
CAṔITULO 2

EJERCICIOS RESUELTOS: ARITMÉTICA DE ORDENADORES Y

ANÁLISIS DE ERRORES

Ejercicios resueltos

Ejercicios 2.1 Calcula la suma y la resta de los números a = 0.4523 · 104, y b = 0.2115 · 10−3,

con una aritmética flotante con mantisa de cuatro d́ıgitos decimales, es decir, una aritmética de

cuatro d́ıgitos de precisión. ¿Se produce alguna diferencia cancelativa?

Solución. El cálculo es fácil y directo

fl(a + b) = 0.4523 · 104 + 0.000 2115 · 100

= 0.4523 · 104 + 0.0000 000 2115 · 104 = 0.4523 · 104,

fl(a− b) = 0.4523 · 104.

Estos cálculos muestran claramente la pérdida de d́ıgitos significativos en las operaciones de

suma y resta en punto flotante. Observamos que en el caso de la resta no se ha producido una

diferencia cancelativa, ya que el resultado tiene una exactitud igual a la precisión (4 d́ıgitos) de

la aritmética usada.

Ejercicios 2.2 Usando aritmética de cuatro d́ıgitos de precisión, sume la siguiente expresión

0.1025 · 104 + (−0.9123) · 103 + (−0.9663) · 102 + (−0.9315) · 101

tanto ordenando los números de mayor a menor (en valor absoluto), como de menor a mayor.

¿Cuál de las dos posibilidades es más exacta? Justifique los resultados que encuentre.
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Solución. La suma exacta sE es

sE = 1025− 912.3− 96.63− 9.315 = 6.755 .

Nuestra experiencia en exámenes nos ha mostrado que algunos alumnos contestan este ejer-

cicio de forma incorrecta. Para sumar en orden de mayor a menor, que es el que aparece

originalmente en dicha suma, primero igualan los exponentes de los números al mayor de ellos,

s = 0.1025 · 104 − 0.09123 · 104 − 0.009663 · 104 − 0.0009315 · 104,

donde los d́ıgitos subrayados no entran dentro de la mantisa, por lo que los redondean,

s = 0.1025 · 104 − 0.0912 · 104 − 0.0097 · 104 − 0.0009 · 104.

y finalmente los suman con aritmética exacta obtendremos s = 0.0007 · 104. Obviamente, esta

respuesta es incorrecta ya que un ordenador realiza cada operación de forma separada, igualando

exponentes y normalizando el resultado en cada paso. La propiedad asociativa de la suma no se

cumple para la aritmética flotante.

La respuesta correcta requiere evaluar con el orden

(((0.1025 · 104 + (−0.9123) · 103) + (−0.9663) · 102) + (−0.9315) · 101),

y se obtiene mejor paso a paso como sigue

s1 = 0.1025 · 104,

s2 = s1 − 0.0912 · 104 = 0.0113 · 104 = 0.1130 · 103,

s3 = s2 − 0.09663 · 103 = 0.1130 · 103 − 0.0966 · 103

= 0.0164 · 103 = 0.1640 · 102,

s4 = s3 − 0.09315 · 102 = 0.1640 · 102 − 0.0932 · 102

= 0.0708 · 102 = 0.7080 · 101 = 7.080.

El error relativo cometido sumando estos números de mayor a menor es

s4 − sE

sE
=

7.080− 6.755
6.755

= 0.048 ≈ 5%.

Si sumamos en orden de menor a mayor (en valor absoluto),

(((−0.9315) · 101 + (−0.9663) · 102) + (−0.9123) · 103) + 0.1025 · 104,
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obtenemos, paso a paso,

s′1 = −0.9315 · 101,

s′2 = s′1 − 0.9663 · 102 = −0.09315 · 102 − 0.9663 · 102

≈ −0.0932 · 102 − 0.9663 · 102 = −1.0595 · 102 = −0.1060 · 103,

s′3 = s′2 − 0.9123 · 103 = −0.1060 · 103 − 0.9123 · 103

= −1.0183 · 103 = −0.1018 · 104,

s′4 = s′3 + 0.1025 · 104 = −0.1018 · 104 + 0.1025 · 104

= 0.0007 · 104 = 0.7000 · 101 = 7.

El error relativo cometido sumando los números de menor a mayor es

s′4 − sE

sE
=

7− 6.755
6.755

= 0.036 ≈ 4%,

que es algo menor que el obtenido sumando los números en el orden original (de mayor a menor).

Hemos observado que sumar los números de menor a mayor, en valor absoluto, conduce a

una respuesta más exacta. Un análisis de error de la suma nos indica que para sumar números,

todos del mismo signo, conviene hacerlo ordenándolos de menor a mayor módulo, ya que ello

reduce la cota del error progresivo del resultado. En nuestro caso hemos observado que incluso

cuando casi todos los sumandos son del mismo signo, también es recomendable esta regla.

Ejercicios 2.3 Acote mediante propagación de errores hacia adelante el error relativo cometido

en la operación flotante de suma de números reales. Aprox́ımelo utilizando el épsilon de la

máquina.

Solución. Para calcular la suma x + y de dos números, habrá que representar éstos como

números flotantes

fl(x) = x (1 + δx), fl(y) = y (1 + δy), |δx|, |δy| ≤ u,

donde δx, y δy son sus errores relativos de redondeo, y u es la unidad de redondeo. El modelo

estándar de la aritmética para acotar el error de la suma es

fl(x̂ + ŷ) = (x̂ + ŷ) (1 + δs), |δs| ≤ u, x̂, ŷ ∈ IF.
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Introducir este modelo implica una fuente adicional de error,

fl(fl(x) + fl(y)) = (x (1 + δx) + y (1 + δy)) (1 + δs),

= x (1 + δx) (1 + δs) + y (1 + δy) (1 + δs).

El error absoluto de la operación suma es igual a

fl(fl(x) + fl(y))− (x + y) = (x + y) δs + x δx (1 + δs) + y δy (1 + δs), (2.1)

que podemos acotar como

|fl(fl(x) + fl(y))− (x + y)| ≤ (|x|+ |y|) u + (|x|+ |y|) u (1 + u) = 2 (|x|+ |y|) u + O
(
u2

)
,

que utilizando la unidad de redondeo ajustada, ũ = 1.01u, nos permite obtener

|fl(x + y)− (x + y)| ≤ (|x|+ |y|) 2 ũ.

Finalmente, podemos obtener la cota pedida para el error relativo de la operación suma

|fl(x + y)− (x + y)|
|x + y| ≤ |x|+ |y|

|x + y| 2 ũ, (2.2)

que podemos escribir en función del épsilon de la máquina, ε,

|fl(x + y)− (x + y)|
|x + y| ≤ |x|+ |y|+ 2

|x + y| 1.01
ε

2
.

