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Métodos en Diferencias Finitas para Ecuaciones de Difusión (Parabóli-
cas).

1. Para estudiar el problema de la conducción de calor en un medio es
necesario tener un modelo macroscópico de los fenómenos microscópicos
que intervienen en dicho fenómeno. A este modelo se le denomina ley
constitutiva del material y nosotros necesitamos una que relacione el
flujo de calor con la temperatura teniendo en cuenta las propiedades
térmicas del medio.

La ley constitutiva más simple es una expresión lineal, la ley de Fourier
para la conducción del calor

qi = −kρC
∂T

∂xi

,

donde qi es el flujo de calor en la dirección xi (cal/(cm2 · s)), k es el
coeficiente de difusividad térmica (cm2/s), ρ es la densidad del material
(g/cm3), C es su capacidad caloŕıfica (cal/(g·oC) y T es la temperatura
(oC), definida como

T =
H

ρCV
,

donde H es el calor (cal), y V es el volumen (cm3). Se denomina co-
eficiente de conductividad térmica al coeficiente global de la ley de
Fourier, κ = kρC (cal(s · cm · oC)).

Consideremos una barra delgada aislada térmicamente en todos sus
puntos excepto en los extremos colocada en la dirección del eje x. Es-
cojamos un elemento diferencial ∆x de dicha barra y consideremos el
balance de calor en dicho elemento durante un intervalo de tiempo ∆t,
la diferencia entre el flujo de calor entrante y el saliente es igual al calor
almacenado, es decir,

q(x)∆y∆z∆t− q(x + ∆x)∆y∆z∆t = ∆x∆y∆zρC∆T.

Dividiendo por el elemento de hiper-volumen ∆x∆y∆z∆t y aplicando
ĺımites, obtenemos

−∂q

∂x
= ρC

∂T

∂t
,
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que sustituyendo la ley de Fourier nos da la ecuación de conducción del
calor unidimensional

∂T

∂t
= k

∂2T

∂x2
.

Para que este problema esté bien definido es necesario añadir condi-
ciones iniciales T (x, 0) = Ti(x), ∀x ∈ (0, L), y de contorno que pueden
ser de Dirichlet,

T (0, t) = T0(t), T (L, t) = TL(t), ∀t > 0,

o de Neumann,

∂T

∂x
(0, t) = T0(t),

∂T

∂x
(L, t) = TL(t), ∀t > 0.

Considere una barra de aluminio con L = 10cm, para la que C =
0,2174cal/(g · oC), ρ = 2,7g/cm3 y κ = 0,49cal/(s · cm · oC).

a) Para resolver este problema aplicaremos un método numérico en
diferencias finitas expĺıcito de segundo orden en espacio y primer
orden en tiempo (método de Euler hacia adelante). Demuestre que
se obtiene

T n+1
j = T n

j + r(T n
j+1 − 2T n

j + T n
j−1), r = k∆t/(∆x)2,

donde para la malla tn = n∆t y xj = j∆x. Como condiciones ini-
ciales y de contorno (Dirichlet) tome Ti = 0, T0 = 100oC y TL =
50oC. ¿Cómo trata núméricamente dichas condiciones? Escriba
un programa en Matlab que implemente dicho método numérico.
¿Bajo qué condiciones converge el método? Para r ∈ (1/4, 1/2)
los errores de la solución numérica oscilan, ¿por qué? Ilustre su
respuesta con alguna simulación. Para r = 1/6 los errores de trun-
cado son mı́nimos, ¿por qué? Dibuje la solución que obtiene para
r = 0,75, r = 0,3 y r = 0,2 tras 1, 10 y 100 pasos de tiempo.
¿Qué malla ha escogido para x? ¿Por qué? ¿Cúal es la solución
numérica cuando t → ∞? ¿Cuál es la solución exacta en dicho
caso?
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b) Repita el problema anterior pero con condición inicial Ti = 100oC
y condiciones de Neumann en los extremos

∂T

∂x
(0, t) = 1,

∂T

∂x
(L, t) = 0, ∀t > 0.

Trate estas condiciones de contorno a primer orden de consisten-
cia en espacio. ¿Cuál es la condición de estabilidad del método
numérico resultante? ¿Cuál es el orden global del método? Deter-
mine el orden de convergencia numérico del método, ¿coincide con
el teórico? Trate las condiciones de Neumann con segundo orden
en espacio mediante una fórmula asimétrica (sin puntos ficticios).
Repita las cuestiones anteriores. Finalmente, trate las condiciones
de contorno mediante la introducción de puntos ficticios y repi-
ta las cuestiones anteriores. Represente gráficamente la evolución
de la solución con el tiempo e interprete f́ısicamente el resulta-
do que observa. NOTA: ¿cómo utilizaŕıa el método matricial para
estudiar la estabilidad de estos problemas? ¿Cómo lo aplicaŕıa
numéricamente en Matlab?

c) También podemos resolver este problema mediante un θ-método
impĺıcito, que consiste en evaluar la ecuación en el momento tn+θ,
donde 0 < θ ≤ 1. De esta forma se obtiene la ecuación en diferen-
cias

