CAPITULO 2

EJERCICIOS RESUELTOS: ARITMETICA DE ORDENADORES Y
ANALISIS DE ERRORES

Ejercicios resueltos

Ejercicios 2.1 Calcula la suma y la resta de los nimeros a = 0.4523 - 104, y b = 0.2115- 1073,
con una aritmética flotante con mantisa de cuatro digitos decimales, es decir, una aritmética de

cuatro digitos de precision. ;Se produce alguna diferencia cancelativa?

Solucién. El célculo es facil y directo

fl(a + b) = 0.4523 - 10* 4 0.0002115 - 10°
= 0.4523 - 10* + 0.0000 000 2115 - 10* = 0.4523 - 10*,

fl(a —b) = 0.4523 - 10*.

Estos cdlculos muestran claramente la pérdida de digitos significativos en las operaciones de
suma y resta en punto flotante. Observamos que en el caso de la resta no se ha producido una
diferencia cancelativa, ya que el resultado tiene una exactitud igual a la precisién (4 digitos) de

la aritmética usada.
Ejercicios 2.2 Usando aritmética de cuatro digitos de precision, sume la siguiente expresion
0.1025 - 10* + (—0.9123) - 10 4 (—0.9663) - 10 4 (—0.9315) - 10"

tanto ordenando los nimeros de mayor a menor (en valor absoluto), como de menor a mayor.

¢ Cudl de las dos posibilidades es mds exacta? Justifique los resultados que encuentre.



2 Capitulo 2. EJERCICIOS RESUELTOS: Aritmética de ordenadores y analisis de errores

Solucién. La suma exacta sg es

sp = 1025 —912.3 — 96.63 — 9.315 = 6.755.

Nuestra experiencia en exdmenes nos ha mostrado que algunos alumnos contestan este ejer-
cicio de forma incorrecta. Para sumar en orden de mayor a menor, que es el que aparece

originalmente en dicha suma, primero igualan los exponentes de los niimeros al mayor de ellos,
s =0.1025 - 10* — 0.09123 - 10* — 0.009663 - 10* — 0.0009315 - 10*,
donde los digitos subrayados no entran dentro de la mantisa, por lo que los redondean,
s =0.1025 - 10* — 0.0912 - 10* — 0.0097 - 10* — 0.0009 - 10"

y finalmente los suman con aritmética exacta obtendremos s = 0.0007 - 10%. Obviamente, esta
respuesta es incorrecta ya que un ordenador realiza cada operacion de forma separada, igualando
exponentes y normalizando el resultado en cada paso. La propiedad asociativa de la suma no se

cumple para la aritmética flotante.

La respuesta correcta requiere evaluar con el orden
(((0.1025 - 10* + (—0.9123) - 10%) + (—0.9663) - 10?) + (—0.9315) - 10"),
y se obtiene mejor paso a paso como sigue

51 =0.1025 - 10,

s9 = s —0.0912 - 10* = 0.0113 - 10* = 0.1130 - 10%,

53 = 59— 0.09663 - 103 = 0.1130 - 10% — 0.0966 - 10°
=0.0164 - 10 = 0.1640 - 102,

s4 = s3 —0.09315 - 10 = 0.1640 - 10% — 0.0932 - 10?
=0.0708 - 10? = 0.7080 - 10' = 7.080.

El error relativo cometido sumando estos ntimeros de mayor a menor es

sy —sp _ 7.080 —6.755
sg 6.755

= 0.048 =~ 5%.

Si sumamos en orden de menor a mayor (en valor absoluto),

(((—0.9315) - 10* + (—0.9663) - 10%) + (—0.9123) - 10*) + 0.1025 - 10*,



obtenemos, paso a paso,
s) = —0.9315 - 10",
sh = sy —0.9663 - 10 = —0.09315 - 10> — 0.9663 - 10°
~ —0.0932 - 10®> — 0.9663 - 10> = —1.0595 - 10> = —0.1060 - 103,
sh = sh—0.9123 - 10° = —0.1060 - 10* — 0.9123 - 10°
= —1.0183 - 10% = —0.1018 - 10%,
s) = s +0.1025 - 10* = —0.1018 - 10* + 0.1025 - 10*
= 0.0007 - 10* = 0.7000 - 10! = 7.
El error relativo cometido sumando los niimeros de menor a mayor es
sy —sg T—6.755

= =0.036 ~ 4
SE 6.755 %,

que es algo menor que el obtenido sumando los nimeros en el orden original (de mayor a menor).

