Tema 5. Gestién Dindmica de Memoria

Vicente Benjumea Garcia

Programacion-|
Departamento de Lenguajes y Ciencias de la Computacion.
E.T.S.I. Informatica. Univ. de Malaga.

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Programacion-|

Tema 5. Gestién dindmica de memoria

@ Gestion dindmica de memoria.

o Alojar, realojar y liberar zonas de memoria

e Listas con nimero variable de elementos en memoria dindmica.
@ Aritmética de punteros.

e Arrays y aritmética de punteros

o Buffers de memoria y aritmética de punteros

”
Esta obra se encuentra bajo una licencia Reconocimiento-NoComercial-Compartirlgual 4.0 Internacional (CC BY-NC-SA 4.0) de Creative Commons.
@. BY NC_SA

v

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Gestién dinamica de memoria (1)

Areas de Memoria durante la ejecucién de un programa

e Memoria estatica (global): almacena constantes y datos estaticos y globales,
con un tiempo de vida que coincide con el tiempo de ejecucién del programa.

e Memoria automatica (stack-pila de ejecucion): almacena los pardmetros y
variables locales automaticas que se crean y destruyen durante la invocacién a
subprogramas. Gestionada automaticamente por el compilador y el flujo de
ejecucion del programa.

e Memoria dinamica (heap-monticulo): almacena datos cuyo tiempo de vida
estd gestionado dindmicamente por el programador, y cuyo acceso se realiza a
través de punteros.

. ——

Memoria Estética Memoria Automatica

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Gestién dinamica de memoria (11)

Variables automaticas

@ Hasta ahora hemos trabajado con variables automaticas, gestionadas por el
compilador.

e Las variables se crean automéaticamente cuando el flujo de ejecucién entra en el
ambito de su definicién.

o Las variables se destruyen automaticamente cuando el flujo de ejecucién sale
del ambito donde se declaré la variable.

o El tiempo de vida de las variables automaticas esta condicionado por el ambito
de su declaracién.

e El nimero de variables automaticas y su capacidad de almacenamiento esta
predeterminado por la especificacién del programa.

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Gestién dinamica de memoria (I11)

Variables en memoria dinamica

@ Las variables en memoria dindmica permiten adaptar la capacidad de
almacenamiento de los programas a las necesidades reales que surjen durante
la ejecucion del programa.

@ El programador debe gestionar el tiempo de vida de las variables almacenadas
en memoria dinamica, para ello:

o El programador debe introducir cédigo para crear (alojar, reservar) las variables
en memoria dindmica cuando sean necesarias.

o El programador también debe introducir cédigo para destruir (liberar) las
variables cuando ya no sean necesarias.

o El programador debe tener especial cuidado para no corromper la gestion ni los
datos almacenados en memoria dinamica.

o El programador debe tener especial cuidado para no perder zonas de memoria

que haya alojado en la memoria dindmica.
o Si se pierde la referencia a una zona de memoria, entonces esa zona de memoria
no podra ser utilizada, ni liberada, y por lo tanto se perderd, y se irdn agotando
los recursos de memoria disponibles.

v

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Gestién dinamica de memoria (1V)

Errores comunes en la gestion de variables de memoria dindmica

@ La gestion de las variables en memoria dindmica es bastante propensa a errores.

@ Es muy facil equivocarse, y corromper la gestién de la memoria dindmica.

o Es erréneo acceder a datos almacenados en una zona de memoria ya liberada.

o Es erréneo almacenar datos en una zona de memoria ya liberada.

o Es erréneo liberar una zona de memoria que ya ha sido liberada anteriormente.
v

@ Es muy facil equivocarse, y perder recursos hasta agotar la memoria disponible.

o Es erréneo perder la referencia a una zona de memoria reservada que no haya
sido liberada.
o Es erréneo no liberar una zona de memoria que ya no sea necesaria.

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria (I)

Gestién dinamica de oria

@ Se debe incluir #include <stdlib.h>

@ El tipo voidx representa un puntero general (genérico) a cualquier tipo de datos, y se
realiza una conversién (casting) automatico entre los punteros voidx y cualquier otro
tipo de punteros a otros tipo de datos.