Se podŕıa haber calculado el error relativo exacto de la suma, que no es mucho más dif́ıcil.

Tomando

fl(x + y) = (x + y) (1 + δ),

y comparando con la expresión (2.1), se tiene

δ =
(x + y) δs + δx (1 + δs) + δy (1 + δs)

x + y
,

cuya cota ya hemos obtenido en (2.2).

Desde el punto de vista del análisis de errores, el factor 2 en la cota(2.2) es poco importante.

Wilkinson [1, 2] nos indica que lo importante no es el valor exacto de la constante de error si no

su orden de magnitud, en este caso O(u) ≡ O(ε), aśı como su dependencia respecto a los datos

a través del número de condicionamiento, en este caso, podemos obviar el facto 2, y tomar

κ{x + y} =
|x|+ |y|
|x + y| .
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De hecho, el orden de magnitud de este número no se altera si éste se multiplica por 2. Aśı

que, a la hora de realizar una interpretación del resultado de un análisis de errores, estas cons-

tantes pueden no ser tenidas en cuenta, ya que el número de condición es grande o pequeño

independiente de las mismas.

A partir de la cota obtenida, observamos que habrá un error relativo muy grande cuando

|x| + |y| À |x + y|, que conduce a la condición x ≈ −y, que equivale a que se produzca una

diferencia cancelativa. En muchos casos el resultado es exacto dentro de la precisión de la

aritmética, fl(fl(x)+fl(y)) = (x+y) (1+δs), |δs| ≤ u; algunos autores denominan en este caso a la

diferencia cancelativa “benigna”. Aún aśı se puede producir una pérdida de d́ıgitos significativos

en el resultado, que como sabemos, si el resultado es utilizado en cálculos posteriores, puede

hacer que ésta se convierta en “maligna” o catastrófica.

En los ordenadores cuyos coprocesadores matemáticos utilizan un número suficiente de

d́ıgitos de reserva, se puede garantizar que el error relativo de la suma δs está acotado por

|δs| ≤ u, lo que minimiza, pero no evita completamente, los efectos de las diferencias cancelati-

vas.

Ejercicios 2.4 Estime mediante propagación de errores hacia adelante el error relativo cometido

en la operación de multiplicación flotante de números reales en función de los errores absolutos

de los datos iniciales.

Solución. El análisis de errores, es uno los temas más temidos por los alumnos a la hora de

resolver los exámenes de este curso. En él aparecen una serie de ambigüedades, que a manos

del inexperto, conducen a una serie de contradicciones que llevan al desconcierto, al rechazo de

resultados correctos, y a la presentación como válida de otros incorrectos. Vamos a resolver este

problema de varias maneras, en la ĺınea de los resultados presentados por alumnos en cursos

precedentes. Con ello pretendemos que al alumno aprenda de sus “errores” a la hora de realizar

un análisis de errores correcto.

Algunos alumnos se amparan en el modelo estándar modificado de la aritmética que hemos

presentado en este curso, que nos permite escribir1, para x̂, ŷ ∈ IF,

fl(x̂ ŷ) = x̂ ŷ + ∆x̂ŷ =
x̂ ŷ

1 + δx̂ŷ
, |δx̂ŷ| ≤ u, |∆x̂ŷ| ≤ |x̂ ŷ|u.

Utilizando este modelo y considerando los errores absolutos en los datos iniciales directamente

escriben2

fl(x y) = x y + ∆xy = (x + ∆x) (y + ∆y), |∆x| ≤ |x|u, |∆y| ≤ |y|u.

1Muchos alumnos olvidan esta importante hipótesis.
2Esta expresión es errónea porque x e y no son números flotantes, no tiene en cuenta la condición fl(x), fl(y) ∈ IF
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Continuando con su análisis,

fl(x y)− x y = ∆xy = x∆x + y ∆y + ∆x∆y,

el error relativo pedido es

δxy =
fl(x y)− x y

x y
=

∆xy

x y
=

∆x

x
+

∆y

y
+

∆x

x

∆y

y
= δx + δy + δx δy,

es decir, la suma de los errores relativos de los datos más el producto de éstos. Este resultado

recuerda al obtenido en el análisis de errores experimentales que han estudiado en la asignatura

de F́ısica para la interpretación de experimentos. Acotando este resultado obtienen

|δxy| ≤ 2u + O
(
u2

)
= 2 ũ. (2.3)

Aparentemente sólo hay dos fuentes de error, aunque las operaciones implicadas requieren tres

pasos de normalización de números, para los operandos, x e y, y para el resultado del producto

x y, ello lleva a los alumnos a pensar, correctamente, que este resultado está mal. Muchos no se

dan cuenta del paso erróneo que han cometido al aplicar el modelo estándar modificado de la

aritmética sin tener en cuenta sus hipótesis.

Un análisis correcto, siguiendo esta ĺınea, nos lleva a escribir,

fl(fl(x) fl(y)) = fl(x) fl(y) + ∆xy = (x + ∆x) (y + ∆y) + ∆xy,

donde3

|∆xy| ≤ |(x + ∆x) (y + ∆y)|u ≤ |x y|u + O
(
u2

)
,

por tanto,

δxy =
fl(fl(x) fl(y))− x y

x y
=

∆x

x
+

∆y

y
+

∆x

x

∆y

y
+

∆xy

x y
,

con lo que obtenemos como cota del error

|δxy| ≤ 3u + O
(
u2

)
= 3 ũ.

Esta cota, que es correcta, debe resultar mucho más razonable para el alumno, como ya hemos

indicado previamente, porque se han realizado 3 normalizaciones de números flotantes para

obtener el resultado del producto.

Otros alumnos, en exámenes, resuelven este problema de una forma diferente. Toman el

error relativo para la operación de multiplicación a partir de los errores relativos de los datos,

fl(fl(x) fl(y)) = x (1 + δx) y (1 + δy) (1 + δm)

= x y (1 + δx) (1 + δy) (1 + δm), |δx|, |δy| ≤ u,

3Es importante no olvidar este punto.
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donde utilizando el modelo estándar de la aritmética, correctamente, hacen |δm| ≤ u, con lo que

operando

fl(fl(x) fl(y)) = x y (1 + δx + δy + δm + δx δy + δx δm + δy δm + δx δy δm)

= x y (1 + δp),

y acotando, obtienen el resultado correcto

|δp| ≤ |δx + δy + δm|+ O
(
u2

) ≤ 3u + O
(
u2

)
. (2.4)

Sin embargo, como el enunciado pide escribir este resultado en función de los errores absolutos

de los datos, introducen éstos,

fl(x) = x + ∆x, |∆x| ≤ |x|u,

fl(y) = y + ∆y, |∆y| ≤ |y|u,

acabando con la expresión

|δp| ≤ |∆x|
|x| +

|∆y|
|y| + |δm|+ O

(
u2

)
.

donde necesitan conocer el error relativo δm del producto en función del error absoluto de los

datos. Al estimar esta cota, muchos alumnos cometen errores.

