 0

Definition 2.9 Concatenation of strings
Two strings over the same alphabet (x, y ∈ Σ+) can be combined to form

a third string, written x • y or simply xy. Formally, xy is the string that
verifies the following two conditions:

xy(j) =

{
x(j) if j ≤ |x|
y(j − |x|) if j > |x|

with 0 < j ≤ |xy| (2.1)

Given a string x ∈ Σ∗, xε = εx = x.

Note: Given three strings x, y, z ∈ Σ∗ , the following is true: (xy)z =
x(yz) . And thus, the pair ( Σ∗, •) is a monoid, as concatenation is an
associative internal operation with neutral element.

Definition 2.10 Substring
A string v ∈ Σ∗ is a substring of w ∈ Σ∗ iff ∃ x, y ∈ Σ∗ | w = xvy.

Note: Every string is a substring of itself (taking x = y = ε in the
definition). The empty string is a substring of every string (taking x = w
and v = y = ε).



2.1. LANGUAGES 19

Definition 2.11 Suffix

Let w, v ∈ Σ∗ , v is suffix of w iff x ∈ Σ∗ | w = xv.

Definition 2.12 Prefix

Let w, v ∈ Σ∗ , v is a prefix of w iff y ∈ Σ∗ | w = vy.

Example 2.13 Let v = ata. If w = qatar then v is substring of w as
x = q, y = r ∃ Σ∗ | w = xvy

If w = atalaya then v is a prefix of w as x = laya ∈ Σ∗ | w = vx

If w = data then v is suffix of w as x = d ∈ Σ∗ | w = xv

Definition 2.14 Power of a string (wn)

wn =

{
ε, if n = 0

wn−1w, if n > 0
(2.2)

Example 2.15 Compute (pa)2

(pa)2 =


for i = 1 : (pa)2 = (pa)1 pa

for i = 0 : (pa)1 = (pa)0 pa

B.C. : (pa)0 = 1

(2.3)

⇒ (pa)2 = ((εpa)pa) = papa.

Definition 2.16 Reversal of a string ( wR ) (string spelled backwards)

wR

{
if |w| = 0⇒ wR = w = ε

|w| > 0 and w = ua with u = Σ∗ and a ∈ Σ⇒ wR = auR.
(2.4)

Example 2.17 Let w = home. Obtain wR .

(home)R = e(hom)R = em(ho)R = emo(h)R = emoh()R = emoh = emoh

Proposition 2.18 String reversal

For every string x,w ∈ Σ∗ we have that: (wx)R = xRwR

Proof : We will use the induction technique applied to the length of the
string x.



20 Chapter 2. Languages and Grammars

1st.B.C. : |x| = 0⇒ x = ε⇒ (wx)R = (w)R = wR = wR = RwR = xR wR

(2.5)

2nd.I.H. : |x| ≤ n⇒ (wx)R = xRwR (2.6)

3rd.I.S. : Let|x| = n+ 1⇒ x = ua with u ∈ Σ∗, a ∈ Σ and |u| = n (2.7)

(wx)R = (w(ua))R = ((wu)a)R = a(wu)R = auRwR = (ua)RwR = xRwR

(2.8)

(2.9)

Example 2.19 Let x, y ∈ Σ∗, where x = if and y = then.
(xy)R = yRxR as (ifthen)R = (then)R (if)R = nehtfi

Definition 2.20 Language
L is a language over Σ iff L ∈ Σ∗ .

Note: A language is any set of strings over an alphabet Σ.

Example 2.21

Σ∗ is a language (2.10)

{ε} is a language (2.11)

∅ is a language (2.12)

{{ε}} is not a language (over the alphabet Σ) (2.13)

ε 6= ∅ ; ||{ε}|| = 1; ||∅|| = 0 (2.14)

Note: As we do not distinguish between symbols of an alphabet and
strings of lenght 1 over the same alphabet, Σ is also a language.

Since a language is simply a special kind of set, we can specify a finite
language by listing all its strings.

Example 2.22 Let’s define Σ = {a, b, c, d, f, r, z}. L = {aba, czr, d, f} is a
language over the alphabet Σ.

However, most languages of interest are infinite, so that listing all the
strings is not possible. Languages that might be considered {0, 01, 011, 0111, },
{w ∈ {0, 1}∗| w has an equal number of 0’s and 1’s }, and {w ∈ Σ∗ : w =
wR}. Thus we shall specify infinite languages by the scheme :

L = {w ∈ Σ∗ : w has property P}
Strings that belong to the language verify property P while those that do
not belong do not verify.



2.2. LANGUAGE REPRESENTATION 21

Example 2.23 Given Σ = {0, 1}, consider the language L ∈ Σ∗, L =
w ∈ Σ∗ | |w|0 = 2n+ 1 with n ≤ N .

