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Cálculo e Interpolación de Varias Variables.

1. Demuestre las siguientes igualdades vectoriales

a) div rot u = ∇ · ∇ × u = 0, en IR2 y en IR3.

b) rot grad u = ∇×∇ u = 0, en IR2 y en IR3.

c) rot rot u = ∇×∇× u = −∆u, si u : IR2 → IR.

d) rot rot u = ∇×∇× u = −∆u +∇(∇ · u), si u : IR3 → IR3.

Ayuda: utilice coordenadas cartesianas.

2. Aplicando la regla de la cadena para la diferenciación demuestre que

a) si u : IRm → IR, s : IR 3 (a, b) → IRm, siendo ∇u continua y s(t)
diferenciable, entonces

v(t) = u(s(t)),

tiene como derivada

v′(t) =
d

dt
u(s(t)) = ∇u(s(t)) · s′(t);

b) si s(t) = x+t n̂, donde x, n̂ ∈ IRn, entonces la derivada direccional
de u en la dirección n̂ es

v′(0) = ∂n̂u(x) = ∇u(x) · n̂.

3. Sea x(t) : IR+ → IRn la trayectoria de una part́ıcula y u(x, t) su campo
de velocidades,

ẋ(t) = u(x(t), t), x(0) = x0.

Sea la función trayectoria xt : IRn → IRn tal que

xt : x0 7→ xt(x0) = x(t),
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y sea A(t) el determinante Jacobiano de dicha función. Aplicando la
regla de la cadena, demuestre que

dA

dt
= ∇ · uA,

y en el caso incompresible ∇ · u = 0, demuestre que A(t) = 1, ∀t > 0.
Ayuda: se trata del teorema de Liouville.

4. A partir del teorema fundamental del cálculo en IR2,

∫

Ω

∂u

∂x2

dx =
∫

Γ
un2 ds,

donde n̂ = (n1, n2) es la normal exterior al contorno Γ = ∂ Ω, demuestre
el teorema de la divergencia o teorema de Gauss

∫

Ω
∇ · v dx =

∫

Γ
v · n̂ ds,

y la fórmula de Green
∫

Ω
∇v · ∇w dx =

∫

Γ
v ∂n̂ w ds−

∫

Ω
v ∆w dx.

5. Deduce las ecuaciones de Euler para un fluido incompresible y no vis-
coso de densidad unitaria, es decir,

∂u

∂t
+ (u · ∇) u +∇ p = f, ∇ · u = 0,

aplicando la regla de la cadena a la ley de Newton que dice que la
aceleración du(x(t), t)/dt, donde x(t) es la trayectoria seguida por la
part́ıcula que satisface dx/dt = u(x(t), t), es igual a la fuerza −∇ p+f .
Además, escribe la ecuación de Euler en componentes en IR2.

6. Sea K un triángulo cuyos nodos son los puntos a1, a2, a3 ∈ IR2, las
funciones base nodales λi ∈ P1(K), i = 1, 2, 3, son tales que

λi(a
j) = δij,

es decir, la delta de Kronecker. Escribe expĺıcitamente las fórmulas para
las funciones λi.
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7. Demuestra que si v(x) ∈ P2(K), donde K es un triángulo definido por
los nodos a1, a2, a3 ∈ IR2, entonces v se puede factorizar como

v(x) = λ1(x) λ2(x) v2,

donde v2 es una constante y λi(x) ∈ P1(K) con

λi(a
j) = δij.

8. Considere la triangulación uniforme de un cuadrado en triángulos “ori-
entados hacia la derecha”(es decir, la diagonal derecha-izquierda del
cuadrado está formada por aristas de triángulos). En dicha triangu-
lación, construya las funciones base globales para el espacio de funciones
cuadráticas a trozos continuos. Dibuje una función base de cada tipo
y determine el número total de funciones base. Nota: la triangulación
indicada tiene 2 · 4n triángulos.

9. Considere en Ω una triangulación utilizando rectángulos cuyas aristas
son paralelas a los ejes coordenados. Cada rectángulo K tiene cuatro
vértices {ai, i = 1, 2, 3, 4}. Defina el espacio Qi(K) de las funciones
bilineales en K, es decir, v ∈ Qi(K) es

v = c0 + c1 x1 + c2 x2 + c12 x1 x2,

para ci ∈ IR constantes.

a) Demuestre que una función en Qi(K) viene determinada uńıvoca-
mente por sus valores en los vértices {v(ai)}.

b) Muestra que es posible definir un espacio Vh de las funciones con-
tinuas tales que v|K ∈ Qi(K).

c) Define una triangulación apropiada de Ω en rectángulos.

d) Asumiendo que Ω y sus elementos K son cuadrados, describa las
funciones base de Qi(K) en los elementos K y las funciones base
globales en Vh.

10. Demuestra que la fórmula de cuadratura (integración numérica) de los
vértices en un triángulo K, es decir,

∫

K
g(x) dx ≈

3∑

j=1

g(aj
K)
|K|
3

,

donde |K| es el área del triángulo, es de segundo orden.
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