Examen Primer Parcial Técnicas Numéricas
Profesor Francisco R. Villatoro 27 de Febrero de 1999

Muchos problemas de ingenieria se pueden modelar como un problema de
valores iniciales de un sistema lineal de ecuaciones diferenciales ordinarias,
por ejemplo, el estudio mediante las leyes de Kirchoff del transitorio de un
circuito eléctrico con varias mallas con condensadores, resistencias e induc-
tancias ideales, el comportamiento mecanico de un modelo de la suspension
de un vehiculo mediante las leyes de Newton para elementos rigidos, muelles
y amortiguadores ideales, etc. En general, estos sistemas de ecuaciones difer-
enciales lineales pueden escribirse como ecuaciones diferenciales de primer
orden

dz

o TAQz=f1),  2(0) =, (1)

donde z,xg, f € R" y A € IR™". Para la resolucién de un sistema de este
tipo se puede utilizar la formula de Duhamel

t
2(t) = exp(—At) uo +/ exp(—(t — 5) A) f(s) ds,
0
donde se ha utilizado la exponencial de la matriz de coeficientes.

1. En el caso particular de que A sea constante y f = 0, el problema (1)
es auténomo y la resolucién de este sistema de ecuaciones diferenciales
se reduce a calcular la exponencial de una matriz exp(—At),

exp(—At) —I—i-z At)

=1

Demuestre que los autovalores de la exponencial exp(—A t) son exp(—\; t)
donde A; son los autovalores de A. Ademas demuestre que si B es una
matriz semejante a A, las exponenciales respectivas también son seme-
jantes entre si. De esta forma demuestre que si una matriz es diagonal-
izable, el calculo de su exponencial se reduce a calcular la exponencial
de sus autovalores.

Solucién. Sea Au; = \;u;. Como A™ u; = A™u;, entonces
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Por otro lado, A = P~! B P implica que
A™ = (P'BP)" =P 'B™P,

entonces

o pBm
:P1<I+ZW>PZP1€BP,
m=1 :

es decir, si B es la matriz diagonal semejante a A mediante P, entonces

exp(—At) = P! exp(—Bt) P = P! exp(—\;t) P.

Una condiciéon que garantiza la estabilidad de la solucion del proble-
ma (1) en el caso auténomo es que los autovalores sean reales negativos
o complejos con parte real negativa o nula. En dicho caso el problema
del calculo de la solucién mediante la férmula de Duhamel se reduce
al cédlculo de la funcion e* para x < 0. Determine el nimero de condi-
cionamiento para la evaluacién de esta funcion. Para los valores de x
para los que este problema estd mal condicionado, como evaluaria la
exponencial (utilice desarrollo en serie de Taylor).

Solucién. Dado que f(z) = e* = f’(x), su nimero de condicionamiento
es

fla+Az) — f(x) x| ‘f’(x) ‘ _

= x| = |zl

f(z) Az| | f(z)

El nimero de condicionamiento crece conforme x crece.

Podemos evaluar e” mediante su desarrollo de Taylor

. R

ef=1+or+—-+5+ -,

2 3

que es convergente para toda z € IR. Para x < 0 tenemos una serie
de términos alternados y que para x < 0 el valor absoluto de cada
término crece indefinidamente. Por lo tanto, su evaluacién numérica es
dificil ya que se trata de una serie de convergencia lenta que requiere el
calculo de un gran nimero de términos para evaluar e con suficiente
precision YV < 0.



Para calcular el nimero de términos que tenemos que calcular, defi-
namos la suma parcial de la serie

2 "

x
Sp=14+2+ —+---+ —.
2 n!

El error cometido al aproximar e” por s, es

L 2 ¢
T _ n="———+ = ———e
c0 (n+1)! (n+1)!e
donde 0 > £ > x y hemos aplicado el teorema del valor medio. Por
tanto,

le® — s,| <

(n+1)!

que podemos hacer tan pequeno como deseemos haciendo n suficien-
temente grande dado que el factorial crece mas rapido que cualquier
potencia. Para obtener una precision inferior al epsilon de la maquina
habra que calcular s,, sucesivamente hasta que s, = s,,_1.

n+1 ‘

Sin embargo, es mas eficiente computacionalmente aproximar la expo-
nencial de las siguiente forma
- 1 1

e:j: z2 z3
e l4z+Z 4T

Para < 0, todos los términos del denominador son positivos (de
hecho, la exponencial es una funcién no negativa). Es mejor calcular la

secuencia 1

o(=1)1

donde hemos usado el convenio habitual 0! = 1.