Algunos alumnos aplican el resultado aparentemente razonable,

|δm| ≤ |∆x| |∆y|
|x| |y| = O

(
u2

)
,

que conduce al resultado incorrecto

|δxy| ≡ |δp| ≤ 2u + O
(
u2

)
.

Sin embargo, este resultado está en contradicción con (2.4). Ello les hace dudar del análisis

realizado, muchas veces sin ser capaces de encontrar el paso erróneo.

Otros alumnos, sin embargo, calculan una cota para |δm| siguiendo un razonamiento similar

al usado al principio de este problema, obteniendo

|δm| ≤ 2u + O
(
u2

)
,

lo que conduce al resultado, también incorrecto,

|δxy| ≡ |δp| ≤ 4u + O
(
u2

)
. (2.5)
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Este resultado también está en contradicción con (2.4). De nuevo, éstos también dudan sobre el

resultado obtenido sin encontrar la fuente de su error.

El hecho de que el análisis de errores, a veces, en manos del inexperto, conduzca a expresiones

como (2.3), (2.4) y (2.5), que son contradictorias entre śı, hace que muchos alumnos le tengan

gran temor, sobre todo en los exámenes, conduciendo a resultados pobres en éstos. El alumno

debe aplicar su intuición, que le indica que la constante de error debe ser similar al número de

operaciones de normalización de números flotantes realizadas.

Ejercicios 2.5 La operación de suma de números flotantes no cumple con la propiedad asocia-

tiva, aunque śı es conmutativa, es decir, el orden de los factores, si hay más de dos, altera el

resultado y, por tanto, el error de éste. Demostrar que si se suman varios números positivos

empezando por el menor y en orden creciente se minimiza la pérdida de d́ıgitos significativos en

el resultado4.

Solución. Calculemos mediante propagación de errores hacia adelante el error cometido al

sumar n números xi,

s = x1 + x2 + · · ·+ xn.

Introduzcamos las sumas parciales si que nos indican el orden en que se realizan las sumas

s2 = x1 + x2, s3 = s2 + x3, . . . , sn = sn−1 + xn.

Estudiemos como se propagan los errores relativos en estas sumas parciales. Es importante

que el lector note que en el enunciado se plantea el estudio de la suma de números flotantes,

y no de números reales. Operando y despreciando los productos de errores relativos εi εj como

infinitésimos de orden superior,

fl(s2) = (x1 + x2) (1 + ε2),

fl(s3) = (fl(s2) + x3) (1 + ε3)

= x3 (1 + ε3) + (x1 + x2) (1 + ε2) (1 + ε3)

= x3 (1 + ε3) + (x1 + x2) (1 + ε2 + ε3)

= s3 + (x1 + x2) (ε2 + ε3) + x3 ε3,

y siguiendo con el mismo procedimiento

fl(s4) = (fl(s3) + x4) (1 + ε4)
4Este ejercicio ya ha sido resuelto en el contenido teórico del segundo tema.
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= s4 + (x1 + x2) (ε2 + ε3 + ε4) + x3 (ε3 + ε4) + x4 ε4.

La fórmula general que se obtiene es

fl(sn) = sn + (x1 + x2)
n∑

i=2

εi + x3

n∑

i=3

εi + · · ·+ xn εn.

Acotando |εi| ≤ u, la unidad de redondeo, tenemos finalmente

fl(sn) ≤ sn + (x1 + x2) (n− 1)u + x3 (n− 2)u + · · ·+ xn u + O
(
u2

)
,

donde no aparecen errores absolutos porque todos los números son positivos, y hemos incluido

un término cuadrático para recordar los errores que hemos despreciado en pasos anteriores.

En la expresión obtenida se observa que el error los primeros sumandos afectan más al

resultado que los últimos. Por ello, si sumamos primero los números más pequeños, que coinciden

con los de menor módulo, haremos que el error de redondeo de la suma sea menor.

Si los números a sumar no son todos positivos (o todos negativos), el orden que minimiza

el error es el que minimiza la sumas parciales |si|. Encontrar este orden es dif́ıcil, como ya

indicamos en la teoŕıa de este tema.

Ejercicios 2.6 Evalúe (con 5 d́ıgitos tras la coma decimal) la función ex cuando x = 5, y

x = −5, utilizando desarrollos en serie de Taylor. Si la convergencia del desarrollo en serie de

Taylor es muy lenta, proponga un método más preciso para dicha evaluación.

Solución. El resultado exacto (redondeado a 5 d́ıgitos tras la coma decimal) que se obtiene

utilizando aritmética IEEE de doble precisión es

e5 = 148.41316, e−5 = 0.0067379.

El desarrollo en serie de Taylor de la exponencial es

ex = 1 + x +
x2

2
+

x3

3!
+ O

(
x4

)
. (2.6)

Esta serie converge para x = 5 como se prueba fácilmente mediante el criterio de Cauchy, ya

que, denotando por tn el término n-ésimo de la serie,

tn+1

tn
=

xn+1/(n + 1)!
xn/n!

=
x

n + 1
=

5
n + 1

≤ 1,

que se cumple para n ≥ 4.
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Definamos (con 0! = 1) la sucesión de sumas parciales

s(n) =
n∑

k=0

xk

k!
.

Entonces obtenemos, operando con cinco d́ıgitos decimales,

s(0) = 1.00000, s(1) = 1 + 5 = 6.00000,

s(2) = 6 +
52

2
= 18.50000,

s(3) = s(2) +
53

3!
= 39.33333,

s(4) = s(3) +
54

4!
= 65.37500,

s(5) = s(4) +
55

5!
= 91.41667,

s(6) = s(5) +
56

6!
= 113.11806,

s(7) = s(6) +
57

7!
= 128.61905,

s(8) = s(7) +
58

8!
= 138.30717,

s(9) = s(8) +
59

9!
= 143.68946,

s(10) = s(9) +
510

10!
= 146.38060,

s(11) = s(10) +
511

11!
= 147.60385,

s(12) = s(11) +
512

12!
= 148.11354,

s(13) = s(12) +
513

13!
= 148.30957,

. . .

Comparando con la solución exacta, el error relativo cometido hasta ahora es

e5 − s(13)
e5

= 0.0007 .
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Como vemos, la serie de Taylor permite calcular el valor de la exponencial para x > 0 con gran

precisión, aunque requiere un gran número de operaciones aritméticas.

La serie (2.6) para x = −5 es una serie alternada que converge, ya que la serie de los

valores absolutos de sus términos converge, como ya se ha probado anteriormente. Sin embargo,

la convergencia de una serie alternada suele ser extremadamente lenta. Realicemos algunos

cálculos

s(0) = 1.00000, s(1) = 1− 5 = −4.00000,

s(2) = s(1) +
52

2
= 8.50000,

s(3) = s(2)− 53

3!
= −12.33333,

. . .

