
Tema 5. Gestión Dinámica de Memoria

Vicente Benjumea García

Programación-I
Departamento de Lenguajes y Ciencias de la Computación.

E.T.S.I. Informática. Univ. de Málaga.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
1 / 34

Programación-I

Tema 5. Gestión dinámica de memoria
Gestión dinámica de memoria.

Alojar, realojar y liberar zonas de memoria
Listas con número variable de elementos en memoria dinámica.

Aritmética de punteros.
Arrays y aritmética de punteros
Buffers de memoria y aritmética de punteros

Esta obra se encuentra bajo una licencia Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) de Creative Commons.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
2 / 34

Gestión dinámica de memoria (I)

Áreas de Memoria durante la ejecución de un programa
Memoria estática (global): almacena constantes y datos estáticos y globales,
con un tiempo de vida que coincide con el tiempo de ejecución del programa.
Memoria automática (stack-pila de ejecución): almacena los parámetros y
variables locales automáticas que se crean y destruyen durante la invocación a
subprogramas. Gestionada automáticamente por el compilador y el flujo de
ejecución del programa.
Memoria dinámica (heap-montículo): almacena datos cuyo tiempo de vida
está gestionado dinámicamente por el programador, y cuyo acceso se realiza a
través de punteros.

Memoria Automática Memoria DinámicaMemoria Estática

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
3 / 34

Gestión dinámica de memoria (II)

Variables automáticas
Hasta ahora hemos trabajado con variables automáticas, gestionadas por el
compilador.

Las variables se crean automáticamente cuando el flujo de ejecución entra en el
ámbito de su definición.
Las variables se destruyen automáticamente cuando el flujo de ejecución sale
del ámbito donde se declaró la variable.
El tiempo de vida de las variables automáticas está condicionado por el ámbito
de su declaración.
El número de variables automáticas y su capacidad de almacenamiento está
predeterminado por la especificación del programa.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
4 / 34

Gestión dinámica de memoria (III)

Variables en memoria dinámica
Las variables en memoria dinámica permiten adaptar la capacidad de
almacenamiento de los programas a las necesidades reales que surjen durante
la ejecución del programa.
El programador debe gestionar el tiempo de vida de las variables almacenadas
en memoria dinámica, para ello:

El programador debe introducir código para crear (alojar, reservar) las variables
en memoria dinámica cuando sean necesarias.
El programador también debe introducir código para destruir (liberar) las
variables cuando ya no sean necesarias.
El programador debe tener especial cuidado para no corromper la gestión ni los
datos almacenados en memoria dinámica.
El programador debe tener especial cuidado para no perder zonas de memoria
que haya alojado en la memoria dinámica.

Si se pierde la referencia a una zona de memoria, entonces esa zona de memoria
no podrá ser utilizada, ni liberada, y por lo tanto se perderá, y se irán agotando
los recursos de memoria disponibles.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
5 / 34

Gestión dinámica de memoria (IV)

Errores comunes en la gestión de variables de memoria dinámica
La gestión de las variables en memoria dinámica es bastante propensa a errores.

Es muy fácil equivocarse, y corromper la gestión de la memoria dinámica.

Es erróneo acceder a datos almacenados en una zona de memoria ya liberada.
Es erróneo almacenar datos en una zona de memoria ya liberada.
Es erróneo liberar una zona de memoria que ya ha sido liberada anteriormente.

Es muy fácil equivocarse, y perder recursos hasta agotar la memoria disponible.

Es erróneo perder la referencia a una zona de memoria reservada que no haya
sido liberada.
Es erróneo no liberar una zona de memoria que ya no sea necesaria.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
6 / 34

Alojar, realojar y liberar zonas de memoria (I)
Gestión dinámica de memoria

Se debe incluir #include <stdlib.h>
El tipo void* representa un puntero general (genérico) a cualquier tipo de datos, y se
realiza una conversión (casting) automático entre los punteros void* y cualquier otro
tipo de punteros a otros tipo de datos.
El operador sizeof(tipo) devuelve el tamaño en bytes necesario para almacenar una
variable del tipo especificado.
El operador de indexación [] se puede utilizar tanto con arrays, como con punteros.