En el ejercicio anterior hemos aproximado la funcién e” mediante un de-
sarrollo en serie de Taylor cercano a cero. Otra posibilidad para aproxi-
mar esta funcion es utilizar un desarrollo de Padé, es decir, un cociente
de polinomios. Aproxime cerca de x = 0, la exponencial por la expresién

ar+ 0
yr+6



az+ps

Y46
d ' lib j lo, a&tb

tenemos que determinar tres constantes libres, por ejemplo, — ==, por

lo que usaremos las tres condiciones

Solucién. Para aproximar e” cerca de x = 0 racionalmente por

fo=1="

v . a(x+c)—(ax+D) ac—>b
fo)=1= (x +¢)? o 2’
wien :2(b—ac) :2(b—ac)
f10)y=1 @t o - 3

y sustituyendo la segunda ecuacion en la tercera

02+b_
=

?
con lo que hemos obtenido la aproximacion racional

T+ 2

ylz) = 5—.

También podemos obtener el mismo resultado desarrollando en serie de
Taylor (si ¢ # 0)

Y=o 1+2% ¢ c c
:i+(ac—b)x+(b—ac) :c2+ .

c? 3
y con comparando con el desarrollo de la exponencial

ZEQ

Normalmente la solucién del problema diferencial (1) pasa por un tran-
sitorio y alcanza finalmente un estado estacionario en el que se cumple
la condicién A(t) z = f(t). Dicho estado estacionario tiene una enorme
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importancia en muchos problemas en ingenierfa. Supongamos que en
un problema auténomo concreto hemos obtenido el siguiente sistema
lineal

101}1—%2 =9
—T1 +1OZL‘2 —2[L‘g =7
—2$2+101’3 =6

Para resolver este sistema de ecuaciones podemos usar un método di-
recto o un método iterativo. Escriba el método iterativo de Gauss-
Seidel. jConverge dicho método? ;Es definida positiva la matriz de
coeficientes?. Determine las tres primeras iteraciones de dicho método
tomando como valores iniciales x = 0. Desarrolle un método de rela-
jacion basado en Gauss-Seidel. Determine el parametro de relajacion w
6ptimo (es decir, el de convergencia més répida). Escriba las 3 primeras
iteraciones del método de relajacion con la w éptima tomando como
valores iniciales x = 0.

Solucién. El sistema se puede escribir como Ax = b donde

10 -1 0 9
A= -1 10 -2 |, b=|7
0 —2 10 6

El método de Gauss-Seidel se escribe, descomponiendo la matriz A =
L+ D+ U, como

g* ) = (L 4+ D) (b— U 2W).

Este método converge porque la matriz de coeficientes es simétrica y
definida positiva. Para comprobar que esta matriz es definida positiva
podemos calcular sus autovalores

A= AI| = (A—10)(=A* +20\ —95) = 0,
que son
A=10, A=10++5,

que claramente son positivos. También podriamos haber aplicado la
regla de los menores principales

10 -1

‘:99>0,
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y Ay = |A] = 950 > 0.

Las tres primeras iteraciones del método de Gauss-Seidel son

9/10 0,9
eM =1 79/100 | = 0,79 |,
379/500 0,758

0,979 0,99495
@ = 0,9495 z® = [ 0,957475
0,7899 0,791495

Introduciendo un parametro de relajacién en el método de Gauss-Seidel
g® ) = (L4 D) P (b—U2W) 4+ (1 —w)2®,
con lo que el error e®) = x — z(*) sigue la ecuacién
) = (1 —w) I —w(L+D)'U)e®) = Ne®,

y la convergencia del método queda garantizada si la tasa de conver-
gencia es menor que la unidad

p(N) < 1.

Como

/10 0 0
(L+D) ' = ( 1/100 1/10 0 ) :
1/500 1/50 1/10

0 —1/10 0
(L+D)'U = ( 0 —1/100 —1/5 )
0 —1/500 —1/25

tenemos que

1—w w/10 0
N=(1-w)l-w(I+D)'U=| 0 1-99w/100  w/5 ,
0 w/500 11— 24w/25

y por tanto su polinomio caracteristico es

IN =X = (1 —19w/20 — \) (1 —w — \)?,
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y el radio espectral serd menor que la unidad si
1—w/ <1, [1-19w/20] <1,

y por tanto 0 < w < 2 (de la primera desigualdad) garantiza la conver-
gencia del método. Para obtener la convergencia mas rapida debemos
buscar el valor w* que minimiza el radio espectral. Dibujando grafica-
mente el valor del radio espectral obtenemos que

1—-19w/20 0<w<w*
p<N>={ / <

w—1 w<w<?2 '’
por lo que el valor 6ptimo es
40
1—19w"/20 = w" — 1, w*:3—9x1,026.