Para calcular el valor pedido es mejor utilizar

e−x =
1
ex

=
1

1 + x + x2

2 + · · · ,

que en nuestro caso da

e−5 ≈ 1
s(13)

=
1

148.30957
= 0.0067427

cuyo error relativo es
e−5 − 1/s(13)

e−5
= 0.0007,

que es el mismo que el que obtuvimos previamente para e5.

Ejercicios 2.7 Dada

φ(x) =
∞∑

k=1

1
k (k + x)

.

Demuestre que φ(1) = 1.

Solución. Factorizando la expresión a sumar

φ(x) =
∞∑

k=1

1
k (k + x)

=
∞∑

k=1

(
1
k
− 1

k + x

)
1
x

=
1
x

( ∞∑

k=1

1
k
−

∞∑

k=1

1
k + x

)

que para x = 1

φ(1) =

( ∞∑

k=1

1
k
−

∞∑

k=1

1
k + 1

)
= 1 +

1
2

+
1
3

+ · · · − 1
2
− 1

3
− · · · = 1.
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Es muy importante que note que hemos podido hacer esta suma término a término porque la

suma original es absolutamente convergente, como se demuestra fácilmente. En caso contrario

no se podŕıa haber realizado una suma término a término.

Ejercicios 2.8 ¿Cuál es el número de condicionamiento de f(x) = ex para x < 0? Compare

este número de condicionamiento con los que resultan de la evaluación de f(x) = ex por medio

de desarrollos de Taylor.

Solución. El número de condicionamiento de f(x) = ex para x < 0, con |x− x∗| pequeño es

max
∣∣∣∣
f(x)− f(x∗)

f(x)
:
x− x∗

x

∣∣∣∣ ≈
∣∣∣∣
f ′(x)
f(x)

x

∣∣∣∣ = |x|,

lo que indica que el número de condicionamiento aumenta linealmente con |x|.

Si escribimos el desarrollo en serie de Taylor de la exponencial

f(x) = ex =
∞∑

n=0

fn(x), fn(x) =
xn

n!
,

y calculamos el número de condicionamiento de un término general de dicha serie fn(x), obten-

emos aproximadamente ∣∣∣∣∣∣∣∣

n
xn−1

n!
xn

n!

x

∣∣∣∣∣∣∣∣
= n,

que aumenta a medida que aumenta el orden n del término de la serie. Más aún, para x < 0, la

serie de Taylor de ex es una serie alternada para la que
∣∣∣∣
fn+1

fn

∣∣∣∣ =
∣∣∣∣
xn+1/(n + 1)!

xn/n!

∣∣∣∣ =
x

n + 1
,

por lo que, aunque la serie es convergente, para |x| grande se requieren un gran número de

términos.

Ejercicios 2.9 Determine el número de condicionamiento para la evaluación de la función ex

para x < 0. Para los valores de x para los que este problema está mal condicionado, cómo

evaluaŕıa la exponencial (utilice desarrollo en serie de Taylor).

Solución. Dado que f(x) = ex = f ′(x), su número de condicionamiento es
∣∣∣∣
f(x + ∆x)− f(x)

f(x)
x

∆x

∣∣∣∣ ≈
∣∣∣∣
f ′(x)
f(x)

x

∣∣∣∣ = |x|.

El número de condicionamiento crece conforme x crece.
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Podemos evaluar ex mediante su desarrollo de Taylor

ex = 1 + x +
x2

2
+

x3

3!
+ · · · ,

que es convergente para toda x ∈ IR. Para x < 0 tenemos una serie de términos alternados,

donde para x ¿ 0 el valor absoluto de cada término crece indefinidamente. Por lo tanto, su

evaluación numérica es dif́ıcil ya que se trata de una serie de convergencia lenta que requiere el

cálculo de un gran número de términos para evaluar ex con suficiente precisión ∀x < 0.

Para determinar el número de términos que tenemos que calcular, definamos la suma parcial

de la serie

sn = 1 + x +
x2

2
+ · · ·+ xn

n!
.

El error cometido al aproximar ex por sn es

ex − sn =
xn+1

(n + 1)!
+ O

(
xn+2

)
=

xn+1

(n + 1)!
eξ,

donde 0 ≥ ξ ≥ x y hemos aplicado el teorema del valor medio. Por tanto,

|ex − sn| ≤
∣∣∣∣

xn+1

(n + 1)!

∣∣∣∣

que podemos hacer tan pequeño como deseemos haciendo n suficientemente grande dado que el

factorial crece más rápido que cualquier potencia. Para obtener una precisión inferior al épsilon

de la máquina hay que calcular sn sucesivamente hasta que sn = sn−1.

Sin embargo, es más eficiente computacionalmente aproximar la exponencial de la siguiente

forma

ex =
1

e−x
=

1
1− x + x2

2 − x3

3! + · · ·
Para x < 0, todos los términos del denominador son positivos (de hecho, la exponencial es una

función no negativa). Es mejor calcular la sucesión

sn =
1∑n

i=0(−1)ixi/i!
,

donde hemos usado el convenio habitual 0! = 1.

Ejercicios 2.10 Cómo se debe evaluar la función

f(x) = x−
√

x2 − α

para α ¿ x, de forma tal que se eviten diferencias cancelativas.
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Solución. Propondremos dos maneras de resolver este problema. Por un lado, podemos

desarrollar la ráız cuadrada mediante serie de Taylor,

f(x) = x

(
1−

√
1− α

x2

)

= x

(
1−

(
1− α

2x2
+ O

(
α2

x4

)))

=
α

2 x
+ O

(
α2

x3

)
.

Por otro lado, sin utilizar Taylor, podemos aplicar de forma exacta

f(x) = x−
√

x2 − α =

(
x−√x2 − α

)(
x +

√
x2 − α

)

x +
√

x2 − α

=
α

x +
√

x2 − α
.

Aunque las dos expresiones que hemos obtenido son diferentes, la segunda expresión tiende

a la primera cuando x À α. Aunque la primera expresión es aproximada y la segunda exacta,

la primera tiene la ventaja de que es computacionalmente más eficiente, y en la mayoŕıa de los

casos el error es despreciable cuando x À α.

Ejercicios 2.11 Calcule

f(x) =
x− sinx

tanx

para x = 0.000001, con una exactitud de cuatro cifras decimales.

Solución. Para calcular

f(x) =
x− sinx

tanx

con x = 10−6 utilizaremos la calculadora de Windows (que trabaja hasta con 16 d́ıgitos deci-

males). El resultado es

f(10−6) =
2 · 10−19

10−6
= 2 · 10−13.