Hemos observado que sumar los ntimeros de menor a mayor, en valor absoluto, conduce a
una respuesta mas exacta. Un andlisis de error de la suma nos indica que para sumar ntmeros,
todos del mismo signo, conviene hacerlo ordenandolos de menor a mayor moédulo, ya que ello
reduce la cota del error progresivo del resultado. En nuestro caso hemos observado que incluso

cuando casi todos los sumandos son del mismo signo, también es recomendable esta regla.

Ejercicios 2.3 Acote mediante propagacion de errores hacia adelante el error relativo cometido
en la operacion flotante de suma de numeros reales. Aproximelo utilizando el épsilon de la

maquina.

Solucién. Para calcular la suma x + y de dos nimeros, habra que representar éstos como

numeros flotantes

M) =x(1+6z),  fily) =y (L +0y), [0zl 10y <u,

donde ¢, y 9, son sus errores relativos de redondeo, y u es la unidad de redondeo. El modelo

estandar de la aritmética para acotar el error de la suma es

ﬂ(li’+ﬂ):(j7+3))(1+5s), ‘5s’§uv T,y € IF.
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Introducir este modelo implica una fuente adicional de error,

(i) + fily)) = (x (1 +0z) +y (1+6y)) (14 05),

=2 (1+06;)(1+6s) +y(1+dy) (1+0s).

El error absoluto de la operacién suma es igual a

Afl(x) + fily)) — (x +y) = (& +y) 6s + 20 (14 05) +y 0y (1 + ds), (2.1)

que podemos acotar como

[AfU() + ) = (@ + ] < (2l + [yl u+ (2l + [y) w@ +u) = 2 (2] + [y) u+ O(u?)

que utilizando la unidad de redondeo ajustada, @ = 1.01 u, nos permite obtener

[z +y) = (z+y)| < (Jz[ +[y]) 2@

Finalmente, podemos obtener la cota pedida para el error relativo de la operaciéon suma

flle+y) =@ +y)l _ |z +]y|

< 21, (2.2)
|z + |z + y|

que podemos escribir en funcién del épsilon de la méquina, &,

|ﬂ@+y%%$+wléwkﬂm+2lmg.
|z + | |z + ] 2

Se podria haber calculado el error relativo exacto de la suma, que no es mucho mas dificil.

Tomando
fillz+y) = (z+y)(1+9),

y comparando con la expresién (2.1), se tiene

( +y) s + 0z (1 + d5) + 6y (1 + d5)
r+y

o=

)

cuya cota ya hemos obtenido en (2.2).

Desde el punto de vista del andlisis de errores, el factor 2 en la cota(2.2) es poco importante.
Wilkinson [1, 2] nos indica que lo importante no es el valor exacto de la constante de error si no
su orden de magnitud, en este caso O(u) = O(e), asi como su dependencia respecto a los datos
a través del numero de condicionamiento, en este caso, podemos obviar el facto 2, y tomar

2| + |y

ke +y} = Tyl



De hecho, el orden de magnitud de este niimero no se altera si éste se multiplica por 2. Asi
que, a la hora de realizar una interpretacion del resultado de un analisis de errores, estas cons-
tantes pueden no ser tenidas en cuenta, ya que el nimero de condicién es grande o pequeiio

independiente de las mismas.

A partir de la cota obtenida, observamos que habrd un error relativo muy grande cuando
|z| + |y| > |z + y|, que conduce a la condicién x ~ —y, que equivale a que se produzca una
diferencia cancelativa. En muchos casos el resultado es exacto dentro de la precisién de la
aritmética, f(fl(z)+fl(y)) = (z+y) (1+6s), |0s] < u; algunos autores denominan en este caso a la
diferencia cancelativa “benigna”. Aun asi se puede producir una pérdida de digitos significativos
en el resultado, que como sabemos, si el resultado es utilizado en calculos posteriores, puede

hacer que ésta se convierta en “maligna” o catastréfica.

En los ordenadores cuyos coprocesadores matemédticos utilizan un ntmero suficiente de
digitos de reserva, se puede garantizar que el error relativo de la suma §, estda acotado por
|0s| < u, lo que minimiza, pero no evita completamente, los efectos de las diferencias cancelati-

vas.

Ejercicios 2.4 Estime mediante propagacion de errores hacia adelante el error relativo cometido
en la operacion de multiplicacion flotante de niumeros reales en funcion de los errores absolutos

de los datos iniciales.

