
Examen Primer Parcial Técnicas Numéricas
Profesor Francisco R. Villatoro 27 de Febrero de 1999

Muchos problemas de ingenieŕıa se pueden modelar como un problema de
valores iniciales de un sistema lineal de ecuaciones diferenciales ordinarias,
por ejemplo, el estudio mediante las leyes de Kirchoff del transitorio de un
circuito eléctrico con varias mallas con condensadores, resistencias e induc-
tancias ideales, el comportamiento mecánico de un modelo de la suspensión
de un veh́ıculo mediante las leyes de Newton para elementos ŕıgidos, muelles
y amortiguadores ideales, etc. En general, estos sistemas de ecuaciones difer-
enciales lineales pueden escribirse como ecuaciones diferenciales de primer
orden

dx

dt
+ A(t) x = f(t), x(0) = x0, (1)

donde x, x0, f ∈ IRn y A ∈ IRn×n. Para la resolución de un sistema de este
tipo se puede utilizar la fórmula de Duhamel

x(t) = exp(−A t) u0 +
∫ t

0
exp(−(t− s) A) f(s) ds,

donde se ha utilizado la exponencial de la matriz de coeficientes.

1. En el caso particular de que A sea constante y f = 0, el problema (1)
es autónomo y la resolución de este sistema de ecuaciones diferenciales
se reduce a calcular la exponencial de una matriz exp(−A t),

exp(−A t) = I +
∞∑

i=1

(−A t)i

i!
.

Demuestre que los autovalores de la exponencial exp(−A t) son exp(−λi t)
donde λi son los autovalores de A. Además demuestre que si B es una
matriz semejante a A, las exponenciales respectivas también son seme-
jantes entre śı. De esta forma demuestre que si una matriz es diagonal-
izable, el cálculo de su exponencial se reduce a calcular la exponencial
de sus autovalores.

Solución. Sea Aui = λi ui. Como Am ui = λm
i ui, entonces

e−A t ui =
∞∑

m=0

(−A t)m

m!
ui =

∞∑

m=0

(−1)m tm λm
i

m!
ui = e−λi t ui.
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Por otro lado, A = P−1 B P implica que

Am = (P−1 B P )m = P−1 Bm P,

entonces

eA = eP−1 B P = I +
∞∑

m=1

(P−1 B P )m

m!
= I +

∞∑

m=1

(P−1 Bm P )

m!

= P−1

(
I +

∞∑

m=1

Bm

m!

)
P = P−1 eB P,

es decir, si B es la matriz diagonal semejante a A mediante P , entonces

exp(−A t) = P−1 exp(−B t) P = P−1 exp(−λi t) P.

2. Una condición que garantiza la estabilidad de la solución del proble-
ma (1) en el caso autónomo es que los autovalores sean reales negativos
o complejos con parte real negativa o nula. En dicho caso el problema
del cálculo de la solución mediante la fórmula de Duhamel se reduce
al cálculo de la función ex para x < 0. Determine el número de condi-
cionamiento para la evaluación de esta función. Para los valores de x
para los que este problema está mal condicionado, cómo evaluaŕıa la
exponencial (utilice desarrollo en serie de Taylor).

Solución. Dado que f(x) = ex = f ′(x), su número de condicionamiento
es ∣∣∣∣∣

f(x + ∆x)− f(x)

f(x)

x

∆x

∣∣∣∣∣ =

∣∣∣∣∣
f ′(x)

f(x)
x

∣∣∣∣∣ = |x|.

El número de condicionamiento crece conforme x crece.

Podemos evaluar ex mediante su desarrollo de Taylor

ex = 1 + x +
x2

2
+

x3

3!
+ · · · ,

que es convergente para toda x ∈ IR. Para x < 0 tenemos una serie
de términos alternados y que para x ¿ 0 el valor absoluto de cada
término crece indefinidamente. Por lo tanto, su evaluación numérica es
dif́ıcil ya que se trata de una serie de convergencia lenta que requiere el
cálculo de un gran número de términos para evaluar ex con suficiente
precisión ∀x < 0.
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Para calcular el número de términos que tenemos que calcular, defi-
namos la suma parcial de la serie

sn = 1 + x +
x2

2
+ · · ·+ xn

n!
.