@ El operador sizeof (tipo) devuelve el tamafio en bytes necesario para almacenar una
variable del tipo especificado.

@ El operador de indexacién [] se puede utilizar tanto con arrays, como con punteros.

Alojar (reservar) memoria dindmica

@ malloc reserva (aloja) una zona de memoria del tamafio (en bytes) especificado, y
devuelve un puntero a dicha zona de memoria.

void* malloc(int tamafio-total-en-bytes);

@ calloc reserva (aloja) una zona de memoria para un array del nimero de elementos
especificado, donde cada elemento tiene el tamario (en bytes) especificado, y
devuelve un puntero a dicha zona de memoria, inicializada a cero.

void* calloc(int num-elementos, int tamafio-del-elemento-en-bytes);

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria (I)

Realojar memoria dindmica

@ realloc cambia el tamafio de una zona de memoria previamente reservada (alojada)
por malloc o calloc, al nuevo tamafio (en bytes) especificado, y devuelve un puntero
a dicha zona de memoria. En caso de ser necesario realoja una nueva zona de
memoria y copia el contenido de la zona anterior.

void* realloc(void* ptr, int nuevo-tamafio-total-en-bytes);

Liberar memoria dinamica

o free libera (desaloja) una zona de memoria previamente reservada (alojada) por
malloc, calloc o realloc.

void free(void* ptr);

@ En caso de que no haya memoria disponible, estas funciones devuelven NULL.

@ Para simplificar el aprendizaje, si nuestro programa es correcto y gestiona la memoria
adecuadamente, entonces supondremos que siempre tendremos memoria suficiente
para resolver el problema especificado.

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria. Ejemplo 1

void prueba_1()
{
int nelms;
printf ("Introduce nimero de elementos: ");
scanf (" %d", &nelms);
Y i
// int* nums = malloc(nelms * sizeof(int));
int* nums = calloc(nelms, sizeof(int));
for (int i = 0; i < nelms; ++i) { numsE—» !
nums[i] = 7; 0 1 2 3 nelms1
}
for (int i = 0; i < nelms; ++i) {
printf(" %d", nums[il);
}
S
free(nums); // libera el array de nimeros
} v,
@ Se recomienda que el nimero de elementos y el puntero al array en memoria
dindmica sean agrupados en una misma estructura.

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria. Ejemplo 2

@ Se recomienda que el nimero de elementos y el puntero al array en memoria
dindmica sean agrupados en una misma estructura.

struct Datos {
int nelms;
double* elm;
Ig
void prueba_2()
{
struct Datos datos;
printf ("Introduce nimero de elementos: ");

scanf (" %d", &datos.nelms); datos
Y
datos.elm = calloc(datos.nelms, sizeof(double));

nelms

for (int i = 0; i < datos.nelms; ++i) {
datos.elm[i] = 3.4; e|m|3_

} 0 1 2 3 el

for (int i = 0; i < datos.nelms; ++i) {
printf(" %lg", datos.elm[i]);

}

free(datos.elm); // libera el array de nimeros
// datos.nelms = 0;
// datos.elm = NULL;

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria. Ejemplo 3

enum {

MAXCARS = 31+1,

};

struct Persona {
char nombre [MAXCARS] ;
int edad;

e

void prueba_3()

{ ppers [>
struct Persona* ppers = malloc(sizeof (struct Persona));
strncpy (ppers->nombre, "Jose Luis", MAXCARS);
ppers->nombre [MAXCARS-1] = '\0';
ppers—>edad = 23;

/)
free(ppers); // libera la persona

}

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria. Ejemplo 4

enum {
MAXCARS = 31+1,
};
struct Persona {
char nombre [MAXCARS] ;

int edad;

};

struct Datos {
int nelms;
struct Personax elm; datos

3

void prueba_4() nelms

{ -
struct Datos datos; el E__> IMI
printf("Introduce nimero de personas: ");
scanf (" %d", &datos.nelms); m