Solucién. El andlisis de errores, es uno los temas mas temidos por los alumnos a la hora de
resolver los exdmenes de este curso. En él aparecen una serie de ambigiiedades, que a manos
del inexperto, conducen a una serie de contradicciones que llevan al desconcierto, al rechazo de
resultados correctos, y a la presentacion como véalida de otros incorrectos. Vamos a resolver este
problema de varias maneras, en la linea de los resultados presentados por alumnos en cursos
precedentes. Con ello pretendemos que al alumno aprenda de sus “errores” a la hora de realizar

un analisis de errores correcto.

Algunos alumnos se amparan en el modelo estandar modificado de la aritmética que hemos
presentado en este curso, que nos permite escribir!, para &, € IF,
Ty
1+ 634

Utilizando este modelo y considerando los errores absolutos en los datos iniciales directamente

fEg) =29+ Adg = 02| < u,  [AZg] < |2 g|u.

escriben?

Mzy) =ry+ Azy = (v + Az) (y + Ay), |Az| < |z|u, |Ay| < |y|u.

Muchos alumnos olvidan esta importante hipStesis.
2Esta expresién es errénea porque e y no son ntimeros flotantes, no tiene en cuenta la condicién (), fily) e F
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Continuando con su analisis,
fllzy) —zxy = Azy = v Ax + y Ay + Az Ay,

el error relativo pedido es

_ﬂ(my)—fﬂy:Af’fy:&+%+ﬁﬂ:5x+5y+5xéy,
Ty Ty z ) r oy

es decir, la suma de los errores relativos de los datos mas el producto de éstos. Este resultado

Opy =

recuerda al obtenido en el andlisis de errores experimentales que han estudiado en la asignatura

de Fisica para la interpretacion de experimentos. Acotando este resultado obtienen
00y < 2u+ O(u?) =24 (2.3)

Aparentemente sélo hay dos fuentes de error, aunque las operaciones implicadas requieren tres
pasos de normalizaciéon de niimeros, para los operandos, x e y, y para el resultado del producto
x gy, ello lleva a los alumnos a pensar, correctamente, que este resultado estd mal. Muchos no se
dan cuenta del paso erréneo que han cometido al aplicar el modelo estandar modificado de la

aritmética sin tener en cuenta sus hipétesis.

Un analisis correcto, siguiendo esta linea, nos lleva a escribir,

AfU(zx) fily)) = filz) ily) + Azy = (z + Az) (y + Ay) + Azy,

donde3

|Azy| < |(z + Az) (y + Ay)|u < [ay|u+ O(w)
por tanto,
fA@) iAW) oy _ Av Ay Ar Ay Ay

Ty r y oz oy mwy’
con lo que obtenemos como cota del error

Ouy =

02yl < 3u+ O(u?) = 3.

Esta cota, que es correcta, debe resultar mucho mas razonable para el alumno, como ya hemos
indicado previamente, porque se han realizado 3 normalizaciones de nimeros flotantes para

obtener el resultado del producto.

Otros alumnos, en examenes, resuelven este problema de una forma diferente. Toman el

error relativo para la operacién de multiplicacién a partir de los errores relativos de los datos,

S fl(z) fily)) =z (1 +05) y (L4 by) (1 + 0m)

=2y (14 6;) (1+0y) (14 6m), 02|, 10y] < u,

3Es importante no olvidar este punto.



donde utilizando el modelo estandar de la aritmética, correctamente, hacen |d,,| < u, con lo que

operando
FUfl(z) fily)) = 2y (14 0p + 0y + O + 03 0y + 62 O + Oy S + 0 Oy Opn)
y (1+0p),
y acotando, obtienen el resultado correcto
|0p| < |6 + 6y + G| + O(v?) < 3u+ O(u?). (2.4)

Sin embargo, como el enunciado pide escribir este resultado en funcién de los errores absolutos

de los datos, introducen éstos,
fillx) =z + Az, |Az| < |z|u

fy) =y + Ay, 1Ayl < |yl u,

acabando con la expresion

A
|'+'||'+|5m|+0( 2.

donde necesitan conocer el error relativo d,, del producto en funcién del error absoluto de los

[

datos. Al estimar esta cota, muchos alumnos cometen errores.

Algunos alumnos aplican el resultado aparentemente razonable,

Az [Ay|

|6 | <
[ |y]

= 0(u2) ,
que conduce al resultado incorrecto

|00yl = |6p] < 2u+ O(Uz)-

Sin embargo, este resultado estd en contradiccién con (2.4). Ello les hace dudar del andlisis

realizado, muchas veces sin ser capaces de encontrar el paso erréneo.