¿Cuántos d́ıgitos significativos tiene este resultado? La mejor manera de determinarlos,

dado que x es muy pequeño, es utilizar la serie de Taylor de f(x) y cuantificar el error cometido

mediante el teorema del resto de Taylor.

El desarrollo de Taylor del numerador es

x− sinx = −x3

3!
+

x5

5!
+ O

(
x7

)
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y el del denominador

tanx = x + O
(
x3

)
.

Para x = 10−6,

x− sinx = 10−18 (
1
3!

+ O
(
10−12

)
), tanx = 10−6 + O

(
x−18

)
= 10−6

por lo que podemos aproximar, con más de cuatro cifras de exactitud,

f(x) ≈ x3/3!
x

=
x2

6
= 0.16667 · 10−12

ya que el siguiente término del desarrollo de Taylor es O
(
10−24

)
.

Como podemos ver, la solución obtenida con la calculadora es bastante mala y tiene un error

relativo muy alto ∣∣∣∣
2− 1.6667

1.6667

∣∣∣∣ = 0.2 ≈ 20%.

Ejercicios 2.12 Dadas f(x) = ex y g(x) = x en el intervalo [0, 1]. ¿Para qué valores de ξ se

satisfacen las siguientes condiciones?

1.
∫ 1
0 f(x) dx = f(ξ),

2.
∫ 1
0 g(x) dx = g(ξ),

3.
∫ 1
0 f(x) g(x) dx = f(ξ)

∫ 1
0 g(x) dx.

Solución. Dado que f(x) = ex y g(x) = x son funciones continuas, tenemos que
∫ 1

0
ex dx = ex|10 = e− 1 = f(ξ) = eξ

ξ = ln(e− 1) = 0.541,

∫ 1

0
x dx =

x2

2

∣∣∣∣
1

0

=
1
2

= g(ξ) = ξ

ξ =
1
2
,

∫ 1

0
f(x) g(x) dx = f(ξ)

∫ 1

0
g(x) dx,

∫ 1

0
x ex dx = x ex|10 −

∫ 1

0
ex dx = e− ex|10 = 1

f(ξ)
∫ 1

0
x dx = f(ξ)

1
2

= eξ 1
2

= 1,

ξ = ln 2 = 0.693.
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La tercera relación presentada en el enunciado del problema sólo es cierta por que g(x) = x

en [0, 1] tiene el mismo signo que f(x) = ex en dicho intervalo. En caso contrario, dicha relación

no seŕıa verdad, por ejemplo, para el intervalo [−1, 1],
∫ 1

−1
f(x) g(x) dx =

∫ 1

−1
x ex dx = x ex|1−1 −

∫ 1

−1
ex dx =

e + e−1 − ex|10 = e + e−1 − e + e−1 =
2
e
,

f(ξ)
∫ 1

−1
g(x) dx = f(ξ)

∫ 1

−1
x dx = f(ξ) 0 = 0,

y
2
e
6= 0.

Ejercicios 2.13 Resuelva el sistema de dos ecuaciones lineales

0.780x + 0.563 y = 0.217,

0.457x + 0.330 y = 0.127,

con cuatro y con tres cifras significativas, y compare los resultados con los de la solución exacta.

Justifique los resultados obtenidos. Nota: si utiliza una calculadora, redondee los resultados

intermedios.

Solución. Para resolver el sistema lineal

0.780x + 0.563 y = 0.217,

0.457x + 0.330 y = 0.127,

primero operamos con cuatro cifras significativas. Despejando de la primera ecuación

x = 0.2782− 0.7218 y,

y sustituyendo en la segunda

0.457 (0.2782− 0.7218 y) + 0.330 y = 0.127,

0.1271− 0.3299 y + 0.330 y = 0.127,

0.0001 y = −0.0001,

con lo que, finalmente,

y = −1, x = 1.
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Seguidamente operaremos con tres cifras significativas. Despejando de nuevo de la primera

ecuación

x = 0.278− 0.722 y,

y sustituyendo en la segunda

0.457 (0.278− 0.722 y) + 0.330 y = 0.127,

0.127− 0.330 y + 0.330 y = 0.127,

0.000 y = 0.000,

con lo que el valor de y está indeterminado, y el sistema no se puede resolver.

Para calcular el valor exacto de la solución utilizamos la regla de Cramer. Calculemos el

determinante

Det =

∣∣∣∣∣∣∣∣

0.780 0.563

0.457 0.330

∣∣∣∣∣∣∣∣
= 1.09× 10−6,

y la solución para x

x =
1

Det

∣∣∣∣∣∣∣∣

0.217 0.563

0.127 0.330

∣∣∣∣∣∣∣∣
=

1.09× 10−6

Det
= 1,

y para y

y =
1

Det

∣∣∣∣∣∣∣∣

0.780 0.217

0.457 0.127

∣∣∣∣∣∣∣∣
=
−1.09× 10−6

Det
= −1.

Estos resultados indican que este problema está mal condicionado, aunque los podemos

justificar debido a que el determinante (Det) es muy próximo a cero. Pero además, podemos

estudiar sus autovalores. Para ello, escribimos el sistema como

A~x = ~b, ~x = A−1~b,

donde

~x =




x

y


 , ~b =




0.217

0.127


 , A =




0.780 0.563

0.457 0.330


 .

Calculemos los autovalores de A,

|A− λ I| = 0 =

∣∣∣∣∣∣∣∣

0.780− λ 0.563

0.457 0.330− λ

∣∣∣∣∣∣∣∣
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es decir,

2.574× 10−1 − 1.11λ + λ2 − 0.257291 = 0,

λ2 − 1.11 λ− 0.000109 = 0,

λ =
1.11
2

±
√(

1.11
2

)2

+ 0.000109 = 0.555± 0.555098190,

con lo que los autovalores son

λ+ = 1.110098190, λ− = −0.000098190.

Dado que los dos autovalores tienen magnitudes muy dispares, el problema está mal condi-

cionado.

Ejercicios 2.14 Dada la ecuación diferencial ordinaria

d2y

dx2
− y = 0, y(0) = a,

dy

dx
(0) = b.

¿Para qué valores iniciales es el problema estable o está f́ısicamente bien condicionado?

Solución. La ecuación diferencial ordinaria

y′′ − y = 0, y(0) = a, y′(0) = b,

es fácil de resolver suponiendo una solución de la forma

y(x) = Aex + B e−x = C sinhx + D coshx,

y(0) = D = a,

y′(x) = C coshx + D sinhx,

y(0) = C = b,

y por tanto

y(x) = b sinhx + a coshx = b
ex − e−x

2
+ a

ex + e−x

2

=
a + b

2
ex +

a− b

2
e−x.