- P R

datos.elm = calloc(datos.nelms, sizeof (struct Persona));

for (int i = 0; i < datos.nelms; ++i) { X
strncpy(datos.elm[i] .nombre, "Jose Luis", MAXCARS);
datos.elm[i] .nombre [MAXCARS-1] = '\0'; 23
datos.elm[i] .edad = 23;

}

// =

free(datos.elm); // libera el array de personas
// datos.nelms = 0;
// datos.elm = NULL;

Alojar, realojar y liberar zonas de memoria. Ejemplo 5

struct Datos {
int nelms;
struct Persona** elm; // Nétese el doble asterisco

I8 a
H elms
void prueba_5()

datos

{ em[>
struct Datos datos; E
printf ("Introduce nimero de personas: ");]
scanf (" %d", &datos.nelms); =
i —
datos.elm = calloc(datos.nelms, sizeof(struct Personax)); // Asterisco
for (int i = 0; i < datos.nelms; ++i) {

datos.elm[i] = malloc(sizeof (struct Persona));

strncpy(datos.elm[i]->nombre, "Jose Luis", MAXCARS);
datos.elm[i]->nombre [MAXCARS-1] = '\0';
datos.elm[i]->edad = 23;

}

for (int i = 0; i < datos.nelms; ++i) {
free(datos.elm[il); // libera cada persona

}

free(datos.elm); // libera el array de punteros a personas

// datos.nelms = 0;

// datos.elm = NULL;

Vicente Benjumea Garcia n Dindmica de Memoria

Alojar, realojar y liberar zonas de memoria. Ejemplo 6

void prueba_6()

{
struct Datos datos;
printf("Introduce nimero de personas: ");
scanf (" %d", &datos.nelms);
/ F—— —— — -
datos.elm = calloc(datos.nelms, sizeof(struct Personax)); // Asterisco
for (int i = 0; i < datos.nelms; ++i) {

datos
datos.elm[i] = malloc(sizeof (struct Persona));
strncpy(datos.elm[i]->nombre, "Jose Luis", MAXCARS);
datos.elm[i]->nombre [MAXCARS-1] = '\0'; el
datos.elm[i]->edad = 23; elm E——) Jose Luis
s
/===

datos.elm = realloc(datos.elm, (2*datos.nelms)*sizeof(struct Personax));
for (int i = datos.nelms; i < 2*datos.nelms; ++i) {
datos.elm[i] = malloc(sizeof (struct Persona));

Jose Luis

strncpy(datos.elm[i]->nombre, "Jose Luis", MAXCARS);

datos.elm[i]->nombre [MAXCARS-1] = '\0'; Jose Luis
datos.elm[i]->edad = 23;

n N n
w w w

}

datos.nelms *= 2;

for (int i = 0; i < datos.nelms; ++i) {
free(datos.elm[i]); // libera cada persona

}
free(datos.elm); // libera el array de punteros a personas
// datos.nelms = 0;

// dat elm ULL;

Listas con nim. variable de elementos en m. dinamica (v1)

Programa de notas de alumnos (v5)

@ Lee la nota de cada alumno (el ndmero maximo de alumnos est limitado por
la memoria correspondiente al programa) y muestra si esta aprobado o
suspenso, considerando que el alumno estd aprobado si su nota es mayor o
igual a la nota media de todos los alumnos.

o El nimero actual de alumnos sera leido de teclado.

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v1)

#include <stdio.h>
#include <stdlib.h>

struct LNotas { notas
int capacidad;
int nelms; capac
double* elm; // Notese el asterisco ne|ms
& o [FH> Ell
o 1 2 3 capacidad-1

double calc_media(const struct LNotas* v) {
double media = 0.0;
if (v->nelms > 0) {
double suma = 0.0;
for (int i = 0; i < v->nelms; ++i) {
suma += v->elm[i];
¥
media = suma / (double)v->nelms;
}

return media;