Proposition 2.24 If Σ is an alphabet, then Σ∗ is countably infinite.

Proof We need to show that ||Σ∗|| = 0 , and for that we should propose a
biyection f : Σ∗N .

Given an arbitrary order of the alphabet Σ = {a1, a2, . . . , an}, the mem-
bers of Σ∗ can be enumerated in the following way:

1. Strings of length k (there are nk such strings) are enumerated before
all strings of length k + 1.

2. The nk strings of length k are ordered lexicographically, that is: The
string ai1 . . . aik precedes the string if
∃ m ∈ N, 0 ≤ m ≤ k − 1, | ip = jp for p = 1, . . . ,m and im+1 < jm+1.
And in this way all strings of the language can be ordered.

The expression for the bijection, given Σ = {a1, a2, ..., an}, for a string
w = ai1ai2 . . . ai|w| with ik ∈ {1, ..., n} is :

f : Σ∗ → N

f(w) = Σ
|w|
j=1n

|w|−j ij

Example 2.25 Given Σ = {a1, a2}

|w| = 0 ε ..............0

|w| = 1 a1 ............1

a2 ............2

|w| = 2 a1a1 .........3

a1a2 .........4

a2a1 .........5

a2a2 .........6

|w| = 3 a1a1a1 ......7

...

2.2 Language representation

A central issue in the theory of computation is the representation of languages
by finite specifications.

Given an alphabet Σ, and given Σ∗ the set of all possible strings over the
alphabet, any subset L of Σ∗ is a language over Σ , and we call 2Σ∗ to the



22 Chapter 2. Languages and Grammars

set of all languages over Σ. We know the following about the cardinality of
these sets:

Σ is finite

Σ∗ is countably infinite

L is countable (countably infinite or finite)

2Σ∗ is uncountably infinite (as2ℵ0 = ℵ1)

Let ΣM be the alphabet of the natural language plus all mathematical
symbols, that is , our mathematical alphabet, that we use in our mathemat-
ical language. Any description o representation (finite) of a language L over
Σ is not other than a string of Σ∗M .

We say that a string r ∈ Σ∗M is a representation of a language L over Σ
if a relation exists that belongs to Σ∗M × 2Σ∗ such that the pair (r, L) ∈ RS
and for all L′ 6= L (r, L′) /∈ RS . That is: r ∈ Σ∗M is a representation of a
language L over Σ iff

∃ RS ⊂ Σ∗M × 2Σ∗ | (r, L) ∈ RS ∧ ∀L′ 6= L (r, L′) /∈ RS
If r is a representation of a language L then L is representable. The set

of all representable languages we will be denoted as L.REP . Two represen-
tations are equivalent if they represent the same language.

Given a representation system (RS) the set of language representations
is defined for that RS. This set, denoted by REP, is always countable as is a
subset of Σ∗M that is countable.

2.3 Cardinality, Representation and Languages

A representation is no other than a string over an alphabet ΣM , that repre-
sents a single language, that is , if two representable languages are different
their representation should be as well, and for this reason: ||L.REP || ≤
||REP || .

We know that ||Σ∗M || = ℵ0, and as the set of representations belongs to
Σ∗M follows that ||REP || ≤ ℵ0 .

On the other hand, it is trivial to see that there are an infinite number
of finite languages ( L.finite ), and as every finite language is representable
(at least by listing all its members), then ℵ0 ≤ ||L.REP || ≤ ||REP || .

Putting all together: ℵ0 ≤ ||L.REP || ≤ ||REP || ≤ ℵ0 ⇒ ||L.REP || =
||REP || = ℵ0, and then, a countably infinite number ( ℵ0 ) of representations
exists and also for representable languages.

As by definition L ⊆ Σ∗, the set of all languages over an alphabet Σ is
2Σ∗ . From what follows, as ||Σ∗|| = ℵ0 that ||2Σ∗|| = ℵ1 . (There is a non
countable infinite number ( ℵ1 ) of languages.)



2.4. LANGUAGE REPRESENTATION 23

If from the total of languages ( 2Σ∗ ) we substract those that are repre-
sentable (L.REP) we obtain the set of non-representable languages (L.NOREP),
and as ℵ1−ℵ0 = ℵ1 we can ensure that there is an uncountably infinite num-
ber ( ℵ1 ) of non-representable languages.

2.4 Language Representation

The standard form of defining an infinite language (also valid for the finite
case) is by giving a property that the string of that language should verify:
L = {w ∈ Σ∗|P (w)}.

Apart from the usual ways of stating the property P , for the case of
formal languages there are two additional ways of defining a language: a
recognizing device, and a generating device.

Definition 2.26 Conclusive Algorithm
Finite sequence of precise and finite instructions (unambiguas) such that

given an input/question/problem, returns (compute) always , in finite time
an output/answer/solution.