Con objeto de estudiar el condicionamiento con respecto a las condiciones iniciales, intro-

ducimos un pequeño error en a y en b,

y(0) = a (1 + εa), y′(0) = b (1 + εb),
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con lo que la solución del problema perturbado es

yP (x) =
a (1 + εa) + b (1 + εb)

2
ex +

a (1 + εa)− b (1 + εb)
2

e−x.

Comparando las dos soluciones obtenidas

yP − y =
a εa + b εb

2
ex +

a εa − b εb

2
e−x.

Para x À 0,

yP − y ≈ a εa + b εb

2
ex, y ≈ a + b

2
ex,

y el error relativo toma la forma

yP − y

y
≈=

a εa + b εb

a + b
.

Está expresión se hará “muy grande” si a + b = 0 y εa 6= εb, y en ese caso el problema está mal

condicionado. Sin embargo, si εa = εb = ε,

yP − y

y
≈=

a + b

a + b
ε = ε,

y el problema está bien condicionado.

Otra manera de comprobar que para a+b = 0 el problema considerado está mal condicionado

es teniendo en cuenta que la solución exacta en dicho caso es

y = a e−x = −b e−x,

que tiende a cero cuando x →∞, aunque cualquier perturbación que cause a + b 6= 0 hará que

la solución se vuelva no acotada para x →∞.

El análisis presentado en esta solución también se podŕıa haber realizado expresando la

ecuación original de segundo grado como dos ecuaciones de primer grado. Para ello, se reescribe

d

dx

(
dy

dx

)
= y,

con lo que se define y obtiene

dy

dx
= z, z(0) = b,

dz

dx
= y, y(0) = a.

Ejercicios 2.15 Realice el análisis de errores de la operación x2n

0 mediante el siguiente algo-

ritmo que parte de x0, y procede aśı

x1 = x2
0, x2 = x2

1, . . . xn = x2
n−1.
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Solución. En el análisis se representan los números flotantes que se van calculando por yi,

de forma que se obtiene la sucesión {yi} donde

x0 −→ y0 = fl(x0) = x0 (1 + δ0),

x1 −→ y1 = fl(x1) = fl(y2
0) = y2

0 (1 + δ1),

. . . . . .

xn −→ yn = fl(y2
n−1) = y2

n−1 (1 + δn),

por lo que

yn = y2n

0 (1 + δ1)2
n−1

. . . (1 + δn−1)2 (1 + δn),

que acotando todos los |δi| < u, donde u = ε/2 (es la mitad del épsilon de la máquina), nos da

|yn| ≤ |xn| (1 + u)p,

donde p = 1 + 2 + · · ·+ 2n es un progresión geométrica. Operando del modo usual

p = 20 + 21 + · · ·+ 2n, 2 p = 21 + · · ·+ 2n+1,

2 p− p = p = 2n+1 − 20 = 2n+1 − 1.

De esta forma los errores absoluto y relativo son (considerando x0 positivo para evitar los

valores absolutos)

|yn − xn| ≤ x2n

0 ((1 + u)p − 1) ,

∣∣∣∣
yn − xn

xn

∣∣∣∣ ≤ (1 + u)p − 1,

respectivamente, donde p = 2n+1 − 1.

Como u ¿ 1, podemos utilizar desarrollo en serie de Taylor de la función potencia (o la regla

del binomio de Newton) para acotar el error relativo como

1 + p u + O
(
u2

)− 1 = p u + O
(
u2

)
=

(
2n+1 − 1

)
u + O

(
u2

)
,

es decir, los errores crecen proporcionalmente al número de operaciones. Estos resultados son

exactos si se utiliza la unidad de reondeo ajustada, que para p u ¿ 1, nos permite escribir
∣∣∣∣
yn − xn

xn

∣∣∣∣ ≤ p ũ ≈ 2n+1 ũ.

Se deja al lector la presentación de este problema utilizando la notación de θn y γn presentado

en el texto del tema.
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Ejercicios 2.16 Considere el siguiente sistema de ecuaciones lineales

2x + 6 y = 8,

2x + 6.00001 y = 8.00001.

Resuélvalo con (1) la regla de Cramer y 6 cifras significativas (es decir 0. ? ? ? ? ? ?), y (2)

la regla de Cramer y 4 cifras significativas. Explique sus resultados. ¿Es un problema bien

condicionado? Justifique su respuesta.

Solución. Cuando se trata de resolver este problema con la regla de Cramer y 6 d́ıgitos

significativos, observamos que el determinante de la matriz A del sistema es

det(A) = 12.0000− 12.0000 = 0.000000,

con lo que

x =

∣∣∣∣∣∣∣∣

8.00000 6.00000

8.00001 6.00001

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

2 6

2 6.00001

∣∣∣∣∣∣∣∣

=
48.0000− 48.0000

0.000000
=

0.000000
0.000000

,

operación que no está definida.

Cuando se trata de resolver el problema con 4 d́ıgitos significativos obtenemos, similarmente,

det(A) = 0.0000. Luego tampoco podemos utilizar la regla de Cramer.

Obviamente este problema está mal condicionado ya que un pequeño cambio, por ejemplo,

del orden de 10−5 en cualquiera de los coeficientes, trabajando con 6 d́ıgitos signficativos, hace

que la regla de Cramer nos de una posible solución. Es decir, un pequeño cambio afecta mucho

al resultado.

Ejercicios 2.17 Considere la transformación discreta

xi+1 = a xi + b.

Se define el ”punto fijo”, xF , de esta transformación como el número tal que xF = xi+1 = xi,

es decir, xF = a xF + b, y por lo tanto,

xF =
b

1− a
.
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Determine los valores de a para los cuales esta transformación (1) converge al punto fijo, y

(2) diverge (o no converge) al punto fijo, cuando i → ∞. Justifique y dé una interpretación

geométrica de sus resultados.

Solución. La definición de la convergencia de la sucesión {xn} → xF , requiere que ∀ε > 0,

∃n0, tal que ∀n > n0, |xn − xF | < ε. Como el alumno estudió en cursos anteriores, se puede

aplicar el criterio de Cauchy,
|xn+1 − xn|
|xn − xn−1| = |a| < 1,

que es la condición buscada.

También podemos analizar la convergencia de la sucesión directamente. Iterando la sucesión

xn+1 = a xn + b = a2 xn−1 + a b + b = a3 xn−2 + a2 b + a b + b,

luego

xn = a xn−1 + b

= a2 xn−2 + a b + b

= a3 xn−2 + (a2 + a + 1) b

· · ·

= an x0 + (an−1 + an−2 + · · · a + 1) b,

donde aparece una progresión geométrica fácilmente sumable,

s = an + an−1 + · · · a + 1, (1− a) s = 1− an,

con lo que obtenemos

xn = an x0 +
1− an

1− a
b.