Otros alumnos, sin embargo, calculan una cota para |d,,| siguiendo un razonamiento similar

al usado al principio de este problema, obteniendo
lo que conduce al resultado, también incorrecto,

|0ay| = |0, < 4u+ O(u?). (2.5)
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Este resultado también estd en contradiccién con (2.4). De nuevo, éstos también dudan sobre el

resultado obtenido sin encontrar la fuente de su error.

El hecho de que el andlisis de errores, a veces, en manos del inexperto, conduzca a expresiones
como (2.3), (2.4) y (2.5), que son contradictorias entre si, hace que muchos alumnos le tengan
gran temor, sobre todo en los exdmenes, conduciendo a resultados pobres en éstos. El alumno
debe aplicar su intuicion, que le indica que la constante de error debe ser similar al niimero de

operaciones de normalizacién de niimeros flotantes realizadas.

Ejercicios 2.5 La operacion de suma de numeros flotantes no cumple con la propiedad asocia-
tiva, aunque st es conmutativa, es decir, el orden de los factores, si hay mds de dos, altera el
resultado y, por tanto, el error de éste. Demostrar que si se suman varios numeros positivos
empezando por el menor y en orden creciente se minimiza la pérdida de digitos significativos en

el resultado®.

Solucién. Calculemos mediante propagacion de errores hacia adelante el error cometido al
sumar n nimeros x;,

s=x1+x2+ -+ Tn.
Introduzcamos las sumas parciales s; que nos indican el orden en que se realizan las sumas
So = X1 + X2, 83 = S9 + 3, R Sp = Sp—1 + Tp.

Estudiemos como se propagan los errores relativos en estas sumas parciales. Es importante
que el lector note que en el enunciado se plantea el estudio de la suma de numeros flotantes,
y no de nimeros reales. Operando y despreciando los productos de errores relativos €; €; como

infinitésimos de orden superior,

fU(s2) = (21 + 22) (1 + €2),

fi(s3) = (fi(s2) + x3) (1 + €3)
=x3(1+e3) + (21 +22) (1 +€)(1+e3)
=x3(14+€3) + (21 +x2) (1 + €2+ €3)

= 83+ (1 + x2) (€2 + €3) + T3 €3,

y siguiendo con el mismo procedimiento

fl(s4) = (fl(s3) + z4) (1 + €4)

4Este ejercicio ya ha sido resuelto en el contenido teérico del segundo tema.




= 54 + (1'1 +$U2) (62 + €3 +64) + x3 (63 +64) + x4€4.

La férmula general que se obtiene es
n n
f(sn) = sp + (z1 + 22) Zei—i-:vg ZEH—"‘-HUnGn-
i=2 i=3
Acotando |¢;| < u, la unidad de redondeo, tenemos finalmente

flsn) <sp+(@1+z)(n—Dut+z3(n—2)u+---+xu+ O(uz),

donde no aparecen errores absolutos porque todos los nimeros son positivos, y hemos incluido

un término cuadratico para recordar los errores que hemos despreciado en pasos anteriores.

En la expresion obtenida se observa que el error los primeros sumandos afectan méas al
resultado que los ultimos. Por ello, si sumamos primero los niimeros més pequenos, que coinciden

con los de menor médulo, haremos que el error de redondeo de la suma sea menor.

Si los nimeros a sumar no son todos positivos (o todos negativos), el orden que minimiza
el error es el que minimiza la sumas parciales |s;|. Encontrar este orden es dificil, como ya

indicamos en la teoria de este tema.

Ejercicios 2.6 Fuvalie (con 5 digitos tras la coma decimal) la funcion e® cuando x = 5, y
x = =5, utilizando desarrollos en serie de Taylor. Si la convergencia del desarrollo en serie de

Taylor es muy lenta, proponga un método mas preciso para dicha evaluacion.

Solucién. El resultado exacto (redondeado a 5 digitos tras la coma decimal) que se obtiene

utilizando aritmética IEEE de doble precisién es

ed = 148.41316, e~® = 0.0067379.