Definition 2.27 Language Recognizing Device
A conclusive algorithm designed for a language L that can answer correctly

the question:
Does the string w belong to L ?.

Definition 2.28 Language generating device
A set of conclusive algorithms created for a Language L such that produce

all and only the strings of L is a called a generator device of L.

Example 2.29 Let L1 = {w ∈ {a, b}∗ | w does not contain the substring bbb}
.

A recognizing device of L1 could be the following:
We keep reading the symbols of the input string from left to right and

(after initialization of a counter to zero).

1. A counter is resetted every time we read an ‘a’.
2. Add one to the counter every time a ‘b’ is encountered.
3. Stop and answer ‘NO’ if the counter reach three.
4. Stop and answer ‘YES’ if the string is read completely and the
counter has not reached three.



24 Chapter 2. Languages and Grammars

A generating device of L1 could be the following:
For producing a member of L1 first we write nothing or we write ‘b’ or

‘bb’; then we repeat, zero or more times the operation of writing ‘a’, or ‘ab’
or ‘abb’.

Contrary to the recognizing devices, the generating devices are not al-
gorithms, as they can be ambiguous (free choice of options). We will study
recognizing devices that we call Automata (or Automaton in singular), while
the generators will be the Grammars.

2.5 Grammars

We will see next the formal definiton of a grammar and the classification of
grammars and languages.

Definition 2.30 Grammar
A grammar is a quadruple G = (N, T, P, S) where:
N is an alphabet, the nonterminal alphabet, formed by nonterminal sym-

bols.
T is an alphabet, the terminal alphabet, formed by terminal symbols.

N ∩ T = ∅
N ∪ T = V

S ∈ N are the axioma

P ⊂ (V + × V ∗) and it is finite (2.15)

The elements of P , (α, β) ∈ P , are the production rules and will be
denoted as α→ β. Then, P is finite such as:

P = {α→ β, with α ∈ V + ∧ β ∈ V ∗}.
In general, the symbols of the nonterminal alphabet (N) are represented

by capital letters form the begining of the alphabet, while those belonging to
the terminal (T ) are represented with standard letters from the beginning of
the alphabet.

Definition 2.31 To produce directly
Let G = (N, T, P, S) be a grammar . Given x ∈ V + and y ∈ V ∗, we say

that x produces directly y, noted as x⇒ y , if ∃u, v ∈ V ∗, such that:

a)x = uzv (2.16)

b)y = uβv (2.17)

c)∃(z → β)withz ∈ V + and β ∈ V ∗ (2.18)



2.5. GRAMMARS 25

Example 2.32 Let aBaCaab be a string. If (aB → b) ∈ P , then aBaCaab⇒
baCaab If(C → BaD) ∈ P , then aBaCaab⇒ aBaBaDaab

Definition 2.33 To produce in n steps Let G be a grammar G = (N, T, P, S),
and given x, y ∈ V ∗ .

We say that x produces y in zero steps, denoted as x⇒0 y, iff x = y .
We say that x produces y in a single step, denoted x⇒1 y, iff x⇒ y .
We say that x produces y in n steps, with n > 1 , denoted x ⇒n y, iff:

∃z1, z2, . . . , zn−1 ∈ V + | x⇒ h⇒ z1, z1 ⇒ z2, . . . , zn−1 ⇒ y

Definition 2.34 To produce in at least one step We say that x produces in
at least one step y , denoted x⇒+ y, iff ∃n > 0 | x⇒n y .

Definition 2.35 To produce We say that x produces y , denoted by x⇒∗ y,
iff ∃n ≤ 0 | x⇒n y .

As a summary: ⇒ is a binary relation between strings over V ∗

⇒+ is the transitive closure.
⇒∗ is the reflexive and transitive closure.

Definition 2.36 Derivation, Length of a derivation Given G = (N, T, P, S),
a derivation in G is a finite sequence of firect productions of the form:

w0 ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn where w0 = S and wi ∈ V ∗ with 0 ≤ i ≤
n

The length of a derivation is n (n ∈ N).

Definition 2.37 Sentential form
Let G = (N, T, P, S) be a grammar. α is a sentencial form of G iff

S ⇒∗ α with α ∈ V ∗

A sentential form of a grammar G is any sequence of grammar symbols
(terminals or nonterminals) derived in 0 or more steps from the start symbol
of G.

Definition 2.38 String generated by a grammar
String y is generated by grammar G = (N, T, P, S) iff (S ⇒∗ y)(y ∈ T ∗)

That is, y is a sentential form containing only terminal symbols.

Definition 2.39 Language generated by a grammar Let G = (N, T, P, S) ,
we define the language generated by G, denoted L(G) , as:

L(G) = {y ∈ T ∗ | S ⇒∗ y}



26 Chapter 2. Languages and Grammars

The set of all strings generated by the grammar.