El error cometido al aproximar ex por sn es

ex − sn =
xn+1

(n + 1)!
+ · · · = xn+1

(n + 1)!
eξ,

donde 0 ≥ ξ ≥ x y hemos aplicado el teorema del valor medio. Por
tanto,

|ex − sn| ≤
∣∣∣∣∣

xn+1

(n + 1)!

∣∣∣∣∣

que podemos hacer tan pequeño como deseemos haciendo n suficien-
temente grande dado que el factorial crece más rápido que cualquier
potencia. Para obtener una precisión inferior al epsilon de la máquina
habrá que calcular sn sucesivamente hasta que sn = sn−1.

Sin embargo, es más eficiente computacionalmente aproximar la expo-
nencial de las siguiente forma

ex =
1

e−x
=

1

1 + x + x2

2
+ x3

3!
+ · · ·

Para x < 0, todos los términos del denominador son positivos (de
hecho, la exponencial es una función no negativa). Es mejor calcular la
secuencia

sn =
1

∑n
i=0(−1)i xi

i!

,

donde hemos usado el convenio habitual 0! = 1.

3. En el ejercicio anterior hemos aproximado la función ex mediante un de-
sarrollo en serie de Taylor cercano a cero. Otra posibilidad para aproxi-
mar esta función es utilizar un desarrollo de Padé, es decir, un cociente
de polinomios. Aproxime cerca de x = 0, la exponencial por la expresión

α x + β

γ x + δ
.
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Solución. Para aproximar ex cerca de x = 0 racionalmente por α x+β
γ x+δ

,

tenemos que determinar tres constantes libres, por ejemplo, a x+b
x+c

, por
lo que usaremos las tres condiciones

f(0) = 1 =
b

c
,

f ′(0) = 1 =
a (x + c)− (a x + b)

(x + c)2

∣∣∣∣∣
x=0

=
a c− b

c2
,

f ′′(0) = 1 =
2 (b− a c)

(x + c)3

∣∣∣∣∣
x=0

=
2 (b− a c)

c3
,

y sustituyendo la segunda ecuación en la tercera

1 = −2

c
, c = −2 = b,

a =
c2 + b

c
= −1,

con lo que hemos obtenido la aproximación racional

y(x) =
x + 2

2− x
.

También podemos obtener el mismo resultado desarrollando en serie de
Taylor (si c 6= 0)

y =
1

c

a x + b

1 + x
c

=
1

c
(a x + b)

(
1− x

c
+

(
x

c

)2

+ · · ·
)

=
b

c
+

(a c− b) x

c2
+

(b− a c) x2

c3
+ · · · ,

y con comparando con el desarrollo de la exponencial

ex = 1 + x +
x2

2
+ · · · .

4. Normalmente la solución del problema diferencial (1) pasa por un tran-
sitorio y alcanza finalmente un estado estacionario en el que se cumple
la condición A(t) x = f(t). Dicho estado estacionario tiene una enorme
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importancia en muchos problemas en ingenieŕıa. Supongamos que en
un problema autónomo concreto hemos obtenido el siguiente sistema
lineal

10 x1 − x2 = 9

−x1 + 10 x2 − 2 x3 = 7

−2 x2 + 10 x3 = 6 .

Para resolver este sistema de ecuaciones podemos usar un método di-
recto o un método iterativo. Escriba el método iterativo de Gauss-
Seidel. ¿Converge dicho método? ¿Es definida positiva la matriz de
coeficientes?. Determine las tres primeras iteraciones de dicho método
tomando como valores iniciales x = 0. Desarrolle un método de rela-
jación basado en Gauss-Seidel. Determine el parámetro de relajación w
óptimo (es decir, el de convergencia más rápida). Escriba las 3 primeras
iteraciones del método de relajación con la w óptima tomando como
valores iniciales x = 0.

Solución. El sistema se puede escribir como Ax = b donde

A =




10 −1 0
−1 10 −2
0 −2 10


 , b =




9
7
6


 .

El método de Gauss-Seidel se escribe, descomponiendo la matriz A =
L + D + U , como

x(k+1) = (L + D)−1 (b− U x(k)).