Con el término general de la sucesión en forma expĺıcita podemos estudiar directamente su

convergencia. Para |a| < 1, es decir, −1 < a < 1, este ĺımite converge ya que

lim
n→∞ an = 0, lim

n→∞xn = xF ,

y para |a| > 1 diverge. Sin embargo, los casos ĺımites deben estudiarse con cuidado. Para a = 1,

tenemos que
1− an

1− a
= 1 + a + · · ·+ an = n + 1, lim

n→∞ an = 1,
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con lo que

lim
n→∞xn = x0 + b lim

n→∞(n + 1),

que diverge. Para a = −1, también diverge ya que la sucesión de signos alternados {(−1)n} no

tiene ĺımite.

En resumen, la sucesión {xn} converge sólo cuando la pendiente |y′(x)| = |a| de la recta

y(x) = a x+b, es menor que la unidad. En el tema 7 estudiaremos en más detalle la convergencia

de sucesiones de este tipo y su uso para el cálculo de ceros de funciones.

Ejercicios 2.18 Haga una análisis de los errores del producto de n números y calcule su error

relativo. ¿Cuál es la relación (si es que la hay) entre el error relativo del producto y los errores

de redondeo de los valores xi? ¿Por qué?

Solución. Para calcular el producto
n∏

i=1

xi,

operaremos paso a paso

p2 = x1 x2, p3 = p1 x3, . . . , pn = pn−1 xn,

que si operamos utilizando el modelo estándar de la aritmética flotante nos da

fl(p2) = fl(fl(x1) fl(x2)) = x1 x2 (1 + δ1) (1 + δ2) (1 + δp2), |δ1|, |δ2|, |δp2| < u,

donde u es la unidad de redondeo, δi los errores relativos debidos a la representación flotante

del número xi, y δpi los debidos al (i− 1)-ésimo producto. Acotando observamos que

|fl(p2)| ≤ |x1 x2| (1 + u)3.

Procediendo de esta manera obtenemos también

|fl(p3)| ≤ |x1 x2 x3| (1 + u)5,

y aśı sucesivamente,

|fl(pn)| ≤ |x1 x2 x3 · · · xn| (1 + u)2 n−1,

con lo que el error relativo en función de los errores de los datos toma la siguiente expresión,

cuya cota también presentamos.

er(pn) =
fl(pn)− pn

pn
=

n∏

i=1

(1 + δi)
n∏

j=2

(1 + δpi) ≤ (1 + u)2 n−1 − 1 ≤ 1 + (2n− 1) ũ,

donde ũ es la unidad de redondeo ajustada.
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Ejercicios 2.19 Calcule f(x) = 1−cosx, con aritmética flotante de seis d́ıgitos para el número

x = 0.000010. Explique su resultado. ¿Puede obtener un valor más exacto? ¿Cómo? ¿Por qué?

Solución. Para x = 0.000010 = 10−5, podemos aproximar el coseno por su desarrollo de

Taylor alrededor de 0 obteniendo

cosx ≈ 1− x2

2
= 1− 0.5× 10−10 = 1.00000,

donde hemos redondeado el resultado a 6 d́ıgitos significativos. De esta forma, obtenemos para

el valor de la función, con la misma precisión,

f(x) = 1− cosx = 0.000000,

cuando la respuesta exacta (con 10 d́ıgitos de precisión) es

f(x) = 1− cosx =
x2

2
+ O

(
x4

)
= 0.5× 10−10.

La respuesta que obtuvimos antes teńıa un error relativo infinito.

Ejercicios 2.20 Estime el número de condición de f(x) =
√

x + 1−√x para x = 104. Calcule

f(12345) con aritmética de seis d́ıgitos. Explique sus resultados. ¿Puede obtener un valor más

exacto? ¿Cómo? ¿Por qué?

Solución. Para estimar el número de condición de una función utilizamos la expresión que

lo define

κ{f(x)} =

∣∣∣∣∣∣∣∣

f(x + ∆x)− f(x)
f(x)

x + ∆x− x

x

∣∣∣∣∣∣∣∣
=

∣∣∣∣
f(x + ∆x)− f(x)

f(x)
x

∆x

∣∣∣∣

eligiendo un valor para ∆x conveniente. Por ejemplo, para ∆x = 1, obtenemos como estimación

κ{f(x)} ==

∣∣∣∣∣

√
104 + 2−√104 + 1−√104 + 1 +

√
104

√
104 + 1−

√
104

104

1

∣∣∣∣∣ =
|100.01− 2× 100.005 + 100|

|100.005− 100| 104 ≈ 0.5,

que indica que esta función no está mal condicionada. La diferencia cancelativa que contiene

no es catastrófica. El alumno puede comprobar, dado que f(x) ∈ C2, que el valor exacto del

número de condición es 0.5, luego nuestra estimación ha sido bastante buena.

Operando con 6 decimales,

f(12345) =
√

12346−
√

12345 = 111.113− 111.108 = 0.005.
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Para obtener un valor aún más exacto operando con 6 d́ıgitos significativos, podemos realizar la

operación exacta

√
x + 1−√x√
x + 1 +

√
x

(
√

x + 1 +
√

x) =
x + 1− x√
x + 1 +

√
x

=
1√

x + 1 +
√

x
,

que conduce al resultado

f(12345) =
1

111.113 + 111.108
=

1
122.221

= 0.00450002,

que es un valor mucho más exacto, ya que redondeando el resultado en aritmética exacta a 6

d́ıgitos significativos obtenemos

f(12345) = 0.00450003.

Ejercicios 2.21 Estime el error en la evaluación de

f(x) = cosx · exp(10x2),

para x = 2, si el error absoluto en x es 10−6.

Solución. Dado que el error absoluto en x, sea x+ε, con |ε| = 10−6, es muy pequeño respecto

al tamaño de la función, podemos aplicar Taylor para aproximar,

f(x + ε) = f(x) + ε f ′(x) + O
(
ε2

)
,

que nos da

f(x+10−6) = f(x)+10−6 (20 x cosx−sinx) e10 x2
= e10 x2

(cosx+10−6 (20x cosx−sinx)+O
(
10−12

)
),

con lo que el error absoluto cometido en la evaluación de f(x) es aproximadamente

10−6 (20 x cosx− sinx) e10 x2
∣∣∣
x=2

≈ −4.1× 1012,

que es muy grande debido a la exponencial del cuadrado de x que crece muy rápido.

Ejercicios 2.22 Utilice una mantisa de cuatro cifras decimales para calcular las ráıces de

x2 + 0.4002× 100 x + 0.8× 10−4 = 0.