Example 2.40 Let G = (N, T, P, S) be a grammar such as:

N = {S}
T = {a, b}
P = {S → aSb, S → ab}

Applying the first production rule (S → aSb) n− 1 times, followed by the
application of the second rule ( S → ab ), we obtain:

S ⇒ aSb⇒ aaSbb⇒ aaaSbbb⇒ . . .⇒ an−1Sbn−1 ⇒ anbn

In ths expression (a derivation) all chains of symbols produced are sen-
tential forms.

We obtain that L(G) = {w ∈ a, b∗ | w = anbnwithn ≥ 1}.

Example 2.41 Given G = (N, T, P, S) with:

N = {A,B}
T = {a, b}
P = {A→ AaA,A→ b}
S = A

A −→ b ∈ L(G)

↑
A⇒ b

A ⇒ AaA⇒ AaAaA ⇒ baAaA ⇒ baAab ⇒ babab ∈ L(G)

↑ ↑ ↑ ↑ ↑
A→ AaA A→ AaA A→ b A→ b A→ b

L(G) = {b, bab, babab, . . .} = {w ∈ {a, b}∗ | w = b(ab)nwithn ≥ 0}.

Definition 2.42 Equivalent Grammars (G1 ≡ G2)
Given two grammars G1 and G2 , they are equivalents iff L(G1) = L(G2)



2.6. GRAMMAR CLASSIFICATION 27

Example 2.43 Let G1 = (N1, T1, P1, S1) and G2 = (N2, T2, P2, S2) be two
grammars with:

N1 = {A} N2 = {A}
T1 = {a, b} T2 = {a, b}
P1 = {A→ a,A→ Aa} P2 = {A→ a,A→ aa,A→ Aaa}
S1 = A S2 = A (2.19)

Show that they are equivalent grammars.
L(G1) = L(G2) = {a, aa, aaa, . . .} = {w ∈ {a, b}∗ | w = an with n ≤ 1},

and thus, G1 and G2 are equivalent.

2.6 Grammar Classification

The classification of grammars is done as a function of the production rules
they include, that is, according to the members of P . We will start by
defining the different types of production rules.

Definition 2.44 Type-0 rule ( Unrestricted )
Given a grammar G = (N, T, P, S) a rule belonging to P is of type 0 iff

is of the form:
α→ β with (α ∈ V +) ∧ (β ∈ V ∗) .
Nota: Every production rule is of type-0.

Definition 2.45 Type-1 rule (Context-sensitive)
Given a grammar G = (N, T, P, S) a rule belonging to P is of type-1 iff

is of the form: Aαβ → αγβ with (α, βV ∗) ∧ (γ ∈ V +) ∧ (A ∈ N) .

Definition 2.46 Type-2 rule (Context free)
Given a grammar G = (N, T, P, S), a rule belonging to P is of type-2 iff

is of the form: A→ α with (A ∈ N) ∧ (α ∈ V +) .

Definition 2.47 Left regular Rule
Given a grammar G = (N, T, P, S) a rule belonging to P is left regular iff

is of the form A→ aB with (A,B ∈ N) ∧ (a ∈ T ) .

Definition 2.48 Right regular rule
Given a grammar G = (N, T, P, S) a rule belonging to P is right regular

iff is of the form A→ Ba with (A,B ∈ N) ∧ (a ∈ T ) .



28 Chapter 2. Languages and Grammars

	
  
Figure 2.1: Relationship between production rules.

Definition 2.49 Terminal regular rule Given a grammar G = (N, T, P, S)
a rule belonging to P is terminal regular iff is of the form A→ a with (A ∈
N) ∧ (a ∈ T ).

Definition 2.50 Type-3 rule (Regular)
Given a grammar G = (N, T, P, S) a rule belonging to P is type-3 iff is

right regular or left regular, or terminal regular.

According to these definitions we can write and display the relationship
between the production rules:

Type− 3 ⊂ Type− 2 ⊂ Type− 1 ⊂ Type− 0

Example 2.51 Given G = (N, T, P, S) with N = {S,B} and T = {c, d} .
Let´s analyze the type of the following rules that are members of P :

S → c is a terminal regular and so is type-3.
S → cB4 is left regular and so is type-3.
B → cc is type-2 and is not type-3.
B → SS is type-2 and is not type-3.
S → cBSccd is type-2 and is not type-3.
BB → cB is type-1 and is not type-2.
cdBSScB → cdBcBBdScB is type-1 and is not type-2. .
BBB → SSS is type-0 and is not type-1.
cB → Bc is type-0 and is not type-1.
c→ d < is type-0 and is not type-1.
c→ ε is type-0 and is not type-1.



