
Primera práctica voluntaria Métodos Matemáticos y Técn. Comp.
Profesor Francisco R. Villatoro 27 de Octubre de 1999

Repaso de álgebra y espacios vectoriales de polinomios.
Se recomienda estudiar el tutorial de Matlab entregado a los alumnos de

la asignatura de Técnicas Numéricas de 3er. curso.

1. Escribe un algoritmo en Matlab para rellenar una matriz A de n × n
tridiagonal con valores 〈−1, 3,−1〉, donde el 3 está en la diagonal. Mira
la ayuda de la función de Matlab diag. Ahora escribe un algoritmo
para rellenar dicha matriz As considerada como sparse utilizando la
función spdiags. Escribe un algoritmo para rellenar un vector b =
(2, 1, . . . , 1, 2)T de n × 1. Calcula la solución del problema Ax = b
mediante:

a) Matlab directamente para matrices densas x = A\b;

b) Matlab directamente para matrices sparse x = As\b;

c) Calculando la inversa para matrices densas x = inv(A)*b;

d) Calculando la inversa para matrices sparse x = inv(As)*b;

e) Implementando en Matlab el algoritmo de Thomas (Gauss para
tridiagonales, visto en Técnicas Numéricas). Hazlo.

Compara el coste computacional de los tres procedimientos. Para ello
dibuja una gráfica del número de operaciones flotantes en función de
n (la dimensión de la matriz). Comenta los resultados que obtienes.
Realiza un ajuste mı́nimo-cuadrático con polinomios de grado 1, 2 y 3
de los datos de dichas figuras. ¿Qué conclusiones obtienes?

2. Escribe la siguiente función en un fichero matriz.m,

function H = matriz(n)

% C. Moler, 6-22-91.

% Copyright (c) 1984-97 by The MathWorks, Inc.

% $Revision: 5.5 $ $Date: 1997/04/08 05:49:32 $

J = 1:n;

J = J(ones(n,1),:);

I = J’;

E = ones(n,n);

H = E./(I+J-1);

1

¿Cómo son las matrices que genera dicha función? Representa gráfica-
mente el número de condición de dichas matrices en función de n us-
ando cond y condest. Compara los resultados de estas dos funciones.
Comenta los resultados. Calcula la inversa de las matrices matriz(n)

utilizando inv. Compara inv(matriz(10))*matriz(10) con el resul-
tado de inv(matriz(11))*matriz(11). Comenta y justifica los resul-
tados que obtienes y que debeŕıas obtener. Estudia el comportamiento
de invhilb(n)*matriz(n) para varios n.

3. Para interpolar una serie de puntos (valores de una función) se puede
utilizar tanto polinomios globales como locales (a trozos). El poli-
nomio de Lagrange para interpolación global se puede calcular medi-
ante el algoritmo de Aitken. Escribe la funciones de Matlab aitken.m

y aitkenvector.m.

function Q=aitken(x,y,xval)

%% Q=aitken(x,y,xval)

%% Calcula el valor segun interpolacion polinomica (Lagrange)

%% x, y son vectores con los datos a interpolar

%% xval es el punto donde se desea el valor interpolado

%% Q es el resultado del interpolante

%% Nota: si x,y tienen n puntos, es un interpolante de grado n-1

n=length(x); P=zeros(n);

P(1,:)=y;

for j=1:n-1,

for i=j+1:n,

P(j+1,i) = (P(j,i)*(xval-x(j))-P(j,j)*(xval-x(i)))/(x(i)-x(j));

end

end

Q=P(n,n);

function Q=aitkenvector(xx,yy,x)

%% Q=aitken(xx,yy,x)

%% Calcula el valor segun interpolacion polinomica (Lagrange)

%% xx, yy son vectores con los datos a interpolar

%% x vector donde se calcularan los puntos a interpolar

%% Q es el vector resultado del interpolante Q(x)

2

%% Nota: si x,y tienen n puntos, es un interpolante de grado n-1

n=length(x); Q=zeros(size(x));

for j=1:n,

Q(j) = aitken(xx,yy,x(j));

end

Vamos a estudiar las diferencias entre la interpolación polinómica global
y la local. Escojamos una función gaussiana,

%% Gaussian

x = -5:0.1:5; y = exp(-x.^2); plot (x, y)

%% Some points

xx = -5:1:5; yy = exp(-xx.^2); plot (x,y, xx,yy,’*’)

Ahora lo interpolaremos con polinomios globales y locales a trozos lin-
eales y cúbicos:

%% Global interpolation

yipol = aitkenvector (xx,yy,x); plot (x,y,x,yipol)

%% Linear Local interpolation

yilin = interp1 (xx,yy,x,’linear’); plot (x,y,x,yilin)

%% Cubic Local interpolation

yicub = interp1 (xx,yy,x,’cubic’); plot (x,y,x,yicub)

%% Spline (cubic) Local interpolation

yispline = interp1 (xx,yy,x,’spline’); plot (x,y,x,yispline)

%% Error behaviour

plot (x, y-yipol’, x,y-yilin’,x,y-yicub’,x,y-yispline’)

Comenta los resultados que has obtenido. Cuál es la más precisa de
todas las interpolaciones. Realiza un estudio de cómo vaŕıa el error
de interpolación global conforme el número de puntos aumenta. Haz
lo mismo con la interpolación local lineal. Comenta tus conclusiones
y presenta las gráficas que consideres oportunas para confirmar tus
conclusiones.

3

4. Matlab permite la resolución de ecuaciones diferenciales tanto numérica
(directamente) como simbólica (usando Maple). Pongamos un ejemplo.
Sea la ecuación diferencial

x′′(t) + 2x(t) = 0, x(0) = 0, x′(0) = 1,

cuya solución exacta es fácil de calcular. Detalla su cálculo a mano.
Matlab también nos la permite calcular

dsolve(’D2x + 2*x = 0’, ’x(0)=0, Dx(0)=1’).

También se pueden resolver problemas de contorno, por ejemplo,

x′′(t) + 2x(t) = 0, x(0) = 0, x(3) = 1.

Detalla el cálculo de la solución a mano. Matlab nos confirma el resul-
tado obtenido

dsolve(’D2x + 2*x = 0’, ’x(0)=0, x(3)=1’).

¿Cómo dibujaŕıas en Matlab la gráfica de las soluciones obtenidas?

Consideremos otro ejemplo. Sea la ecuación del péndulo no lineal forza-
do

x′′ + 0,1x′ + sin x = 0,02 cos t, x(0) = 0, x′(0) = 1.

¿dsolve es capaz de resolver esta ecuación? Podemos calcular la solu-
ción numéricamente mediante el método de Runge-Kutta de orden 4(5)
de paso adaptativo ode45. Primero escribimos la ecuación como un sis-
tema de primer orden y el término no homogéneo lo metemos en una
función pendulo.m,

function yprima = pendulo(t,y);

% función vectorial de dos componentes en t

yprima = [y(2) ; -0.1*y(2)-sin(y(1))-0.02*cos(t)];

Ahora aplicamos la función de Matlab y dibujamos el espacio de fases

[t, y] = ode45 (’pendulo’, 0, 3, [0:1]);

plot(y(:,1),y(:,2))

Dibuja el espacio de fases para varias condiciones iniciales, y comenta
el comportamiento de la solución que observas.

4