El desarrollo en serie de Taylor de la exponencial es

2 3

ex:1+x—l—%+%+0(:ﬂ4). (2.6)

Esta serie converge para x = 5 como se prueba ficilmente mediante el criterio de Cauchy, ya

que, denotando por t, el término n-ésimo de la serie,

tnpr 2"/ (n+ 1)z 5

- = <
tn " /n! n+l n+17"

L

que se cumple para n > 4.
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Definamos (con 0! = 1) la sucesién de sumas parciales

k=0

Entonces obtenemos, operando con cinco digitos decimales,

s(0) = 1.00000, s(1) =145 = 6.00000,

52
$(2) = 6+ = = 18.50000,

3
s(3) = s(2) + % = 39.33333,
54
5(4) = 5(3) + 7 = 65.37500,
55
5(5) = s(4) + 77 = 9141667,
56
5(6) = 5(5) + g7 = 113.11806,
57
s(7) = 5(6) + =7 = 12861905,
58
5(8) = s(7) + 5 = 138.30717,
59
5(0) = s(8) + 5 = 143.68046,
10

5
5(10) = 5(9) + {5 = 146.38060,

11

5
s(11) = 5(10) + {7, = 147.60385,

512
5(12) = s(11) + 5 = 148.11354,

513
$(13) = s(12) + 75 = 148.30057,

Comparando con la solucién exacta, el error relativo cometido hasta ahora es

e — 5(13)

ed

= 0.0007.
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Como vemos, la serie de Taylor permite calcular el valor de la exponencial para z > 0 con gran

precision, aunque requiere un gran numero de operaciones aritméticas.

La serie (2.6) para x = —5 es una serie alternada que converge, ya que la serie de los
valores absolutos de sus términos converge, como ya se ha probado anteriormente. Sin embargo,
la convergencia de una serie alternada suele ser extremadamente lenta. Realicemos algunos

calculos

s(0) = 1.00000, s(1) =1 -5 = —4.00000,

52
5(2) = (1) + = = 8.50000,

3

5
5(3) = 5(2) — 5; = ~12.33333,

Para calcular el valor pedido es mejor utilizar

— 1
e = —_— = 3 y
e Ita+ L.
que en nuestro caso da
1 1
-5
~ - — 0.0067427
¢ T S(3) T 148.30057
cuyo error relativo es
=5 —1/s(13
= s13) g oo,
e
5

que es el mismo que el que obtuvimos previamente para e°.

Ejercicios 2.7 Dada

Demuestre que ¢(1) = 1.

Solucién. Factorizando la expresion a sumar

> 1 = /1 1 1 1 (X1 1
¢(x)_;k(k+x)_;<k_k+x)x_:c<;k_;k+x>
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Es muy importante que note que hemos podido hacer esta suma término a término porque la
suma original es absolutamente convergente, como se demuestra facilmente. En caso contrario

no se podria haber realizado una suma término a término.

Ejercicios 2.8 ;Cudl es el nimero de condicionamiento de f(x) = e* para x < 07 Compare
este nimero de condicionamiento con los que resultan de la evaluacion de f(x) = e* por medio

de desarrollos de Taylor.

Solucién. El nimero de condicionamiento de f(z) = e* para = < 0, con |z — z*| pequeno es

flo) = fl@) w—a"| |f(z)
flx) = f(x)

lo que indica que el ntimero de condicionamiento aumenta linealmente con |z|.

~

max = |z,

Si escribimos el desarrollo en serie de Taylor de la exponencial
f(x):ex:an(x), fn(x):77
n=0

y calculamos el nimero de condicionamiento de un término general de dicha serie f,,(x), obten-

emos aproximadamente
mn—l
mn

n!
zl=n
xn bl

n!
que aumenta a medida que aumenta el orden n del término de la serie. Mas atn, para z < 0, la
serie de Taylor de e® es una serie alternada para la que

2"t/ (n 4 1)!
™ /n!

fﬁ+1

fn

por lo que, aunque la serie es convergente, para |z| grande se requieren un gran nitmero de

oz
Cn41’

términos.

Ejercicios 2.9 Determine el nimero de condicionamiento para la evaluacion de la funcion e®
para x < 0. Para los valores de x para los que este problema estd mal condicionado, cémo

evaluaria la exponencial (utilice desarrollo en serie de Taylor).

Solucién. Dado que f(z) = e* = f'(z), su nimero de condicionamiento es

fla+An)— fz) = | _|L@) m‘ b
f@ AT |

El ntimero de condicionamiento crece conforme x crece.

~
~
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Podemos evaluar e mediante su desarrollo de Taylor

2 $3

x
T _q oL 4.
e +x+2+3!+ )

que es convergente para toda x € IR. Para z < 0 tenemos una serie de términos alternados,
donde para = < 0 el valor absoluto de cada término crece indefinidamente. Por lo tanto, su
evaluacién numérica es dificil ya que se trata de una serie de convergencia lenta que requiere el

calculo de un gran numero de términos para evaluar e® con suficiente precisién Vz < 0.

