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ENUNCIADO DE LA TERCERA PRACTICA (PUNTUACIÓN: 0.2)

El objetivo de esta práctica es estudiar algoritmos iterativos de resolución numérica
de sistemas lineales utilizando Matlab.

Sea una función f(x) periódica definida en (0, 2π) y consideremos su aproximación
fm ≡ f(xm) en la malla

xm = m ∆x, m = 0, 1, 2, . . . M − 1, ∆x =
2π

M
.

Se define su transformada discreta de Fourier (DFT), denotada Fk, como

Fk =
1

M

M−1∑
m=0

fm exp(−i k xm), k = −M/2 + 1, . . . , 0, . . . M/2,

cuya inversa (IDFT) es

fm =
M/2∑

k=−M/2+1

Fk exp(i k xm), m = 0, 1, . . . M − 1.

Si definimos f̃ como el vector de componentes (f̃)m = fm, m = 0, 1, 2, . . . M − 1,
y F̃ como el vector de componentes (F̃ )n = Fn−M/2+1, n = 0, 1, 2, . . . M − 1, estas
transformadas se pueden interpretar como el producto de una matriz por un vector,

F̃ = IF f̃ , (IF)n,m = wn m, f̃ = IF−1 F̃ , (IF−1)n,m = w−n m,

n = 0, 1, 2, . . . M − 1, m = 0, 1, 2, . . . M − 1, w = exp(−i ∆x).

Una de las propiedades fundamentales de la DFT es que permite calcular las
derivadas espaciales de la función f de la forma(

df

dx

)
m

=
M/2∑

k=−M/2+1

(i k) Fk exp(i k xm), m = 0, 1, . . . M − 1,

(
dnf

dxn

)
m

=
M/2∑

k=−M/2+1

(i k)n Fk exp(i k xm), m = 0, 1, . . . M − 1.

La DFT permite resolver una ecuación en derivadas parciales con condiciones de
contorno periódicas. Sea la ecuación de onda

∂u(x, t)

∂t
+

∂u(x, t)

∂x
= 0, (x, t) ∈ (0, 2π)× IR+,

u(x, 0) = f(x), x ∈ (0, 2π),

aproximando u(x, t) en una malla {xn}, un(t) = u(xn, t), llamando ũ(t) al vector
formado por estas componentes, y aplicando la DFT

dũ(t)

dt
+ IF−1 (i k) IF ũ(t), ũ(0) = f̃ ,
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donde k denota la matriz diagonal de componentes (k)ii ∈ {−M/2+1, . . . , 0, . . . M/2}.
Para resolver este sistema de ecuaciones diferenciales ordinarias introducimos una malla
temporal t ≡ tn = n ∆t, de forma que ũ(tn) ≡ ũn, y podemos utilizar un método de
Crank-Nicolson o regla del trapecio, que conduce a

ũn+1 − ũn

∆t
+ IF−1 (i k) IF

(
ũn+1 + ũn

2

)
, ũ0 = f̃ ,

que conduce al sistema de ecuaciones lineales(
I +

IF−1 (i k) IF

2

)
ũn+1 =

(
I − IF−1 (i k) IF

2

)
ũn,

cuya solución permite obtener una aproximación u(xi, tn) en cada paso de tiempo tn
a partir de la condición inicial f(xi). Note que dicho sistema se puede escribir como
Az = b, donde

A =

(
I +

IF−1 (i k) IF

2

)
, z ≡ ũn+1, b =

(
I − IF−1 (i k) IF

2

)
ũn.

1. Escribe un programa en Matlab que calcule las matrices IF y IF−1 definidas más
arriba. Comprueba que dichas matrices son inversa la una de la otra. Dibuja una
gráfica con el número de condición en función de M de la matriz IF. ¿Está bien
condicionada dicha matriz?

2. Escribe un programa en Matlab para resolver la ecuación de onda unidimensional
ut + ux = 0 con condición inicial f(x) = sin2(x) cos(x). Utiliza como método de
resolución estándar de Matlab. ¿Cuál es la solución exacta de dicha ecuación?
Dibuja la solución numérica en t = 2 para los ∆t = 0.1, 0.05, 0.01. Dibuja el error
entre la solución exacta y la numérica para dichos pasos de tiempo. ¿Qué norma
has utilizado para definir el error? ¿Por qué?

3. Escribe una función que aplique de forma matricial el método iterativo de Gauss-
Jacobi para resolver un sistema lineal. ¿Se puede aplicar dicho método a la matriz
del sistema lineal del ejercicio anterior? ¿Por qué? Dibuja el número de condición
de la matriz de iteración del método en función de M (para al menos 25 valores).
Si el método converge, úsalo en el programa que has implementado en el apartado
anterior. ¿Qué condiciones utilizas para chequear la convergencia del método de
Gauss-Jacobi? ¿Por qué? Compara los resultados obtenidos con los del apartado
anterior. Si iteras Gauss-Jacobi solamente una vez, antes de que converja, ¿cómo
son los resultados que obtienes para t = 2 para los tres pasos de tiempo ∆t
anteriores? Justifica tus respuestas.

4. Repite el apartado anterior con el método de Gauss-Seidel.

5. Escribe una función que aplique de forma matricial el método de sobrerrelajación
sucesiva (SOR) basado en el método de Gauss-Seidel para resolver un sistema
lineal. ¿Se puede aplicar dicho método a la matriz del sistema lineal del ejercicio
anterior? ¿Por qué? En su caso, úsalo en el programa para resolver la ecuación de
onda. ¿Qué condiciones utilizas para chequear la convergencia del método? ¿Por
qué? Dibuje el radio espectral de la matriz de convergencia del método en función
de w. ¿Cuándo converge?. Determine el w óptimo. Aplica el método a nuestro
problema para tres ∆t y compara los resultados con los de apartados anteriores.
Iterando el método sólo una vez, ¿cómo son los resultados que obtienes? Justifica
tus respuestas.
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6. ¿Es aplicable el método del gradiente conjugado a la matriz de nuestro problema?
En su caso apĺıcalo utilizando la función de Matlab cgs. De los algoritmos gen-
eralizados del gradiente conjugado que incluye Matlab bicg, bicgstab, gmres,
pcg y qmr, ¿cuáles convergen para la matriz de nuestro problema? ¿Cuál es el
más rápido?
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