2.6. GRAMMAR CLASSIFICATION 29

Figure 2.2: Relationship between linear production rules.

Definition 2.52 Terminal linear rule
Given a grammar G = (N, T, P, S) we say that the rule is terminal linear

iff is of the form:
A→ α with (A ∈ N) ∧ (α ∈ T+) .

Definition 2.53 Linear rule
Given a grammar G = (N, T, P, S) we say that the rule is linear if is

terminal linear or iff is of the form: A→ αBβ with (A,B ∈ N)∧(α, β ∈ T ∗)

Definition 2.54 Left linear rule
Given a grammar G = (N, T, P, S) we say that the rule is left linear iff

is of the form: A→ αB with (A,B ∈ N) ∧ (α ∈ T ∗) .

Definition 2.55 Right linear rule
Given a grammar G = (N, T, P, S) we say that the rule is right linear iff

is of the form: A→ Bα with (A,B ∈ N) ∧ (α ∈ T ∗) .

Definition 2.56 Unitary rule
Given a grammar G = (N, T, P, S) a rule is a Unitary rule iff is of the

form: A→ B with A,B ∈ N .
Note: A rule can be linear without being left linear or right linear.

The relationships between linear rules are shown in Fig. 2.2 .

Example 2.57 Let G be a grammar G = (N, T, P, S) with N = {S,B} and
T = {c, d}. Let´s analyze the type of the following rules belonging to P :



30 Chapter 2. Languages and Grammars

Figure 2.3: Relationship between production rules including the linear ones.

S → B is unitary, and linear.
S → S is unitary, and linear.
B → c is terminal linear.
S → cdd is terminal linear.
B → cS is left linear.
B → dddB is left linear.
S → Sc is right linear.
S → Bcdcc is right linear.
B → cBd is linear but not left or right linear.
S → cdcBc is linear but not left or right linear.

Let´s see the relationship between the rules putting all cases together (a
diagram is also shwon in Fig. 2.3):

Type-3 ⊂ Linear ⊂ Type-2 ⊂ Type-1 ⊂ Type-0.
Let´s see now the classification of grammars according to the types of

rules we have just defined.

Definition 2.58 Unrestricted Grammar (type-0) (UG)
A grammar is unrestricted iff all its rule are of type-0.
Note: Every grammar is of type-0.

Definition 2.59 Context Sensitive Grammar (type-1) (CSG)
A grammar is context sensitive iff all its rules are of type-1.

Definition 2.60 Context Free Grammar (type-2) (CFG)
A grammar is context free iff all its rules are of type-2.



2.6. GRAMMAR CLASSIFICATION 31

Figure 2.4: Relationship between regular grammars.

Figure 2.5: Chomsky Hierarchy for grammars.

Definition 2.61 Regular Grammars (type-3) (RG)
A grammar is regular iff is left regular (LRG) or right regular (RRG).
A grammar is left regular (LRG) iff all its rules are left regular or terminal

regular.
A grammar es right regular (RRD) iff all its rules are right regular o

terminal regular.

Note: G = ({A,B}, {a}, {A → aB,A → Ba}, A) is not a regular gram-
mar. G = ({A,B}, {a}, {A→ a}, A) is both right regular and left regular.

The Chomsky Hierarchy for grammars establishes the following relation-
ships:

Type-3 ⊂ Type-2 ⊂ Type-1 ⊂ Type-0

Example 2.62 Let G be a grammar G = (N, T, P, S) with N = {S,A,B}
and T = {a, b, c} :

If P = {S → a, S → aS} then G is left regular , and so is regular (type-3).
If P = {S → b, B → Bc} then G is right regular, and so is regular

(type-3).
Si P = {S → c, S → aA, S → bB,A → aA,A → a,B → bB} then G is

left regular, and so is regular (type-3).
If P = {S → c, A→ a,B → b} then G is both right and left regular, and

so is regular (type-3).
If P = {S → a, S → SS} then G is context free (type-2) and is not

regular (type-3).



32 Chapter 2. Languages and Grammars

If P = {A → ccc} then G is context free (type-2) and is not regular
(type-3).

If P = {S → A,A→ a} then G is context free (type-2) and is not regular
(type-3).

If P = {S → aaScc, S → b} then G is context free (type-2) and is not
regular (type-3).

If P = {S → a, S → SS, SS → SSS} then G is context sensitive (type-1)
and is not context free (type-2).

If P = {S → b, aBAc→ aBAcc} then G is context sensitive (type-1) and
is not context free (type-2).

If P = {A→ aAb, aA→ aaA, aA→ aa,Ab→ Abb, aAb→ aabb} then G
is context sensitive (type-1) and is not context free (type-2).

If P = {S → a, S → SS, SS → S} then G is unrestricted (type-0) and is
not context sensitive (type-1).