Para determinar el nimero de términos que tenemos que calcular, definamos la suma parcial

de la serie

2 "

X
sn=ldadt b

El error cometido al aproximar e por s, es

.,En+1 9 n+1

T _ n+2\ _

e —sp,=——+0(x =
" (n+ 1) ( )

A
(n+ 1) 7
donde 0 > ¢ > x y hemos aplicado el teorema del valor medio. Por tanto,
n+1

I_ < -
e 8”'—‘(n+1)!

que podemos hacer tan pequeno como deseemos haciendo n suficientemente grande dado que el
factorial crece mas rapido que cualquier potencia. Para obtener una precisién inferior al épsilon

de la maquina hay que calcular s,, sucesivamente hasta que s, = s,,—1.

Sin embargo, es mas eficiente computacionalmente aproximar la exponencial de la siguiente

forma
1 1
exzi_ = ) 3

Para z < 0, todos los términos del denominador son positivos (de hecho, la exponencial es una

funcién no negativa). Es mejor calcular la sucesién
1
Yo o(=1)iat /il

donde hemos usado el convenio habitual 0! = 1.

Sp =

Ejercicios 2.10 Cémo se debe evaluar la funcion

para o K x, de forma tal que se eviten diferencias cancelativas.
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Solucién. Propondremos dos maneras de resolver este problema. Por un lado, podemos

desarrollar la raiz cuadrada mediante serie de Taylor,

f(a:)zx(l— 1—5‘2)
SR ES))
:;;J“O(Zj)'

Por otro lado, sin utilizar Taylor, podemos aplicar de forma exacta

(x_m) (Hm)
TV —a

fl@)=z—Va?—a=

«
r+ Va2 —a

Aunque las dos expresiones que hemos obtenido son diferentes, la segunda expresién tiende
a la primera cuando z > «. Aunque la primera expresion es aproximada y la segunda exacta,
la primera tiene la ventaja de que es computacionalmente mas eficiente, y en la mayoria de los

casos el error es despreciable cuando x > a.

Ejercicios 2.11 Calcule
T —sinx

fz) =

para x = 0.000001, con una exactitud de cuatro cifras decimales.

tanx

Solucion. Para calcular
r —sinx

fz) =

con x = 1079 utilizaremos la calculadora de Windows (que trabaja hasta con 16 digitos deci-

tanx

males). El resultado es
2-1071

oo =2 107

f(107%) =

;,Cuantos digitos significativos tiene este resultado? La mejor manera de determinarlos,
dado que x es muy pequeno, es utilizar la serie de Taylor de f(x) y cuantificar el error cometido

mediante el teorema del resto de Taylor.

El desarrollo de Taylor del numerador es

3 0

x—sinx:—g—kf—i-O( )
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v el del denominador
tanz =z + O(2°).

Para z = 1076,

r—sinz=10"1 (% + 0(1071%)), tanz =107%+ O(27'%) =107

por lo que podemos aproximar, con méas de cuatro cifras de exactitud,

3 3! 2
fla)~ 2 /3 % =0.16667 - 1012
xr

ya que el siguiente término del desarrollo de Taylor es 0(10_24).

Como podemos ver, la solucién obtenida con la calculadora es bastante mala y tiene un error

relativo muy alto
’2 — 1.6667

=022 .
1.6667 ' 0 0%

Ejercicios 2.12 Dadas f(x) = €* y g(x) = x en el intervalo [0,1]. sPara qué valores de & se

satisfacen las siguientes condiciones?

1 [ fla)dz = f(6),
2. [ g(a)dz = g(6),
3. [y f(x)g(x)de = f(€) [ g(x) da.

T

Solucién. Dado que f(z) = e® y g(z) = x son funciones continuas, tenemos que

1
/ e””dac:e’”](l):e—lzf(f):e€
0

& =In(e—1) =0.541,

1 2
/xdx:I
0 2

1

1 1
/ a?exdx::cex\(l)—/ exdx:e—em](l)zl
0 0

N |

1
£(6) /0 rdr = f()

£=1n2=0.693.