Alojar (reservar) memoria dinámica
malloc reserva (aloja) una zona de memoria del tamaño (en bytes) especificado, y
devuelve un puntero a dicha zona de memoria.

void* malloc(int tamaño-total-en-bytes);

calloc reserva (aloja) una zona de memoria para un array del número de elementos
especificado, donde cada elemento tiene el tamaño (en bytes) especificado, y
devuelve un puntero a dicha zona de memoria, inicializada a cero.

void* calloc(int num-elementos, int tamaño-del-elemento-en-bytes);

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
7 / 34

Alojar, realojar y liberar zonas de memoria (II)
Realojar memoria dinámica

realloc cambia el tamaño de una zona de memoria previamente reservada (alojada)
por malloc o calloc, al nuevo tamaño (en bytes) especificado, y devuelve un puntero
a dicha zona de memoria. En caso de ser necesario realoja una nueva zona de
memoria y copia el contenido de la zona anterior.

void* realloc(void* ptr, int nuevo-tamaño-total-en-bytes);

Liberar memoria dinámica
free libera (desaloja) una zona de memoria previamente reservada (alojada) por
malloc, calloc o realloc.

void free(void* ptr);

En caso de que no haya memoria disponible, estas funciones devuelven NULL.
Para simplificar el aprendizaje, si nuestro programa es correcto y gestiona la memoria
adecuadamente, entonces supondremos que siempre tendremos memoria suficiente
para resolver el problema especificado.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
8 / 34

Alojar, realojar y liberar zonas de memoria. Ejemplo 1

void prueba_1()
{

int nelms;
printf("Introduce número de elementos: ");
scanf(" %d", &nelms);
//-----------------------------
// int* nums = malloc(nelms * sizeof(int));
int* nums = calloc(nelms, sizeof(int));
for (int i = 0; i < nelms; ++i) {

nums[i] = 7;
}
for (int i = 0; i < nelms; ++i) {

printf(" %d", nums[i]);
}
//-----------------------------
free(nums); // libera el array de números

}

nums ...
0 1 2 3 nelms−1

7 7 7 7 7

Se recomienda que el número de elementos y el puntero al array en memoria
dinámica sean agrupados en una misma estructura.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
9 / 34

Alojar, realojar y liberar zonas de memoria. Ejemplo 2
Se recomienda que el número de elementos y el puntero al array en memoria
dinámica sean agrupados en una misma estructura.

struct Datos {
int nelms;
double* elm;

};
void prueba_2()
{

struct Datos datos;
printf("Introduce número de elementos: ");
scanf(" %d", &datos.nelms);
//-----------------------------
datos.elm = calloc(datos.nelms, sizeof(double));
for (int i = 0; i < datos.nelms; ++i) {

datos.elm[i] = 3.4;
}
for (int i = 0; i < datos.nelms; ++i) {

printf(" %lg", datos.elm[i]);
}
//-----------------------------
free(datos.elm); // libera el array de números
// datos.nelms = 0;
// datos.elm = NULL;

}

nelms

elm

datos

20

...
0 1 2 3 nelms−1

3.4 3.4 3.4 3.4 3.4

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
10 / 34

Alojar, realojar y liberar zonas de memoria. Ejemplo 3

enum {
MAXCARS = 31+1,

};
struct Persona {

char nombre[MAXCARS];
int edad;

};
void prueba_3()
{

struct Persona* ppers = malloc(sizeof(struct Persona));
strncpy(ppers->nombre, "Jose Luis", MAXCARS);
ppers->nombre[MAXCARS-1] = '\0';
ppers->edad = 23;
//-----------------------------
free(ppers); // libera la persona

}

ppers Jose Luis

23

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
11 / 34

Alojar, realojar y liberar zonas de memoria. Ejemplo 4
enum {

MAXCARS = 31+1,
};
struct Persona {

char nombre[MAXCARS];
int edad;

};
struct Datos {

int nelms;
struct Persona* elm;

};
void prueba_4()
{

struct Datos datos;
printf("Introduce número de personas: ");
scanf(" %d", &datos.nelms);
//-----------------------------
datos.elm = calloc(datos.nelms, sizeof(struct Persona));
for (int i = 0; i < datos.nelms; ++i) {

strncpy(datos.elm[i].nombre, "Jose Luis", MAXCARS);
datos.elm[i].nombre[MAXCARS-1] = '\0';
datos.elm[i].edad = 23;