Este método converge porque la matriz de coeficientes es simétrica y
definida positiva. Para comprobar que esta matriz es definida positiva
podemos calcular sus autovalores

|A− λ I| = (λ− 10) (−λ2 + 20 λ− 95) = 0,

que son
λ = 10, λ = 10±

√
5,

que claramente son positivos. También podŕıamos haber aplicado la
regla de los menores principales

A1 = |10| = 10 > 0, A2 =

∣∣∣∣∣
10 −1
−1 10

∣∣∣∣∣ = 99 > 0,
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y A3 = |A| = 950 > 0.

Las tres primeras iteraciones del método de Gauss-Seidel son

x(1) =




9/10
79/100
379/500


 =




0,9
0,79
0,758


 ,

x(2) =




0,979
0,9495
0,7899


 x(3) =




0,99495
0,957475
0,791495


 .

Introduciendo un parámetro de relajación en el método de Gauss-Seidel

x(k+1) = w (L + D)−1 (b− U x(k)) + (1− w) x(k),

con lo que el error e(k) = x− x(k) sigue la ecuación

e(k+1) = ((1− w) I − w (L + D)−1 U) e(k) = N e(k),

y la convergencia del método queda garantizada si la tasa de conver-
gencia es menor que la unidad

ρ(N) < 1.

Como

(L + D)−1 =




1/10 0 0
1/100 1/10 0
1/500 1/50 1/10


 ,

(L + D)−1 U =




0 −1/10 0
0 −1/100 −1/5
0 −1/500 −1/25


 ,

tenemos que

N = (1−w) I−w (L+D)−1 U =




1− w w/10 0
0 1− 99 w/100 w/5
0 w/500 1− 24 w/25


 ,

y por tanto su polinomio caracteŕıstico es

|N − λ I| = (1− 19 w/20− λ) (1− w − λ)2,
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y el radio espectral será menor que la unidad si

|1− w| < 1, |1− 19 w/20| < 1,

y por tanto 0 < w < 2 (de la primera desigualdad) garantiza la conver-
gencia del método. Para obtener la convergencia más rápida debemos
buscar el valor w∗ que minimiza el radio espectral. Dibujando gráfica-
mente el valor del radio espectral obtenemos que

ρ(N) =

{
1− 19 w/20 0 < w ≤ w∗

w − 1 w∗ ≤ w < 2
,

por lo que el valor óptimo es

1− 19 w∗/20 = w∗ − 1, w∗ =
40

39
≈ 1,026.

Seguidamente vamos a realizar tres iteraciones del método de Guass-
Seidel con relajación con w∗,

x(1)
w =




12/13
158/195
758/975


 =




0,923077
0,810256
0,777436


 ,

x(2)
w =




0,982512
0,957265
0,791059


 , x(3)

w =




0,996065
0,957798
0,79157


 ,

Al ser el sistema de 3 × 3 la solución exacta se puede calcular por un
método directo dando

x =




0,995789
0,957895
0,791579


 .

Comparando los errores obtenidos

‖x− x(3)
w ‖∞ = 0,000276, ‖x− x(3)‖∞ = 0,000839,

‖x− x(3)
w ‖1 = 0,000382, ‖x− x(3)‖1 = 0,001343,

se observa que el método con relajación tiene una convergencia más
rápida (menor error), aunque las diferencias entre los dos métodos son
pequeñas debido a que el valor óptimo del parámetro de relajación w∗

es muy próximo a la unidad.
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5. Para la ecuación x − tan x = 0, indique cuántas ráıces tiene y acote
cada una de estas ráıces. Estudie la iteración de Picard con relajación

x = x + µ (tan x− x) = g(x),

para el cálculo de cualquiera de estas ráıces y determine las condiciones
bajo las que converge. Para la ráız positiva más pequeña determine un
intervalo de condiciones iniciales y de valores para el parámetro de
relajación en el que quede garantizado que el método converge.