16 Capitulo 2. EJERCICIOS RESUELTOS: Aritmética de ordenadores y analisis de errores

La tercera relacién presentada en el enunciado del problema sélo es cierta por que g(z) = x
en [0, 1] tiene el mismo signo que f(z) = e en dicho intervalo. En caso contrario, dicha relacién

no seria verdad, por ejemplo, para el intervalo [—1, 1],

1 1 1
/ f(a:)g(:v)da::/ xexda::xeﬂl_l—/ et dr =
-1 -1 -1

1

e+e” —ez|[1):e+e_1—e—|—e_1:

)

1 1
1) / g(w)de = f(€) / rdz = f(€)0 =0,

-1 -1
2
y - #0.
e
Ejercicios 2.13 Resuelva el sistema de dos ecuaciones lineales
0.780x + 0.563y = 0.217,
0.457x + 0.330y = 0.127,

con cuatro y con tres cifras significativas, y compare los resultados con los de la solucion exacta.
Justifique los resultados obtenidos. Nota: si utiliza una calculadora, redondee los resultados

mtermedios.

Solucién. Para resolver el sistema lineal
0.780x + 0.563y = 0.217,

0.457x + 0.330y = 0.127,
primero operamos con cuatro cifras significativas. Despejando de la primera ecuacion
x =0.2782 — 0.7218 y,
y sustituyendo en la segunda
0.457(0.2782 — 0.7218 y) 4+ 0.330y = 0.127,

0.1271 — 0.3299 y + 0.330y = 0.127,
0.0001y = —0.0001,

con lo que, finalmente,
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Seguidamente operaremos con tres cifras significativas. Despejando de nuevo de la primera
ecuacion

z=0.278 — 0.7227,

y sustituyendo en la segunda
0.457 (0.278 — 0.722y) + 0.330y = 0.127,

0.127 — 0.330y + 0.330y = 0.127,
0.000y = 0.000,
con lo que el valor de y esta indeterminado, y el sistema no se puede resolver.

Para calcular el valor exacto de la solucién utilizamos la regla de Cramer. Calculemos el

determinante

0.780 0.563
Det = =1.09 x 1076,

0.457 0.330
y la solucién para z

1 0.217 0.563 1.09 x 10~6

= A
Det Det ’
0.127 0.330
Yy para y
1 0.780 0.217 —1.09 x 10—6
Y= Det = Dba "
0.457 0.127

Estos resultados indican que este problema esta mal condicionado, aunque los podemos
justificar debido a que el determinante (Det) es muy préximo a cero. Pero ademds, podemos

estudiar sus autovalores. Para ello, escribimos el sistema como

AF=b  i=A1b,
donde
€T B 0.217 0.780 0.563
Z= . b= . A=
Y 0.127 0.457 0.330

Calculemos los autovalores de A,

0.780 — A 0.563
|A—XI|=0=

0.457  0.330 — A
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es decir,
2574 x 1071 — 1.11 A + A2 — 0.257291 = 0,

A2 —1.11 X — 0.000109 = 0,

1.11 1112
A= 5 + - + 0.000109 = 0.555 £+ 0.555098190,
con lo que los autovalores son
Ay = 1.110098190, A— = —0.000098190.

Dado que los dos autovalores tienen magnitudes muy dispares, el problema estd mal condi-
cionado.
Ejercicios 2.14 Dada la ecuacion diferencial ordinaria

d*y dy

— —y =0, 0)=a, —==(0)=hb.

¢ Para qué valores iniciales es el problema estable o estd fisicamente bien condicionado?

Solucion. La ecuacion diferencial ordinaria

es facil de resolver suponiendo una solucién de la forma
y(xr) =Ae®*+ Be ¥ = C sinhaz + D coshuz,
y(0) =D = a,

y'(x) = C coshz + D sinh z,

y(0)=C=b,
y por tanto
X —x T —x
y(x):bsinh:v—kacoshx:b6 26 +a€ 4‘26
b —-b
:a—; e"”—i—az e "

Con objeto de estudiar el condicionamiento con respecto a las condiciones iniciales, intro-

ducimos un pequeno error en @ y en b,

y(0)=a(l+e),  y(0)=b(1+e)
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con lo que la solucién del problema perturbado es

Ca(l4e)+b(1+e) m+a(1+6a)—b(1+eb) -

yp(x) = 2 ¢ 2

Comparando las dos soluciones obtenidas

aeg+bey , aeg—be

yp —y = 5 e’ + 5 e "
Para z > 0,
ae, +be a+b ,
yp—y%fe, Y= 9 €,

y el error relativo toma la forma

yp—y _ a€ +be
y a+b

Estd expresion se hard “muy grande” si a+b =0y ¢, # €, y en ese caso el problema estd mal
condicionado. Sin embargo, si €, = €, = €,

yp—Yy ___a+b

Y - a+b6:

67
y el problema estd bien condicionado.