Vicente Benjumea Garcia n Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v1)

void leer_notas(struct LNotas* v)
{
printf ("Introduzca total de alumnos: ");
scanf (" %d", &v->nelms);
if (v->nelms <= 0) {
v->nelms = 0; // lista wacia
v->capacidad = 0;
v->elm = NULL;
printf ("Error\n");
} else {
v->capacidad = v->nelms;
v->elm = calloc(v->capacidad, sizeof(double)); // aloja el array de double
for (int i = 0; i < v->nelms; ++i) {
printf ("Introduzca la nota del alumno %d: ", i);
scanf (" %lg", & v->elm[i]);

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v1)

void mostrar_notas(const struct LNotas* v, double umbral)
{
for (int i = 0; i < v->nelms; ++i) {
if (v->elm[i] >= umbral) {
printf ("Alumno: %d Aprobado\n", i);
} else {
printf ("Alumno: %d Suspenso\n", i);

¥
}
¥
void destruir_notas(struct LNotas* v)
{
free(v->elm) ; // libera el array
v->nelms = 0;
v->capacidad = 0;
v->elm = NULL;
¥
int main()
{
struct LNotas notas;
leer_notas(¬as);
// leer_notas_alternativo(¬as);
double media = calc_media(¬as);
mostrar_notas(¬as, media);
destruir_notas(¬as);
¥

Vicente Benjumea Garcia n Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v1)

void inicializar_notas(struct LNotas* v)

{
v->nelms = 0; // lista wacia
v->capacidad = 16;
v->elm = calloc(v—>capacidad, sizeof (double)); // Aloja el array inicial de double
}
void anyadir_elemento(struct LNotas* v, double n)
{
if (v->nelms >= v->capacidad) { // Si el array esta lleno
v->capacidad *= 2; // Duplica su capacidad
v->elm = realloc(v->elm, v->capacidad * sizeof(double)); // Duplica capacidad del o
}
v->elm[v->nelms] = n; // Afiade el elemento al final de la lista
++v->nelms; // Incrementa la cuenta de elementos
¥
void leer_notas_alternativo(struct LNotas* v)
{

double valor;
inicializar_notas(v);
printf ("Introduzca nota del alumno %d (negativo para fin): ", v->nelms);
scanf (" %lg", &valor);
while (valor >= 0) {
anyadir_elemento(v, valor);
printf ("Introduzca nota del alumno %d (negativo para fin): ", v->nelms);
scanf (" %lg", &valor);

Vicente Benjumea Garcia n Dindmica de Memoria

U

Listas con nim. variable de elementos en m. dinamica (v2)

Programa de notas de alumnos (v6)

@ Lee el nombre y la nota de cada alumno (el nimero maximo de alumnos
esta limitado por la memoria correspondiente al programa) y muestra el
nombre y si esta aprobado o suspenso, considerando que el alumno estéa
aprobado si su nota es mayor o igual a la nota media de todos los alumnos.

o El nimero actual de alumnos sera leido de teclado.

@ Versién con array de estructuras Alumno

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v2)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

enum {
MAXCARS = 63+1, notas
5
struct Alumno { capac
char nombre [MAXCARS] ; ol BB
double nota;
) elm E_ > Jose Luis
struct LAlumnos {

int capacidad; 5.6

int nelms;

struct Alumno* elm; // Niotese el asterisco
x
double calc_media(const struct LAlumnos* v) {

double media = 0.0; (XX X

if (v->nelms > 0) {
double suma = 0.0;
for (int i = 0; i < v->nelms; ++i) {
suma += v->elm[i] .nota;

il

¥
media = suma / (double)v->nelms;
}

return media;

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v2)

void leer_alumno(struct Alumno* a)
{
printf ("Introduzca el nombre del alumno: ");
scanf (" %63["\n]", a->nombre);
printf ("Introduzca la nota del alumno: ");
scanf (" %lg", &a->nota);
¥
void leer_alumnos(struct LAlumnos* v)
{
printf ("Introduzca total de alumnos: ");
scanf (" %d", &v->nelms);
if (v->nelms <= 0) {
v->nelms = 0; // lista wacia
v->capacidad = 0;
v->elm = NULL;
printf ("Error\n");
} else {
v->capacidad = v->nelms;
v->elm = calloc(v->capacidad, sizeof(struct Alumno)); // aloja el array de alumnos
for (int i = 0; i < v->nelms; ++i) {
leer_alumno(& v->elm[i]);