Explique sus resultados. ¿Puede mejorar estas ráıces? ¿Cómo? ¿Por qué?
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Solución. Utilizando la fórmula estándar para las ráıces de una ecuación cuadrática, a x2 +

b x + c = 0, que se escribe

x± =
−b±√b2 − 4 a c

2 a
,

y operando paso a paso, obtenemos

b2 − 4 a c = 0.16016− 0.00032 = 0.1602− 0.0003 = 0.1599,

que nos da como ráıces

x± =
1
2

(−0.4002±
√

0.1599) =
1
2

(−0.4002± 0.3999),

x+ = −0.0003
2

= −0.0002, x− = −0.8001
2

= −0.4000,

que es el resultado exacto redondeado a dicha precisión.

No es necesario mejorar el resultado obtenido, pues no es posible hacerlo.

Ejercicios 2.23 Calcular los números de condición asociados a las siguientes operaciones:

x/y, x− y,
√

x, ex. Determinar los errores relativos.

Solución. El número de condición de una función real de 2 variables reales, f(x, y), se define

fácilmente como5

κ{f(x, y)} =

∣∣∣∣
f(x + ∆x, y + ∆y)− f(x, y)

f(x, y)

∣∣∣∣
‖(∆x,∆y)‖
‖(x, y)‖

,

donde para medir el tamaño del vector de variables independientes se deben utilizar normas de

vectores, como por ejemplo, la norma 1 o la norma infinito,

‖(x, y)‖1 = |x|+ |y|, ‖(x, y)‖∞ = max{|x|, |y|}.

De esta forma obtenemos para la división, usando norma infinito,

κ

{
x

y

}
=

∣∣∣∣∣
x+∆x
y+∆y − x

y
x
y

∣∣∣∣∣
‖(x, y)‖∞

‖(∆x,∆y)‖∞

=
∣∣∣∣
y ∆x− x∆y

(y + ∆y) x

∣∣∣∣
‖(x, y)‖∞

‖(∆x,∆y)‖∞

≤ ‖(x, y)‖∞ ‖(∆x,∆y)‖∞
|(y + ∆y) x|

‖(x, y)‖∞
‖(∆x,∆y)‖∞ ,

5En el próximo caṕıtulo estudiaremos en detalle las normas de vectores y matrices.
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donde suponiendo |∆y| < ε |y|, con ε ¿ 1, podemos aproximar

κ

{
x

y

}
. ‖(x, y)‖∞.

Ejercicios 2.24 Examen 21/Marzo/1996. Estudie la estabilidad de Hadamard de los sigu-

ientes problemas y determine cuando están bien condicionados:

1. La ecuación diferencial

d2y

dx2
− y = 0, y(0) = a,

dy

dx
(0) = b.

2. La ecuación algebraica no lineal f(x) = x2 − 1 = 0.

3. La ecuación algebraica lineal

x + y = 1,

0.99999x + y = 1.

Solución.

1. La solución general de la ecuación diferencial

d2y

dx2
= y, y(0) = a,

dy

dx
(0) = b.

se escribe como

y(x) = Aex + B e−x,

y aplicando las condiciones iniciales,

y(0) = A + B = a,

y′(0) = A−B = b,

se obtiene finalmente

y(x) =
a + b

2
ex +

a− b

2
e−x.

Por lo tanto, la solución existe y es única, pero el problema no está bien condicionado

f́ısicamente a no ser que a = −b, ya que sino

lim
x→∞ y(x) = sign (a + b)∞.
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Si suponemos a = −b para que el problema esté bien condicionado f́ısica y matemáticamente,

la solución será

y = a e−x = −b e−x.

Estudiemos la estabilidad de Hadamard en ese caso, es decir, el problema perturbado

y(x) = Aex + B e−x, y(0) = a + ε1,
dy

dx
(0) = b + ε2 = −a + ε2.

La solución de este problema perturbado es

y(x) =
ε1 + ε2

2
ex +

(
a +

ε1 − ε2
2

)
e−x.

Por tanto, este problema no está bien condicionado en el sentido de Hadamard ya que a

no ser que ε1 + ε2 = 0,

lim
x→∞ y(x) = sign (ε1 + ε2)∞.

2. La ecuación algebraica no lineal f(x) = x2 − 1 = 0, tiene dos ráıces x = ±1, por tanto la

solución existe y es única. Si se considera el polinomio más general a x2 + b x + c = 0, está

claro que la ecuación considerada corresponde a a = 1, b = 0, c = −1. Para estudiar su

estabilidad en el sentido de Hadamard, supongamos pequeños errores en estos coeficientes,

a = 1 + ε1, b = 0 + ε2, c = −1 + ε3,

por lo que el polinomio perturbado será

(1 + ε1)x2 + ε2 x− 1 + ε3 = 0.

Las ráıces del polinomio perturbado son

x = − ε2
2 (1 + ε1)

±
√

ε22
4 (1 + ε1)2

+ 1− ε3,

por lo que se ve que si ε1, ε2 y ε3 son pequeños, las ráıces del polinomio perturbado son

próximas a la solución del problema no perturbado, es decir, ±1. Por tanto, este problema

está bien condicionado en el sentido de Hadamard.

3. La ecuación algebraica lineal

x + y = 1,

0.99999x + y = 1.
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tiene como solución única x = 0 e y = 1. El problema perturbado asociado es

(1 + ε1) x + (1 + ε2) y = 1 + ε3,

(0.99999 + ε4) x + (1 + ε5) y = 1 + ε6.

El determinante de su matriz de coeficientes es

det = (1 + ε1) (1 + ε5)− (1 + ε2) (0.99999 + ε4),

que es nulo para ε1 = ε5 = ε2 = 0 y ε4 = 0.00001, es decir, para esos valores no existe

solución (el problema es incompatible si ε3 6= ε6) o existen infinitas soluciones (si ε3 = ε6).

Si el determinante no es nulo, la solución es



x

y


 =

1
det




1 + ε5 −(1 + ε2)

−(0.99999 + ε4) 1 + ε1


 ·




1 + ε3

1 + ε6


 .

El condicionamiento de un sistema lineal se mide mediante su número de condicionamiento,

definido como

κ(A) = ‖A‖ ‖A−1‖.
Utilizando normas uno e infinito para determinarlo, tenemos que

‖A‖1 = max
j

n∑

i=1

|aij | = max 1.99999, 2 = 2,

‖A‖∞ = max
i

n∑

j=1

|aij | = max 2, 1.99999 = 2,

A−1 =
1

1− 0.99999




1 −1

−0.99999 1


 =




105 −105

−99999 105


 ,

‖A−1‖1 = max 199999, 2 · 105 = 2 · 105,

‖A−1‖∞ = 200000.

Por lo que, finalmente

κ(A) = ‖A‖1 ‖A−1‖1 = ‖A‖∞ ‖A−1‖∞ = 4 · 105.

Por lo tanto, este problema está extremadamente mal condicionado. Para ordenadores con

menos de seis cifras significativas, la segunda ecuación es la misma que la primera y, por

tanto, existen infinitas soluciones.
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