T n+1 − T n

∆t
= kδ2

x(θT
n+1 + (1− θ)T n),

donde el operador δx = E1/2 − E1/2. Como condiciones iniciales
y de contorno (Dirichlet) tome Ti = 0, T0 = 100oC y TL = 50oC.
¿Cómo trata núméricamente dichas condiciones? Escriba un pro-
grama en Matlab que implemente dicho método numérico. ¿Bajo
qué condiciones en r y en θ converge el método? Ilustre su respues-
ta con algunas simulaciones. Para qué valor de r en función de θ
son los errores de truncado mı́nimos, ¿por qué? Dibuje la solución
tras 10 pasos de tiempo para r = 0,1 y para r = 0,9 para θ igual
a 1, 0.75, 0.5 y 0.25. ¿Qué malla ha escogido para x? ¿Por qué?
Compare los resultados que ha obtenido entre śı. Dibuje la solu-
ción que obtiene para r = 0,75, r = 0,3 y r = 0,2 tras 1, 10 y 100
pasos de tiempo. ¿Cúal es la solución numérica cuando t → ∞?
¿Cuál es la solución exacta en dicho caso?
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d) Repita el problema anterior pero con condición inicial Ti = 100oC
y condiciones de Neumann en los extremos

∂T

∂x
(0, t) = 1,

∂T

∂x
(L, t) = 0, ∀t > 0.

Trate estas condiciones de contorno con primer orden espacio.
¿Cuál es la condición de estabilidad del método numérico resul-
tante? ¿Cuál es el orden global del método? Determine el orden
de convergencia numérico del método, ¿coincide con el teórico?
Trate las condiciones de Neumann con segundo orden en espa-
cio mediante una fórmula asimétrica (sin puntos ficticios). Repi-
ta las cuestiones anteriores. Finalmente, trate las condiciones de
contorno mediante la introducción de puntos ficticios y repita las
cuestiones anteriores. Represente gráficamente la evolución de la
solución con el tiempo e interprete f́ısicamente el resultado que ob-
serva. NOTA: ¿cómo utilizaŕıa el método matricial para estudiar
la estabilidad de estos problemas? ¿Cómo lo aplicaŕıa numérica-
mente en Matlab?

e) Obtenga anaĺıticamente la solución exacta de los problemas ante-
riores y compárela con los resultados numéricos que ha obtenido
en los apartados anteriores.

2. Se puede estudiar el problema de la conducción de calor en una placa
plana (medio bidimensional), para el que la ecuación de calor se escribe

∂T

∂t
= k

(
∂2T

∂x2
+

∂2T

∂y2

)

a) Deduzca f́ısicamente la ecuación del calor bidimensional. Utilice
el mismo razonamiento utilizado en el problema 1 pero para una
placa plana.

Considere una placa cuadrada de 40 × 40cm del mismo material
(aluminio) que en apartados anteriores. Considere una condición
inicial nula y condiciones de contorno de Dirichlet

T (x, 0, t) = 0oC, T (x, 40, t) = 100oC, 0 < x < 40, t > 0,

T (0, y, t) = 75oC, T (0, y, t) = 50oC, 0 < y < 40, t > 0.
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b) Determine la solución de este problema. Dibuje la solución en
t = 1 y t = 2. Si la solución es una serie, ¿cómo ha sumado
dicha serie? Está bien condicionado el algoritmo que ha utilizado.
¿Cómo aceleraŕıa la velocidad de convergencia de dicha serie?

c) Escriba un método numérico en diferencias finitas expĺıcito de se-
gundo orden en espacio y primer orden en tiempo (método de
Euler hacia adelante). Escriba un programa en Matlab que imple-
mente dicho método numérico. Analice la estabilidad de este méto-
do numérico mediante el método de von Neumann y demuestre que
la condición de estabilidad es

∆t ≤ ∆x2 + ∆y2

8k
.

Sean ∆x = ∆y, y r = k∆t/∆x2, ¿oscila el error numérico para
r = 1/8?, ¿y, para r = 1/16? Ilustre su respuesta con alguna
simulación. Dibuje la solución que obtiene para r = 0,25, r = 0,2
y r = 0,1 tras 1, 10 y 100 pasos de tiempo. ¿Qué malla ha escogido
para x? ¿Por qué? ¿Cúal es la solución numérica cuando t →∞?
¿Cuál es la solución exacta en dicho caso?

d) Escriba el algoritmo Peaceman-Rachford del método impĺıcito de
la dirección-alternada (A.D.I.) para la ecuación parabólica anteri-
or. ¿Cuál es la condición de estabilidad de este método? Cómo la
determinaŕıas utilizando sólo resultados numéricos.

e) Compara los dos métodos anteriores con la solución exacta y entre
śı. ¿Cómo son los errores? (Dibuja una gráfica) ¿Cómo has calcu-
lado los errores? ¿En qué norma? ¿En qué instantes de tiempo has
analizado los errores? ¿Por qué?; ¿En qué puntos hay más error?
¿Por qué?; ¿Cuál es el método más preciso? ¿Cuál es más costoso?
Dibuja una gráfica del error en función del número de operaciones
flotantes para los dos métodos. Debes utilizar al menos 3 pasos
de tiempo diferentes y al menos 3 tamaños diferentes de malla
espacial. Comenta y justifica tus resultados.
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