Seguidamente vamos a realizar tres iteraciones del método de Guass-
Seidel con relajacién con w*,

12/13 0,923077
e =1 158/195 | = | 0,810256 |,
758/975 0,777436
0,982512 0,996065
22 =1 0957265 |, =® =1 0957798 |,
0,791059 0,79157

Al ser el sistema de 3 x 3 la solucién exacta se puede calcular por un
método directo dando

0,995789
x =] 0,957895
0,791579

Comparando los errores obtenidos
|z — 230 = 0,000276, ||z — 2®||o = 0,000839,
|z — 2@, = 0,000382, ||z — 2|, = 0,001343,

se observa que el método con relajacién tiene una convergencia mas
rapida (menor error), aunque las diferencias entre los dos métodos son
pequenas debido a que el valor 6ptimo del parametro de relajacion w*
es muy proximo a la unidad.



Para la ecuacién x — tanx = 0, indique cuantas raices tiene y acote
cada una de estas raices. Estudie la iteracion de Picard con relajacién

r=x+p(tanz — ) = g(x),

para el calculo de cualquiera de estas raices y determine las condiciones
bajo las que converge. Para la raiz positiva mas pequena determine un
intervalo de condiciones iniciales y de valores para el parametro de
relajacion en el que quede garantizado que el método converge.

Solucién. La funcién f(z) = x—tan z, tiene infinitas raices en los puntos
de corte de la recta y = x y la funcién periddica y = tanx, que tiene
asintotas verticales en (2k + 1) 7/2, k € Z, por lo que existira una raiz
& en cada intervalo

T T
2’ 2
siendo la mas sencilla x = 0 (intervalo con kK = —1), para k > 0 las
raices en el intervalo [ estaran cerca de su extremo derecho, es decir,
cerca de (2k +3) 5, y para k < 0, al contrario, estaran cerca de su
extremo izquierdo, es decir, (2k 4+ 1) 7.

& e€l=(2k+1) =, (2k+3) o), keZ,

La iteracion de Picard con relajacion
r=2x+ p(tanz — z) = g(x), g (x) =1+ ptan®z,

para un intervalo suficientemente pequeno alrededor de la raiz &, po-
dremos tener contractividad y haciendo p negativo y suficientemente
pequeno. Por ejemplo, para la raiz £; que se encuentra cerca de 37/2 &~
4,7, podemos tantear

f(4> ~ 27847 f<477) ~ _76707 f<474) ~ 17307 f(475> ~ _07147

por lo que & € [4,4,4,5]. Para p negativo cercano a cero y pequeno,
la funcién ¢'(z) > 0 (y decreciente ya que para esos valores ¢”(x) =
2 sec’ x tanzx < 0) y g(x) es creciente, luego haciendo

44 < g(45) <45,  44<45+014p <45~ —0,73 < p <0,
lg'(4,5)] < 1, —1<1+ptan?45 <1, —0,093u < 0,

con lo que para —0,093u < 0 la iteracion converge para la raiz & que
estd en el intervalo [4,4,4,5]. De igual forma se procederia para obtener
un g suficientemente pequenio para cualquier raiz &.
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6. Demuestre que

a) una matriz B préxima a la unidad (|| — B|| < 1) no es singular,

b) si A no es singular y B es tal que

1
AT < 75—
A - Bl
entonces B tampoco es singular.
Solucion.
a) Si|A] #0,|B| =0 entonces
1
AT =
A - B

ya que si |B| = 0 existe un vector z # 0 tal que Bx = 0, luego
Ar=Ar—Bz=(A-B)z, |Az|| <[[A- Bl |z,
y como v = A" Ax,
Izl < 1A A=l < AT A = Bl [|]].

Como x # 0, entonces

1
AT =
|A— B

Si ahora escogemos A = I, entonces si suponemos que |B| = 0,

que contradice la hipétesis ||I — B|| < 1, luego |B]| # 0.
b) De la hipétesis

1> [[ATYJA = Bl > [[A™ (A= B)|| = [l — A" B]|.
Definiendo C =1 — A™! B,
Icl <1, el <lelicl=lcE <y fem < elm,
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con lo que
lim ||C"|| = 0.

n—oo

Por otro lado, aplicando la definicién de norma subordinada a los
autovectores de A,

Al > p(A), [A™|| = p(A") = p"(A),
y como
Jim [|C7] = lim p"(C) =0,
entonces
p(C) <1, |/\C| <L
Como

1> 1= A7 Bl = |1 = D|| = p(I = D) = méix |1 = Apyl = 0,
por lo que los autovalores de D no pueden ser cero (ya que en ese
caso el maximo seria la unidad y se violaria la desigualdad de la

izquierda). Tampoco pueden ser negativos, por la misma razon.
Luego son positivos y

D] = [T Aoi #0,
i=1

y finalmente,

D=A"'B, B=AD, |B|=|A||D|#0.
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