}

Vicente Benjumea Garcia n Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v2)

void mostrar_alumno(const struct Alumno* a, double umbral)

{
if (a->nota >= umbral) {
printf("Alumno: %s Aprobado\n", a->nombre);
} else {
printf("Alumno: %s Suspenso\n", a->nombre);
}
¥
void mostrar_alumnos(const struct LAlumnos* v, double umbral)
{
for (int i = 0; i < v->nelms; ++i) {
mostrar_alumno(& v->elm[i], umbral);
}
¥
void destruir_alumnos(struct LAlumnos* v)
{
free(v->elm) ; // libera el array
v->nelms = 0;
v->capacidad = 0;
v->elm = NULL;
¥

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v2)

void inicializar_alumnos(struct LAlumnos* v)

{
v->nelms = 0; // lista vacta
v->capacidad = 16;
v->elm = calloc(v->capacidad, sizeof(struct Alumno)); // Aloja el array inicial de alumnos
¥
void anyadir_elemento(struct LAlumnos* v, const struct Alumno* a)
{
if (v->nelms >= v->capacidad) { // Si el array estd lleno
v->capacidad *= 2; // Duplica su capacidad
v->elm = realloc(v->elm, v->capacidad * sizeof (struct Alumno)); // Duplica capacidad del array
}
v->elm[v->nelms] = *a; // Afiade el elemento al final de la lista
++v->nelms; // Incrementa la cuenta de elementos
}

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Mem:

Listas con nim. variable de elementos en m. dinamica (v2)

void leer_alumno_alternativo(struct Alumno* a)
{
printf("Introduzca el nombre del alumno (fin para terminar): ");
scanf (" %63["\nl", a->nombre);
if (strcmp(a->nombre, "fin") != 0) {
printf("Introduzca la nota del alumno: ");
scanf (" %lg", &a->nota);
¥
}
void leer_alumnos_alternativo(struct LAlumnos* v)
{
inicializar_alumnos(v);
struct Alumno a;
leer_alumno_alternativo(&a);
while (strcmp(a.nombre, "fin") != 0) {
anyadir_elemento(v, &a);
leer_alumno_alternativo(&a);

}
int main()

struct LAlumnos alumnos;

leer_alumnos (&alumnos) ;

// leer_alumnos_alternativo (8alumnos);
double media = calc_media(&alumnos);
mostrar_alumnos(&alumnos, media);
destruir_alumnos(&alumnos) ;

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Mem:

Listas con nim. variable de elementos en m. dinamica (v3)

Programa de notas de alumnos (v7)

@ Lee el nombre y la nota de cada alumno (el nimero maximo de alumnos
esta limitado por la memoria correspondiente al programa) y muestra el
nombre y si esta aprobado o suspenso, considerando que el alumno estéa
aprobado si su nota es mayor o igual a la nota media de todos los alumnos.

o El nimero actual de alumnos sera leido de teclado.

@ Versién con array de punteros a estructuras Alumno

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v3)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

enum {
MAXCARS = 63+1,
3 notas
struct Alumno {[: capac
char nombre [MAXCARS] ;
double nota; nelms
¥ eim[_ >

struct LAlumnos {
int capacidad;
int nelms;
struct Alumno** elm; // Notese el doble asterisco

Ana Maria

o o
~ o

s
double calc_media(const struct LAlumnos* v) {
double media = 0.0;
if (v->nelms > 0) {
double suma = 0.0;
for (int i = 0; i < v->nelms; ++i) {
suma += v->elm[i]->nota;
¥
media = suma / (double)v->nelms;
}

return media;