If P = {S → a, a→ b} then G is unrestricted (type-0) and is not context
sensitive (type-1).

If P = {S → a, a → aa, a → b, b → c} then G is unrestricted (type-0)
and is not context sensitive (type-1).

If P = {S → a, aB → Ba, SSS → BBB} then G is unrestricted (type-0)
and is not context sensitive (type-1).

Definition 2.63 Linear Grammar (LG)
We say that a grammar is linear iff all its rules are linear.

Definition 2.64 Left Linear Grammar (LLG)
We say that a grammar is left linear iff each of its rules are left linear or

terminal linear.

Definition 2.65 Right Linear Grammar (RLG)
We say that a grammar is right linear iff each of its rules are right linear

or terminal linear.

Note: A grammar can be linear without being Left Linear or Right Linear.
Taking into account the linear grammars, we have that:
type-3 ⊂ Linear ⊂ type-2 ⊂ type-1 ⊂ type-0
A graphic representation of the relationship between types of grammars

including linear and regular ones is shown in Fig. XX

Example 2.66 Let G be a grammar, G = (N, T, P, S), with N = {S,A,B}
and T = {a, b, c} :

If P = {S → aaa, S → bbb} then G is left linear and right linear, and so
is linear.



2.6. GRAMMAR CLASSIFICATION 33

If P = {S → a, S → aaS} then G is left linear and thus linear but not
right linear.

If P = {S → a, S → aS, S → aaS} then G is left linear and thus linear
but not right linear..

If P = {S → a, S → Saaaa, S → Saa} then G is right linear and thus
linear, but not left linear.

If P = {S → a, S → Sa} then G is right linear and thus linear, but not
left linear.

If P = {S → bbc, S → Bbbc, B → bbcS} then G is linear, but is not left
linear nor right linear.

If P = {S → aab, S → aaSb} then G is linear, but is not left linear nor
right linear.

Definition 2.67 Epsilon rule
Given a grammar G = (N, T, P, S), we say that a rule that belongs to P

is an epsilon rule iff is of the form: A→ ε , with A ∈ N .

Definition 2.68 ε Regular Grammar (ε-RG)
We say that a grammar is ε-regular iff is ε left regular or ε right regular.

Definition 2.69 ε Left Regular Grammar (ε-RG)
We say that a grammar is ε left regular (GεRI) iff each of its rule are left

regular or terminal regular or epsilon rule.

Definition 2.70 ε Right Regular Grammar (GεRR)
A grammar is ε right regular (GεRR) iff each of its rules is rght regular,

terminal regular or epsilon rule.

Definition 2.71 ε Context free grammar (ε-CFG) A grammar is an ε-Context
Free grammar iff each of its rules is context free or epsilon rule.

Example 2.72 Given a grammar G = (N, T, P, S) with N = {S,A,B} and
T = {a, b, c} :

If P = {S → a, S → aS,A → ε} then G is ε left regular and so is a
regular grammar.

If P = {S → b, B → Bc,B → ε} then G is ε right regular and so is a
regular grammar.

If P = {S → c, S → aA, S → bB,A→ aA,A→ a,B → bB, S → ε} then
G is ε left regular , and so is a regular grammar.

If P = {S → c, A → a,B → b, S → ε} then G is ε left regular and so is
a regular grammar.



34 Chapter 2. Languages and Grammars

If P = {S → a, S → SS, S → ε} then G is ε context free and thus is not
regular.

If P = {A→ cccA→ ε} then G is ε context free and thus is not regular.
If P = {S → A,A → a,B → ε} then G ε context free and thus is not

regular.
If P = {S → aaScc, S → b, S → ε} then G ε context free and thus is not

regular.
If P = {S → a, S → aS,B → Bc,A→ ε} then G ε context free and thus

is not regular.

Proposition 2.73 Given an ε right regular grammar G, then exists G′ left
regular grammar such that L(G′) = L(G)− {ε} .

Proposition 2.74 Given a left regular grammar G, then exists G′ ε left
regular grammar such that L(G′) = L(G)− {ε} .

Proposition 2.75 Given an ε context free grammar, then exists a context
free grammar grammar G′ such that L(G′) = L(G)− {ε} .

Proposition 2.76 Given G a context free grammar, then exists G′ ε−context
free grammar such that L(G′) = L(G) ∪ {ε} .

2.7 Notation

Even if we have already define the concept of a grammar, we specify next
the complete notation system that will be used in relationship to grammars:

T Terminal alphabet.
Notation for elements of T :

- Letters of the beginning of the alphabet (subindexes permitted): a, b, c, . . .
- Operators: +,−, ∗, /
- Special characters: @, (, ), [, ],&,#
- Digits: 0, 1, . . . , 9
- Words underlined: if, then, . . .