Solución. La función f(x) = x−tan x, tiene infinitas ráıces en los puntos
de corte de la recta y = x y la función periódica y = tan x, que tiene
aśıntotas verticales en (2 k + 1) π/2, k ∈ Z, por lo que existirá una ráız
ξk en cada intervalo

ξk ∈ Ik = ((2 k + 1)
π

2
, (2 k + 3)

π

2
), k ∈ Z,

siendo la más sencilla x = 0 (intervalo con k = −1), para k > 0 las
ráıces en el intervalo Ik estarán cerca de su extremo derecho, es decir,
cerca de (2 k + 3) π

2
, y para k < 0, al contrario, estarán cerca de su

extremo izquierdo, es decir, (2 k + 1) π
2
.

La iteración de Picard con relajación

x = x + µ (tan x− x) = g(x), g′(x) = 1 + µ tan2 x,

para un intervalo suficientemente pequeño alrededor de la ráız ξk po-
dremos tener contractividad y haciendo µ negativo y suficientemente
pequeño. Por ejemplo, para la ráız ξ1 que se encuentra cerca de 3 π/2 ≈
4,7, podemos tantear

f(4) ≈ 2,84, f(4,7) ≈ −76,0, f(4,4) ≈ 1,30, f(4,5) ≈ −0,14,

por lo que ξ1 ∈ [4,4, 4,5]. Para µ negativo cercano a cero y pequeño,
la función g′(x) > 0 (y decreciente ya que para esos valores g′′(x) =
2 µ sec2 x tan x < 0) y g(x) es creciente, luego haciendo

4,4 < g(4,5) < 4,5, 4,4 < 4,5 + 0,14 µ < 4,5, −0,73 < µ < 0,

|g′(4,5)| < 1, −1 < 1 + µ tan2 4,5 < 1, −0,093µ < 0,

con lo que para −0,093µ < 0 la iteración converge para la ráız ξ1 que
está en el intervalo [4,4, 4,5]. De igual forma se procedeŕıa para obtener
un µ suficientemente pequeño para cualquier ráız ξk.
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6. Demuestre que

a) una matriz B próxima a la unidad (‖I −B‖ < 1) no es singular,

b) si A no es singular y B es tal que

‖A−1‖ <
1

‖A−B‖ ,

entonces B tampoco es singular.

Solución.

a) Si |A| 6= 0, |B| = 0 entonces

‖A−1‖ ≥ 1

‖A−B‖ ,

ya que si |B| = 0 existe un vector x 6= 0 tal que B x = 0, luego

Ax = Ax−B x = (A−B) x, ‖Ax‖ ≤ ‖A−B‖ ‖x‖,

y como x = A−1 Ax,

‖x‖ ≤ ‖A−1‖ ‖Ax‖ ≤ ‖A−1‖ ‖A−B‖ ‖x‖.

Como x 6= 0, entonces

‖A−1‖ ≥ 1

‖A−B‖ .

Si ahora escogemos A = I, entonces si suponemos que |B| = 0,

1 ≤ ‖A−B‖,

que contradice la hipótesis ‖I −B‖ < 1, luego |B| 6= 0.

b) De la hipótesis

1 > ‖A−1‖ ‖A−B‖ ≥ ‖A−1 (A−B)‖ = ‖I − A−1 B‖.

Definiendo C = I − A−1 B,

‖C‖ < 1, ‖C‖ ≤ ‖C‖ ‖C‖ = ‖C‖2 < 1, ‖Cn‖ ≤ ‖C‖n,
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con lo que
ĺım

n→∞ ‖C
n‖ = 0.

Por otro lado, aplicando la definición de norma subordinada a los
autovectores de A,

‖A‖ ≥ ρ(A), ‖An‖ ≥ ρ(An) = ρn(A),

y como
ĺım

n→∞ ‖C
n‖ = ĺım

n→∞ ρn(C) = 0,

entonces
ρ(C) < 1, |λC | < 1.

Como

1 > ‖I − A−1 B‖ = ‖I −D‖ ≥ ρ(I −D) = máx
i
|1− λDi| ≥ 0,

por lo que los autovalores de D no pueden ser cero (ya que en ese
caso el máximo seŕıa la unidad y se violaŕıa la desigualdad de la
izquierda). Tampoco pueden ser negativos, por la misma razón.
Luego son positivos y

|D| =
n∏

i=1

λDi 6= 0,

y finalmente,

D = A−1 B, B = AD, |B| = |A| |D| 6= 0.
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