Vicente Benjumea Garcia n Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v3)

void leer_alumno(struct Alumno* a)
{
printf ("Introduzca el nombre del alumno: ");
scanf (" %63["\n]", a->nombre);
printf ("Introduzca la nota del alumno: ");
scanf (" %lg", &a->nota);
¥
void leer_alumnos(struct LAlumnos* v)
{
printf ("Introduzca total de alumnos: ");
scanf (" %d", &v->nelms);
if (v->nelms <= 0) {
v->nelms = 0; // lista vacia
v->capacidad = 0;
v->elm = NULL;
printf ("Error\n");
} else {
v->capacidad = v->nelms;

v->elm = calloc(v->capacidad, sizeof (struct Alumnox*)); // aloja el array de puntero

for (int i = 0; i < v->nelms; ++i) {
v->elm[i] = malloc(sizeof(struct Alumno));
leer_alumno(v->elm[i]);

// aloja cada alumno

Vicente Benjumea Garcia n Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v3)

void mostrar_alumno(const struct Alumno* a, double umbral)

{
if (a->nota >= umbral) {
printf("Alumno: %s Aprobado\n", a->nombre);
} else {
printf("Alumno: %s Suspenso\n", a->nombre);
}
¥
void mostrar_alumnos(const struct LAlumnos* v, double umbral)
{
for (int i = 0; i < v->nelms; ++i) {
mostrar_alumno(v->elm[i], umbral);
}
}
void destruir_alumnos(struct LAlumnos* v)
{
for (int i = 0; i < v->nelms; ++i) {
free(v->elm[i]); // libera cada alumno
}
free(v->elm) ; // libera el array
v->nelms = 0;
v->capacidad = 0;
v->elm = NULL;
¥

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Memoria

Listas con nim. variable de elementos en m. dinamica (v3)

void inicializar_alumnos(struct LAlumnos* v)

{
v->nelms = 0; // lista wacia
v->capacidad = 16;
v->elm = calloc(v->capacidad, sizeof (struct Alumno*)); // Aloja el array inicial de punteros
}
void anyadir_elemento(struct LAlumnos* v, const struct Alumno* a)
{
if (v->nelms >= v->capacidad) { // Si el array estd lleno
v->capacidad *= 2; // Duplica su capacidad
v->elm = realloc(v->elm, v->capacidad * sizeof (struct Alumnox)); // Duplica capacidad del array
¥
v->elm[v->nelms] = malloc(sizeof(struct Alumno)); // Aloja cada alumno
*v->elm[v->nelms] = *a; // Afiade el elemento al final de la lista
++v->nelms; // Incrementa la cuenta de elementos
}

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Mem:

Listas con nim. variable de elementos en m. dinamica (v3)

void leer_alumno_alternativo(struct Alumno* a)
{
printf("Introduzca el nombre del alumno (fin para terminar): ");
scanf (" %63["\nl", a->nombre);
if (strcmp(a->nombre, "fin") != 0) {
printf("Introduzca la nota del alumno: ");
scanf (" %lg", &a->nota);
¥
}
void leer_alumnos_alternativo(struct LAlumnos* v)
{
inicializar_alumnos(v);
struct Alumno a;
leer_alumno_alternativo(&a);
while (strcmp(a.nombre, "fin") != 0) {
anyadir_elemento(v, &a);
leer_alumno_alternativo(&a);

}
int main()

struct LAlumnos alumnos;

leer_alumnos (&alumnos) ;

// leer_alumnos_alternativo (8alumnos);
double media = calc_media(&alumnos);
mostrar_alumnos(&alumnos, media);
destruir_alumnos(&alumnos) ;

Vicente Benjumea Garcia Tema 5. Gestién Dindmica de Mem:

Arrays y aritmética de punteros (NO RECOMENDADA)

En las operaciones, los arrays decaen automéaticamente a punteros al primer elemento.
Incrementar el valor de un puntero hace que referencie al elemento siguiente en el array.
Decrementar el valor de un puntero hace que referencie al elemento anterior en el array.
Los punteros se pueden comparar con los op.relac (==, !=, >, >=, <, <=).

El operador de indexacién [] se puede utilizar tanto con arrays, como con punteros.