N : Non-terminal alphabet.
Notation of elements from N:

- Capital letter from the beginnign of the alphabet (subindexes allowed):
A,B,C, . . .



2.8. LANGUAGE CLASSIFICATION 35

- Words in underlined capital letters: DIGITS, EXPRESSION, . . .
- Words between angular brackets: 〈 digits 〉, 〈 EXPRESSION 〉, . . .

It should be verified that N ∪ T = ∅.
V = N ∪ T .

- The elements of V are denoted by capital letters from the final of the
alphabet (. . . , X, Y, Z).

- The elements of T ∗ are denoted from letters of the final of the alphabet
(t, u, v, . . .).

- The elements of V ∗ are denoted with greek letters from the beginning
of the alphabet (subindexes accepted), with the exception of ε, α, β, . . . ). (ε
indicates the empty string).

- S indicates the Axioma, with S ∈ N (subindexes permitted).
- The vertical bar symbol “| ” is used to abreviate the notation of rules,

in a way such that:

A→ α1 | α2 | . . . | αn ≡


A→ α1

A→ α2

. . .

A→ αn

(2.20)

2.8 Language Classification

Definition 2.77 Type-i Language (L.i)
A language L is of type i, with i ∈ {0, 1, 2, 3}, if exists a type-i grammar

G such that L(G) = L− {ε} .

Note: Languages are also denoted according to the name of the corre-
sponding grammar type.

The Chomsky hierarchy for languages establishes the following relation-
ships:

L.3 ⊂ L.2 ⊂ L.1 ⊂ L.0

Definition 2.78 Linear Languages (Linear.L)
We say that a language L is linear if there is a linear grammar G such

that L(G) = L− {ε}.

Note: If G is a right linear grammar or a left linear grammar then L(G)
is a regular language.

Taking into account linear languages together with those associated to
the Chomsky hierarchy, we have that:



36 Chapter 2. Languages and Grammars

L.3 ⊂ L.linear ⊂ L.2 ⊂ L.1 ⊂ L.0

As it can be deduced from the previous definitions, a given language can
be generated by grammars of different types (see Examples 2.62, 2.66 and
2.68).

Example 2.79 Let be Σ = {a, b, c}.

L = {w ∈ Σ ∗ | w = an with n ≥ 0} ∈ L.3.

L = {w ∈ Σ ∗ | w = anbn with n ≥ 0} ∈ (L.linear − L.3).

L = {w ∈ Σ ∗ | w = anbncambm with n ≥ 0,m ≥ 0} ∈ (L.2− L.linear).

L = {w ∈ Σ ∗ | w = anbncn with n ≥ 0} ∈ (L.1− L.2).

L = {w ∈ Σ ∗ | w /∈ L(g(f(w)))} ∈ (L.0− L.1),

where: f : Σ∗ → N

g : N → {G context sensitive | TG = Σ}
are bijections (that can be computed) .

2.9 Basic questions about Languages

Given two grammars G1 and G2 of the same type, we can ask the following
questions:

Equivalence: G1 ≡ G2 ?

Inclussion: L(G1) ⊂ L(G2) ?

Belonging: x ∈ L(G1) ?

Emptiness: L(G1) = ∅ ?

Finiteness: ||L(G1)|| ∈ N ?

Regularity: L(G1) ∈ L.3 ?

Table 2.1 shows whether exists a conclusive algorithm to answer those
questions according to grammar type



2.10. OPERATIONS OVER LANGUAGES 37

Table 2.1: Existence of conclusive algorithm to answer relevant questions
about grammars according to their types

Unrestricted Context sensitive Context free Linear Regular
Equivalence No No No No Yes

Inclusion No No No No Yes
pertenence No Yes Yes Yes Yes
Emptiness No No Yes Yes Yes
Finiteness No No No No Trivial

2.10 Operations over languages

As languages are sets of strings the operations define over sets can be applied
to languages, and then we suppose known the operations of union, intersec-
tion, difference and complement ((L̄ = Σ∗ − L)). Besides these operations,
we define others that are specific for languages that are all based on the
concatenation of languages, that in turn is based in the concatenation of
strings.

Definition 2.80 Concatenation of languages
If L1, L2 are languages over Σ, we define the language L1 concatenated

with L2, denoted L1 · L2 or simply L1L2, as: L1L2 = {w ∈ Σ∗ | w =
xy, with x ∈ L1 and y ∈ L2}.