}
//-----------------------------
free(datos.elm); // libera el array de personas
// datos.nelms = 0;
// datos.elm = NULL;

}

nelms

elm

datos

20

Jose Luis

23

Jose Luis

23

Jose Luis

23

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
12 / 34

Alojar, realojar y liberar zonas de memoria. Ejemplo 5

struct Datos {
int nelms;
struct Persona** elm; // Nótese el doble asterisco

};
void prueba_5()
{

struct Datos datos;
printf("Introduce número de personas: ");
scanf(" %d", &datos.nelms);
//-----------------------------
datos.elm = calloc(datos.nelms, sizeof(struct Persona*)); // Asterisco
for (int i = 0; i < datos.nelms; ++i) {

datos.elm[i] = malloc(sizeof(struct Persona));
strncpy(datos.elm[i]->nombre, "Jose Luis", MAXCARS);
datos.elm[i]->nombre[MAXCARS-1] = '\0';
datos.elm[i]->edad = 23;

}
//-----------------------------
for (int i = 0; i < datos.nelms; ++i) {

free(datos.elm[i]); // libera cada persona
}
free(datos.elm); // libera el array de punteros a personas
// datos.nelms = 0;
// datos.elm = NULL;

}

nelms

elm

datos

20

Jose Luis

23

Jose Luis

23

Jose Luis

23

...

...

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
13 / 34

Alojar, realojar y liberar zonas de memoria. Ejemplo 6
void prueba_6()
{

struct Datos datos;
printf("Introduce número de personas: ");
scanf(" %d", &datos.nelms);
//-----------------------------
datos.elm = calloc(datos.nelms, sizeof(struct Persona*)); // Asterisco
for (int i = 0; i < datos.nelms; ++i) {

datos.elm[i] = malloc(sizeof(struct Persona));
strncpy(datos.elm[i]->nombre, "Jose Luis", MAXCARS);
datos.elm[i]->nombre[MAXCARS-1] = '\0';
datos.elm[i]->edad = 23;

}
//-----------------------------
datos.elm = realloc(datos.elm, (2*datos.nelms)*sizeof(struct Persona*));
for (int i = datos.nelms; i < 2*datos.nelms; ++i) {

datos.elm[i] = malloc(sizeof(struct Persona));
strncpy(datos.elm[i]->nombre, "Jose Luis", MAXCARS);
datos.elm[i]->nombre[MAXCARS-1] = '\0';
datos.elm[i]->edad = 23;

}
datos.nelms *= 2;
//-----------------------------
for (int i = 0; i < datos.nelms; ++i) {

free(datos.elm[i]); // libera cada persona
}
free(datos.elm); // libera el array de punteros a personas
// datos.nelms = 0;
// datos.elm = NULL;

}

nelms

elm

datos

20

Jose Luis

23

Jose Luis

23

Jose Luis

23

...

...

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
14 / 34

Listas con núm. variable de elementos en m. dinámica (v1)

Programa de notas de alumnos (v5)
Lee la nota de cada alumno (el número máximo de alumnos está limitado por
la memoria correspondiente al programa) y muestra si está aprobado o
suspenso, considerando que el alumno está aprobado si su nota es mayor o
igual a la nota media de todos los alumnos.
El número actual de alumnos será leído de teclado.

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
15 / 34

Listas con núm. variable de elementos en m. dinámica (v1)

#include <stdio.h>
#include <stdlib.h>

struct LNotas {
int capacidad;
int nelms;
double* elm; // Nótese el asterisco

};

double calc_media(const struct LNotas* v) {
double media = 0.0;
if (v->nelms > 0) {

double suma = 0.0;
for (int i = 0; i < v->nelms; ++i) {

suma += v->elm[i];
}
media = suma / (double)v->nelms;

}
return media;

}

nelms

elm

notas

capac 20

4

...
0 1 2 3 capacidad−1

...5.6 6.7 7.8 8.9

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
16 / 34

Listas con núm. variable de elementos en m. dinámica (v1)

void leer_notas(struct LNotas* v)
{

printf("Introduzca total de alumnos: ");
scanf(" %d", &v->nelms);
if (v->nelms <= 0) {

v->nelms = 0; // lista vacía
v->capacidad = 0;
v->elm = NULL;
printf("Error\n");