I3 nelms
// Aritmética de Punteros NO RECOMENDADA EI (v40) (va1) (v42) (v43) (v+d) (v45)

// SE RECOMIENDA acceso a través de indices \'
void leer_vector(int nelms, int v[nelms]) l l l l l
{

for (int* p = v; p < (vinelms); ++p) { «ol 10 | 11 | 12 | 13 | 14 |on
scanf (" %d", p);

} Ao 1 2 3 4
} p [— J

void mostrar_vector(int nelms, const int v[nelms])

{
for (const int* p = v; p < (v+nelms); ++p) { for (int i = 0; i < nelms; ++i) {
printf("%d ", *p); printf("%d ", *(v+i));
} }
printf("\n"); // *(v+i) es equivalente a v[il
void copiar(int nelms, int dst[nelms], const int orglnelms]) int main()
{
const int* o = org; // Equivalente a: int* o = &orgl0]; int v1[NELMS];
for (int *d = dst; (d < (dst+nelms))&&(o < (org+nelms)); ++d) { int v2[NELMS];
*d = *o; // Atencién al posible error: d = o; // ERROR leer_vector (NELMS, vi);
++0 ; copiar (NELMS, v2, v1);
T mestrar_vector (NELMS, v2);

amica de Memoria

Buffers y aritmética de punteros (NO RECOMENDADA)

@ Se denomina buffer de memoria a una zona de memoria contigua, utilizada para
almacenar informacién de tipos diversos, que puede estar alojada en cualquiera de las
zonas de memoria del programa. Utilizada habitualmente como puntero (voidx o
charx), y suele realizar un tratamiento de bytes (representado con el tipo char).

@ Ni la aritmética de punteros, ni la indexacion, se pueden realizar con voidx*, por lo
que se suele hacer una conversién (casting) a char* para su tratamiento.

// Aritmética de Punteros NO RECOMENDADA neims [5 | (char)buffers5)
void mostrar_buffer(int nelms, const void* buffer) buffer
{
const char* fin = (const char*)buffer + nelms;
for (const char* p = buffer; p < fin; ++p) { p = buffer; e | 10 | 11 12 | 13 | 14 |...
printf ("/#hhx ", *p); // muestra de bytes (char)

3 ’ - o ' P A 0
. printf("\n"); p fin

// Aritmética de Punteros NO RECOMENDADA
void copiar_buffer(int nelms, void* dst, const voidx org)

{

int main()

struct Fecha fecha = {1, 2, 2023};

char v2[sizeof (fecha)l;
copiar_buffer(sizeof (fecha), v2, &fecha);
copiar_buffer(sizeof (fecha), &fecha, v2);
mostrar_buffer(sizeof (fecha), &fecha);

} mostrar_buffer(sizeof (fecha), v2);

char*x d = dst;

const char* fin = (const char*)org + nelms;

for (const char* p = org; p < fin; ++p) {
*d = *p; // copia de bytes (char)

Vicente Benjumea Garcia n Dindmica de Memoria

Operaciones con Buffers de Memoria

Algunas operacion

memset (dest, valor, szbytes) copia el valor (byte) especificado, a la zona de
memoria apuntada por dest, tantos bytes como indica sznbytes.

memmove (dest, org, szbytes) copia de la zona de memoria apuntada por org, a la
zona de memoria apuntada por dest, tantos bytes como indica szbytes. Las areas de
memoria si pueden estar solapadas.

memcpy (dest, org, szbytes) copia de la zona de memoria apuntada por org, a la
zona de memoria apuntada por dest, tantos bytes como indica szbytes. Las areas de
memoria NO pueden estar solapadas.

#include <string.h> // se debe incluir <string.h>

enum { NELMS = 10 };

void prueba(int nelms, int array_1i[nelms], int array_2[nelms]) {
memset (array_1, O, nelms * sizeof(int)); // size
memmove (array_2, array_1, nelms * sizeof(int)); //

memcpy (array_2, array_1, nelms * sizeof(int)); //

int main() {
int array_1[NELMS];
int array_2[NELMS];
memset (array_1, 0, NELMS * sizeof(int));
memmove (array_2, array_1, NELMS * sizeof(int));
memcpy (array_2, array_1, NELMS * sizeof(int));

(no int)

Vicente Benjumea Garcia n Dindmica de Memoria