Note:
L∅ = ∅L = ∅ ∀L ⊆ Σ∗

L{ε} = εL = L ∀L ⊆ Σ∗

L1(L2L3) = (L1L2)L3 ∀L1, L2, L3 ⊆ Σ∗

L1(L2 ∪ L3) = L1L2 ∪ L1L3 ∀L1, L2, L3 ⊆ Σ∗

(L1 ∪ L2)L3 = L1L3 ∪ L2L3 ∀L1, L2, L3 ⊆ Σ∗

Example 2.81 Consider Σ = {0, 1} and L1, L2 ⊆ Σ∗ :
a) If L1 = {010, 00} and L2 = {111, 10} then
L1L2 = {010111, 01010, 00111, 0010}
L2L1 = {111010, 11100, 10010, 1000}

b) If L1 = {w ∈ Σ∗ | w = 01n with n ≤ 0} and
L2 = {w ∈ Σ∗ | |w|0 = 2n+ 1 with n ≤ 0} then
L1L2 = {w ∈ Σ∗ | w(1) = 0 ∧ |w|0 = 2n with n ≤ 1}
L2L1 = {w ∈ Σ∗ | |w|0 = 2n with n ≤ 1}



38 Chapter 2. Languages and Grammars

Definition 2.82 Power of a language (Ln)
Given a language L over Σ, we define the n-th power of L, denoted Ln,

as:

Ln =

{
ε if n = 0

LLn−1 if n > 0
(2.21)

Example 2.83 Given Σ = {a, b} and L ∈ Σ∗ with L = {aa, b}
L3 = LL2 = LLL1 = LLLL0 = LLLε = LLL = {aa, b}{aa, b}{aa, b} =
{aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

Definition 2.84 Closure or Kleene star
Given L ∈ Σ∗ we define the closure or Kleene star of language L, denoted

L∗, as:
L∗ = L·e, where L·e is the extended closure for the set L for the concate-

nation of strings in the monoid (Σ∗, )̇ .

Note: L∗ = {w ∈ Σ∗ | w = w1w2 . . . wk with w1, w2, . . . , wk ∈ L and k ≤
0} . L∗ =

⋃
n≤0 L

n

According to the definition we have: ε ∈ L∗∀L ⊆ Σ∗ .

Example 2.85 ∅∗ = {ε}
{ε}∗ = {ε}
If L = {01, 1, 100} we have that:
110001110011 ∈ L∗
100001 /∈ L∗
ε ∈ L∗
If L = {ε, a} we have that:
L∗ = {ε, a, aa, aaa, . . .}
Given Σ = {a, b} and LΣ∗ with L = {bbb}
L∗ = {w ∈ a, b∗ | w = (bbb)n with n ≤ 0}

Definition 2.86 Strict closure
Given L ∈ Σ∗ we define the strict closure of language L, denoted L+, as:
L+ = L ,
where L+ is the strict closure for the set L for the operation of concate-

nation of strings.

Note: L+ = {w ∈ Σ∗ | w = w1w2 . . . wk with w1, w2, . . . , wk ∈ L and k ≤
1}.

L+ = ∪Ln

L+ = LL∗

Ifε inL then L+ = L∗.
Ifε ∈ L then L+ = L∗ − ε.



2.11. CLOSURE FOR THE DIFFERENT TYPES OF LANGUAGES 39

Example 2.87 ε+ = ∅
{ε}+ = {ε}
If L = {01, 1, 100} we have that:
110001110011 ∈ L+

100001 ∈ L+

ε ∈ L+
IF L = {ε, a} we have that:
L+ = {ε, a, aa, aaa, . . .}
Given Σ = {a, b} and L ∈ Σ∗ with L = {bbb}
L+ = {w ∈ a, b∗ ∈ | ∈ w = (bbb)n with n ≤ 1}

Definition 2.88 Inverse of a language
Given L ∈ Σ∗, we define the inverse of L, denoted LR, as LR = {xR | x ∈

L} .

Example 2.89 Given Σ = {a, b} and L ∈ Σ∗ with L = {w ∈ {a, b}∗ | w =
anbn with n ≤ 0}

LR = {w ∈ {a, b}∗ | w = bnan with n ≤ 0}

2.11 Closure for the different types of lan-

guages

The following table shows for every type of language whether it is closed for
everyone of the operations bettwen languages.

The fact that L.0 is not closed for the complement operation, together
with the types of languages previously defined, determined the foolowing
relationships:

L.finite ⊂ L.3 ⊂ L.lineal ⊂ L.2 ⊂ L.1 ⊂ L.0 ⊂ L.REP ⊂ 2Σ∗



40 Chapter 2. Languages and Grammars

Table 2.2: Table.
Unrestricted Context sensitive Context free Linear Regular

Union Yes Yes Yes Yes Yes
Intersection Yes Yes No No Yes

Intersection with L.3 Yes Yes Yes Yes Yes
Complement No Yes No No Yes

Concatenation Yes Yes Yes No Yes
Power Yes Yes Yes No Yes

Closure Yes Yes Yes No Yes
Strict closure Yes Yes Yes No Yes

Inverse Yes Yes Yes Yes Yes