} else {
v->capacidad = v->nelms;
v->elm = calloc(v->capacidad, sizeof(double)); // aloja el array de double
for (int i = 0; i < v->nelms; ++i) {

printf("Introduzca la nota del alumno %d: ", i);
scanf(" %lg", & v->elm[i]);

}
}

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
17 / 34

Listas con núm. variable de elementos en m. dinámica (v1)
void mostrar_notas(const struct LNotas* v, double umbral)
{

for (int i = 0; i < v->nelms; ++i) {
if (v->elm[i] >= umbral) {

printf("Alumno: %d Aprobado\n", i);
} else {

printf("Alumno: %d Suspenso\n", i);
}

}
}
void destruir_notas(struct LNotas* v)
{

free(v->elm); // libera el array
v->nelms = 0;
v->capacidad = 0;
v->elm = NULL;

}
int main()
{

struct LNotas notas;
leer_notas(¬as);
// leer_notas_alternativo(¬as);
double media = calc_media(¬as);
mostrar_notas(¬as, media);
destruir_notas(¬as);

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
18 / 34

Listas con núm. variable de elementos en m. dinámica (v1)
void inicializar_notas(struct LNotas* v)
{

v->nelms = 0; // lista vacía
v->capacidad = 16;
v->elm = calloc(v->capacidad, sizeof(double)); // Aloja el array inicial de double

}
void anyadir_elemento(struct LNotas* v, double n)
{

if (v->nelms >= v->capacidad) { // Si el array está lleno
v->capacidad *= 2; // Duplica su capacidad
v->elm = realloc(v->elm, v->capacidad * sizeof(double)); // Duplica capacidad del array

}
v->elm[v->nelms] = n; // Añade el elemento al final de la lista
++v->nelms; // Incrementa la cuenta de elementos

}
void leer_notas_alternativo(struct LNotas* v)
{

double valor;
inicializar_notas(v);
printf("Introduzca nota del alumno %d (negativo para fin): ", v->nelms);
scanf(" %lg", &valor);
while (valor >= 0) {

anyadir_elemento(v, valor);
printf("Introduzca nota del alumno %d (negativo para fin): ", v->nelms);
scanf(" %lg", &valor);

}
}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
19 / 34

Listas con núm. variable de elementos en m. dinámica (v2)

Programa de notas de alumnos (v6)
Lee el nombre y la nota de cada alumno (el número máximo de alumnos
está limitado por la memoria correspondiente al programa) y muestra el
nombre y si está aprobado o suspenso, considerando que el alumno está
aprobado si su nota es mayor o igual a la nota media de todos los alumnos.
El número actual de alumnos será leído de teclado.
Versión con array de estructuras Alumno

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
20 / 34

Listas con núm. variable de elementos en m. dinámica (v2)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
enum {

MAXCARS = 63+1,
};
struct Alumno {

char nombre[MAXCARS];
double nota;

};
struct LAlumnos {

int capacidad;
int nelms;
struct Alumno* elm; // Nótese el asterisco

};
double calc_media(const struct LAlumnos* v) {

double media = 0.0;
if (v->nelms > 0) {

double suma = 0.0;
for (int i = 0; i < v->nelms; ++i) {

suma += v->elm[i].nota;
}
media = suma / (double)v->nelms;

}
return media;

}

nelms

elm

20

notas

capac

2

5.6

Jose Luis

6.7

Ana Maria

...

...

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
21 / 34

Listas con núm. variable de elementos en m. dinámica (v2)

void leer_alumno(struct Alumno* a)
{

printf("Introduzca el nombre del alumno: ");
scanf(" %63[^\n]", a->nombre);
printf("Introduzca la nota del alumno: ");
scanf(" %lg", &a->nota);

}
void leer_alumnos(struct LAlumnos* v)
{

printf("Introduzca total de alumnos: ");
scanf(" %d", &v->nelms);
if (v->nelms <= 0) {

v->nelms = 0; // lista vacía
v->capacidad = 0;
v->elm = NULL;
printf("Error\n");

