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Resolución numérica de (sistemas de) ecuaciones hipérbolicas.

Figura. Sistema de distribución de gas natural con control proporcional (tipo P).

Cuestión 1. Considere el sistema de distribución de gas natural presen-
tado en la figura, que consiste en una estación de bombeo, una tubeŕıa de
gas suficientemente larga (p.ej. unos 200 km. en longitud y unos 70 cm.
de diámetro) y un consumidor de gas (las viviendas de una pequeña ciudad).
Supondremos que el flujo Q y la presión P de gas no difieren mucho de sus valo-
res promedio, de forma tal que el gas en la tubeŕıa se pueda modelar mediante
el sistema de ecuaciones hiperbólicas lineales
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donde ρ = η LM/D es la resistencia al flujo de gas, que depende del número
de Mach M (que se toma pequeño M ≈ 0.01), la longitud de la tubeŕıa L, el
diámetro de ésta D, y el coeficiente constante η que depende del tipo de gas.
Estamos suponiendo que todas las variables x, t, P y Q han sido convenien-
temente adimensionalizadas. La variable tiempo t se ha escalado con respecto
al tiempo que una onda sonora necesita para recorrer toda la longitud de la
tubeŕıa, desde el compresor en x = 0 hasta el consumidor final en x = 1. Las
variables P y Q se han escalado respecto a los valores promedio de la presión
y el flujo, respectivamente.

Como condición de contorno en el compresor tomaremos

P (t, 0) − p0 = k (p1 − P (t, 1)),

donde p0 es la presión de gas nominal obtenida por el compresor, p1 es la presión
de gas nominal suministrada al consumidor, y k es el coeficiente del sistema
de control proporcional utilizado. Este sistema trata de compensar la presión
en la tubeŕıa en función de la presión requerida por el consumidor. Para ello,
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suministra una presión P (t, 0)− p0 que es proporcional (con constante k) a la
diferencia p1 − P (t, 1).

Nos falta otra condición de contorno más. Como condición de contorno
para el consumidor tomaremos

Q(t, 1) = q(t),

donde q(t) es la variación temporal del gas consumido.
Como valores t́ıpicos para todos los parámetros adimensionales podemos

tomar: ρ = 20, M = 0.01, k = 0.5, p0 = 1.1, p1 = 0.9. Para modelar el gas
consumido tomaremos

q(t) = 1 + 0.1 sin(0.2 t) − 0.01 sin(t), t ≥ 0.

Como condición inicial (t = 0) podemos tomar

Q(0, x) = 1, P (0, x) = 1.1 − ρM x, x ∈ [0, 1].

Cuestión 1.1. Deduzca las ecuaciones del sistema previamente presen-
tado. Se requieren conocimientos básicos de Mecánica de Fluidos aplicada a
flujo en tubeŕıas. Si le parece muy dif́ıcil, se permite omitir esta cuestión.

Cuestión 1.2. Demuestre que dicho sistema de ecuaciones es hipérbolico
y encuentre sus curvas caracteŕısticas.

Cuestión 1.3. Diagonalice dicho sistema de ecuaciones, es decir, aplique
una transformación (Q,P ) → (y1, y2) ≡ y tal que el sistema se escriba como
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donde S es una matriz diagonal. ¿Cuáles son S y A? Las condiciones de
contorno se transformarán a la forma
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Determine la matriz B, y las funciones u1(t) y u2(t).

Cuestión 2. Vamos a resolver numéricamente el problema anterior. Si
ha logrado realizar las “fáciles” cuestiones anteriores, resuelva numéricamente
el sistema obtenido en la cuestión 1.3 (en función de S y A). Si no lo ha
logrado, también se permite el uso del sistema original. Recuerde que el sistema
diagonal obtenido tras la cuestión 1.3 es más “fácil” de resolver numéricamente
que el contradiagonal original.

Cuestión 2.1. Desarrolle un método numérico (expĺıcito) de Lax-Wendroff
para resolver numéricamente el problema anterior. ¿Cómo ha tratado las
condiciones de contorno? Describa la condición de estabilidad (relación en-
tre ∆t y ∆x) para dicho método en función de los parámetros del problema.
Implemente dicho método en Matlab.

Cuestión 2.2. Presente gráficas de la solución para t ∈ (0, 25) utilizando
una malla espacial con 1/∆x = 10, 25, 50, 100, 200. ¿Qué ∆t máximo puede
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utilizar que garantice la estabilidad en cada uno de dichos casos? Utilice como
∆t la mitad de dicho valor.

Cuestión 2.3. Elija un ∆x y un ∆t adecuados para obtener una solución
en t ∈ (0, 250). Comente numéricamente, matemáticamente y f́ısicamente los
resultados que ha obtenido.

Cuestión 3.1. Desarrolle un método numérico (impĺıcito) de Crank-
Nicolson, basado en una discretización de segundo orden centrada para la
derivada espacial de segundo orden, y una discretización en tiempo centrada
en tn+1/2 con paso de tiempo ∆t/2, también de segundo orden. ¿Cómo ha
tratado las condiciones de contorno? ¿Cuál es la condición de estabilidad de
este método? Implemente dicho método en Matlab.

Cuestión 3.2. Presente gráficas de la solución para t ∈ (0, 25) utilizando
una malla espacial con 1/∆x = 10, 25, 50, 100, 200. ¿Qué ∆t máximo puede
utilizar que garantice la estabilidad en cada uno de dichos casos? Utilice como
∆t la mitad de dicho valor.

Cuestión 3.3. Elija un ∆x y un ∆t adecuados para obtener una solución
en t ∈ (0, 250). Comente numéricamente, matemáticamente y f́ısicamente los
resultados que ha obtenido.

Cuestión 4.1. Desarrolle un método numérico basado en el método de las
caracteŕısticas. Recuerde que para S diagonal (S = diag(s1, s2)) tenemos
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que a lo largo de las curvas caracteŕısticas
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se transforma en el sistema de ecuaciones diferenciales ordinarias
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que se pueden resolver mediante un método en diferencias finitas en tiempo.
Utilice el método (expĺıcito) de Euler hacia adelante. ¿Cómo trata las condi-
ciones de contorno? ¿Cuál es la condición de estabilidad de este método?

Cuestión 4.2. Presente gráficas de la solución para t ∈ (0, 25) utilizando
una malla espacial con 1/∆x = 10, 25, 50, 100, 200. ¿Qué ∆t máximo puede
utilizar que garantice la estabilidad en cada uno de dichos casos? Utilice como
∆t la mitad de dicho valor.

Cuestión 4.3. Elija un ∆x y un ∆t adecuados para obtener una solución
en t ∈ (0, 250). Comente numéricamente, matemáticamente y f́ısicamente los
resultados que ha obtenido.

3



Cuestión 5.1 Compare los tres métodos que ha implementado y estudiado.
¿cuál es el más eficiente (en tiempo de cómputo) a la hora de obtener la solución
para t ∈ (0, 250)?. ¿Cuál de los tres métodos es más preciso para los mismos
∆x y ∆t? ¿Cuál es el método que para un ∆x dado permite un ∆t más grande?
Razone todas sus respuestas.

Cuestión 5.2 ¿Cuál es el método que considera más adecuado global-
mente? Razone todas sus respuestas.

Cuestión 5.3 ¿Qué conclusiones obtiene de esta práctica respecto a los
sistemas de distribución de gas natural?

Esta práctica está basada en el art́ıculo: M. Ziólko, “Stability of method
of characteristics,” Applied Numerical Mathematics, 31 (1999) 463–486.
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