} else {
v->capacidad = v->nelms;
v->elm = calloc(v->capacidad, sizeof(struct Alumno)); // aloja el array de alumnos
for (int i = 0; i < v->nelms; ++i) {

leer_alumno(& v->elm[i]);
}

}
}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
22 / 34

Listas con núm. variable de elementos en m. dinámica (v2)

void mostrar_alumno(const struct Alumno* a, double umbral)
{

if (a->nota >= umbral) {
printf("Alumno: %s Aprobado\n", a->nombre);

} else {
printf("Alumno: %s Suspenso\n", a->nombre);

}
}
void mostrar_alumnos(const struct LAlumnos* v, double umbral)
{

for (int i = 0; i < v->nelms; ++i) {
mostrar_alumno(& v->elm[i], umbral);

}
}
void destruir_alumnos(struct LAlumnos* v)
{

free(v->elm); // libera el array
v->nelms = 0;
v->capacidad = 0;
v->elm = NULL;

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
23 / 34

Listas con núm. variable de elementos en m. dinámica (v2)

void inicializar_alumnos(struct LAlumnos* v)
{

v->nelms = 0; // lista vacía
v->capacidad = 16;
v->elm = calloc(v->capacidad, sizeof(struct Alumno)); // Aloja el array inicial de alumnos

}
void anyadir_elemento(struct LAlumnos* v, const struct Alumno* a)
{

if (v->nelms >= v->capacidad) { // Si el array está lleno
v->capacidad *= 2; // Duplica su capacidad
v->elm = realloc(v->elm, v->capacidad * sizeof(struct Alumno)); // Duplica capacidad del array

}
v->elm[v->nelms] = *a; // Añade el elemento al final de la lista
++v->nelms; // Incrementa la cuenta de elementos

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
24 / 34

Listas con núm. variable de elementos en m. dinámica (v2)
void leer_alumno_alternativo(struct Alumno* a)
{

printf("Introduzca el nombre del alumno (fin para terminar): ");
scanf(" %63[^\n]", a->nombre);
if (strcmp(a->nombre, "fin") != 0) {

printf("Introduzca la nota del alumno: ");
scanf(" %lg", &a->nota);

}
}
void leer_alumnos_alternativo(struct LAlumnos* v)
{

inicializar_alumnos(v);
struct Alumno a;
leer_alumno_alternativo(&a);
while (strcmp(a.nombre, "fin") != 0) {

anyadir_elemento(v, &a);
leer_alumno_alternativo(&a);

}
}
int main()
{

struct LAlumnos alumnos;
leer_alumnos(&alumnos);
// leer_alumnos_alternativo(&alumnos);
double media = calc_media(&alumnos);
mostrar_alumnos(&alumnos, media);
destruir_alumnos(&alumnos);

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
25 / 34

Listas con núm. variable de elementos en m. dinámica (v3)

Programa de notas de alumnos (v7)
Lee el nombre y la nota de cada alumno (el número máximo de alumnos
está limitado por la memoria correspondiente al programa) y muestra el
nombre y si está aprobado o suspenso, considerando que el alumno está
aprobado si su nota es mayor o igual a la nota media de todos los alumnos.
El número actual de alumnos será leído de teclado.
Versión con array de punteros a estructuras Alumno

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
26 / 34

Listas con núm. variable de elementos en m. dinámica (v3)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
enum {

MAXCARS = 63+1,
};
struct Alumno {

char nombre[MAXCARS];
double nota;

};
struct LAlumnos {

int capacidad;
int nelms;
struct Alumno** elm; // Nótese el doble asterisco

};
double calc_media(const struct LAlumnos* v) {

double media = 0.0;
if (v->nelms > 0) {

double suma = 0.0;
for (int i = 0; i < v->nelms; ++i) {

suma += v->elm[i]->nota;
}
media = suma / (double)v->nelms;

}
return media;

}

nelms

elm

notas

20

2

capac

Jose Luis

5.6

Ana Maria

6.7

...

...

...

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
27 / 34

Listas con núm. variable de elementos en m. dinámica (v3)
void leer_alumno(struct Alumno* a)
{

printf("Introduzca el nombre del alumno: ");
scanf(" %63[^\n]", a->nombre);
printf("Introduzca la nota del alumno: ");
scanf(" %lg", &a->nota);

}
void leer_alumnos(struct LAlumnos* v)
{

printf("Introduzca total de alumnos: ");
scanf(" %d", &v->nelms);
if (v->nelms <= 0) {

v->nelms = 0; // lista vacía
v->capacidad = 0;
v->elm = NULL;
printf("Error\n");

} else {
v->capacidad = v->nelms;
v->elm = calloc(v->capacidad, sizeof(struct Alumno*)); // aloja el array de punteros
for (int i = 0; i < v->nelms; ++i) {

v->elm[i] = malloc(sizeof(struct Alumno)); // aloja cada alumno
leer_alumno(v->elm[i]);

}
}

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
28 / 34

Listas con núm. variable de elementos en m. dinámica (v3)

void mostrar_alumno(const struct Alumno* a, double umbral)
{

if (a->nota >= umbral) {
printf("Alumno: %s Aprobado\n", a->nombre);

} else {
printf("Alumno: %s Suspenso\n", a->nombre);

}
}
void mostrar_alumnos(const struct LAlumnos* v, double umbral)
{

for (int i = 0; i < v->nelms; ++i) {
mostrar_alumno(v->elm[i], umbral);

}
}
void destruir_alumnos(struct LAlumnos* v)
{

for (int i = 0; i < v->nelms; ++i) {
free(v->elm[i]); // libera cada alumno

}
free(v->elm); // libera el array
v->nelms = 0;
v->capacidad = 0;
v->elm = NULL;

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
29 / 34

Listas con núm. variable de elementos en m. dinámica (v3)

void inicializar_alumnos(struct LAlumnos* v)
{

v->nelms = 0; // lista vacía
v->capacidad = 16;
v->elm = calloc(v->capacidad, sizeof(struct Alumno*)); // Aloja el array inicial de punteros

}
void anyadir_elemento(struct LAlumnos* v, const struct Alumno* a)
{

if (v->nelms >= v->capacidad) { // Si el array está lleno
v->capacidad *= 2; // Duplica su capacidad
v->elm = realloc(v->elm, v->capacidad * sizeof(struct Alumno*)); // Duplica capacidad del array

}
v->elm[v->nelms] = malloc(sizeof(struct Alumno)); // Aloja cada alumno
*v->elm[v->nelms] = *a; // Añade el elemento al final de la lista
++v->nelms; // Incrementa la cuenta de elementos

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
30 / 34

Listas con núm. variable de elementos en m. dinámica (v3)
void leer_alumno_alternativo(struct Alumno* a)
{

printf("Introduzca el nombre del alumno (fin para terminar): ");
scanf(" %63[^\n]", a->nombre);
if (strcmp(a->nombre, "fin") != 0) {

printf("Introduzca la nota del alumno: ");
scanf(" %lg", &a->nota);

}
}
void leer_alumnos_alternativo(struct LAlumnos* v)
{

inicializar_alumnos(v);
struct Alumno a;
leer_alumno_alternativo(&a);
while (strcmp(a.nombre, "fin") != 0) {

anyadir_elemento(v, &a);
leer_alumno_alternativo(&a);

}
}
int main()
{

struct LAlumnos alumnos;
leer_alumnos(&alumnos);
// leer_alumnos_alternativo(&alumnos);
double media = calc_media(&alumnos);
mostrar_alumnos(&alumnos, media);
destruir_alumnos(&alumnos);

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
31 / 34

Arrays y aritmética de punteros (NO RECOMENDADA)
En las operaciones, los arrays decaen automáticamente a punteros al primer elemento.
Incrementar el valor de un puntero hace que referencie al elemento siguiente en el array.
Decrementar el valor de un puntero hace que referencie al elemento anterior en el array.
Los punteros se pueden comparar con los op.relac (== , != , > , >= , < , <=).
El operador de indexación [] se puede utilizar tanto con arrays, como con punteros.

// Aritmética de Punteros NO RECOMENDADA
// SE RECOMIENDA acceso a través de índices
void leer_vector(int nelms, int v[nelms])
{

for (int* p = v; p < (v+nelms); ++p) {
scanf(" %d", p);

}
}
void mostrar_vector(int nelms, const int v[nelms])
{

for (const int* p = v; p < (v+nelms); ++p) {
printf("%d ", *p);

}
printf("\n");

}
void copiar(int nelms, int dst[nelms], const int org[nelms])
{

const int* o = org; // Equivalente a: int* o = &org[0];
for (int *d = dst; (d < (dst+nelms))&&(o < (org+nelms)); ++d) {

*d = *o; // Atención al posible error: d = o; // ERROR
++o ;

}
}

v

nelms
(v+1)(v+0) (v+2) (v+3) (v+4) (v+5)

p

++p ;

p = v ;

0 1 2 3 4

1413121110

5

for (int i = 0; i < nelms; ++i) {
printf("%d ", *(v+i));

}
// *(v+i) es equivalente a v[i]

int main()
{

int v1[NELMS];
int v2[NELMS];
leer_vector(NELMS, v1);
copiar(NELMS, v2, v1);
mostrar_vector(NELMS, v2);

}Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
32 / 34

Buffers y aritmética de punteros (NO RECOMENDADA)
Se denomina buffer de memoria a una zona de memoria contigua, utilizada para
almacenar información de tipos diversos, que puede estar alojada en cualquiera de las
zonas de memoria del programa. Utilizada habitualmente como puntero (void* o
char*), y suele realizar un tratamiento de bytes (representado con el tipo char).
Ni la aritmética de punteros, ni la indexación, se pueden realizar con void*, por lo
que se suele hacer una conversión (casting) a char* para su tratamiento.

// Aritmética de Punteros NO RECOMENDADA
void mostrar_buffer(int nelms, const void* buffer)
{

const char* fin = (const char*)buffer + nelms;
for (const char* p = buffer; p < fin; ++p) {

printf("%#hhx ", *p); // muestra de bytes (char)
}
printf("\n");

}
// Aritmética de Punteros NO RECOMENDADA
void copiar_buffer(int nelms, void* dst, const void* org)
{

char* d = dst;
const char* fin = (const char*)org + nelms;
for (const char* p = org; p < fin; ++p) {

*d = *p; // copia de bytes (char)
++d;

}
}

nelms

p

buffer

p = buffer;

++p ;

fin

((char*)buffer+5)

0 1 2 3 4

1413121110

5

int main()
{

struct Fecha fecha = {1, 2, 2023};
char v2[sizeof(fecha)];
copiar_buffer(sizeof(fecha), v2, &fecha);
copiar_buffer(sizeof(fecha), &fecha, v2);
mostrar_buffer(sizeof(fecha), &fecha);
mostrar_buffer(sizeof(fecha), v2);

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
33 / 34

Operaciones con Buffers de Memoria
Algunas operaciones proporcionadas por la biblioteca estándar.

memset(dest, valor, szbytes) copia el valor (byte) especificado, a la zona de
memoria apuntada por dest, tantos bytes como indica sznbytes.
memmove(dest, org, szbytes) copia de la zona de memoria apuntada por org, a la
zona de memoria apuntada por dest, tantos bytes como indica szbytes. Las áreas de
memoria sí pueden estar solapadas.
memcpy(dest, org, szbytes) copia de la zona de memoria apuntada por org, a la
zona de memoria apuntada por dest, tantos bytes como indica szbytes. Las áreas de
memoria NO pueden estar solapadas.

#include <string.h> // se debe incluir <string.h>
enum { NELMS = 10 };
void prueba(int nelms, int array_1[nelms], int array_2[nelms]) {

memset(array_1, 0, nelms * sizeof(int)); // sizeof(array_1) es INCORRECTO
memmove(array_2, array_1, nelms * sizeof(int)); // sizeof(array_1) es INCORRECTO
memcpy(array_2, array_1, nelms * sizeof(int)); // sizeof(array_2) es INCORRECTO

}
int main() {

int array_1[NELMS];
int array_2[NELMS];
memset(array_1, 0, NELMS * sizeof(int)); // copia el valor en byte (no int)
memmove(array_2, array_1, NELMS * sizeof(int));
memcpy(array_2, array_1, NELMS * sizeof(int));

}

Vicente Benjumea García Tema 5. Gestión Dinámica de Memoria
Programación-IDepartamento de Lenguajes y Ciencias de la Computación.E.T.S.I. Informática. Univ. de Málaga.
34 / 34