Otra manera de comprobar que para a+b = 0 el problema considerado estd mal condicionado

es teniendo en cuenta que la solucién exacta en dicho caso es
y=ae ¥ =-be ",

que tiende a cero cuando x — oo, aunque cualquier perturbacién que cause a + b # 0 harad que

la solucién se vuelva no acotada para z — oo.

El andlisis presentado en esta solucién también se podria haber realizado expresando la

ecuacién original de segundo grado como dos ecuaciones de primer grado. Para ello, se reescribe

d (dy\ _
de \dz )~ ¥

con lo que se define y obtiene

d
ﬁzz, 2(0) = b,
dz
=Y y0)=a

. o o . P ., n . . .
Ejercicios 2.15 Realice el andlisis de errores de la operacion x% mediante el siguiente algo-

ritmo que parte de xq, y procede asi

2 2
T1 = X, T2 = T7, ITp =T
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Solucién. En el andlisis se representan los nimeros flotantes que se van calculando por y;,

de forma que se obtiene la sucesién {y;} donde

g — Yo = fl(zo) = xo (1 + do),
x1 — 1 = fl(z1) = flyg) = v5 (14 61),

T — yn = fya_1) = Yn_y (1 + 65),
por lo que
yn =98 (1400 (14 06,1)2(1+6,),
que acotando todos los |d;| < u, donde u = €/2 (es la mitad del épsilon de la méquina), nos da
Yyn| < [z (1 +u)?,

donde p=1+42+4--- 4+ 2" es un progresiéon geométrica. Operando del modo usual

p=2042 4 420, 2p=2l4 ... 2nth

2p—p=p=2"tt 20 —9ontl 1

De esta forma los errores absoluto y relativo son (considerando z( positivo para evitar los
valores absolutos)
Yo — 2l < 2 (L+w) 1),

Yn — Tn

< (1 P_1
el I CEOLEES

respectivamente, donde p = 2"+ — 1.
Como u < 1, podemos utilizar desarrollo en serie de Taylor de la funcién potencia (o la regla
del binomio de Newton) para acotar el error relativo como
L+pu+ O(w?) —1=pu+ O?) = (2" = 1) u+ O(u?),
es decir, los errores crecen proporcionalmente al niimero de operaciones. Estos resultados son
exactos si se utiliza la unidad de reondeo ajustada, que para pu < 1, nos permite escribir

Yn — Tn

Tn

<pur~2"tla.

Se deja al lector la presentacién de este problema utilizando la notacién de 6,, y 7y, presentado

en el texto del tema.
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Ejercicios 2.16 Considere el siguiente sistema de ecuaciones lineales
20+ 6y =8,
22 + 6.00001 y = 8.00001.

Resuélvalo con (1) la regla de Cramer y 6 cifras significativas (es decir 0. x x x *x * x), y (2)
la regla de Cramer y 4 cifras significativas. FEzplique sus resultados. ;Es un problema bien

condicionado? Justifique su respuesta.

Solucién. Cuando se trata de resolver este problema con la regla de Cramer y 6 digitos

significativos, observamos que el determinante de la matriz A del sistema es
det(A) = 12.0000 — 12.0000 = 0.000000,

con lo que

8.00000 6.00000

8.00001 6.00001

_48.0000 — 48.0000 _ 0.000000
- 0.000000 ~0.000000’

2 6.00001
operacion que no estd definida.

Cuando se trata de resolver el problema con 4 digitos significativos obtenemos, similarmente,

det(A) = 0.0000. Luego tampoco podemos utilizar la regla de Cramer.

Obviamente este problema estd mal condicionado ya que un pequeno cambio, por ejemplo,
del orden de 1075 en cualquiera de los coeficientes, trabajando con 6 digitos signficativos, hace
que la regla de Cramer nos de una posible solucién. Es decir, un pequeno cambio afecta mucho

al resultado.
Ejercicios 2.17 Considere la transformacion discreta
Tiv1 = ax; +b.

Se define el "punto fijo”, xp, de esta transformacion como el numero tal que rp = ;41 = x4,

es decir, xtp = axp + b, y por lo tanto,
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Determine los valores de a para los cuales esta transformacion (1) converge al punto fijo, y
(2) diverge (o no converge) al punto fijo, cuando i — oo. Justifique y dé una interpretacion

geométrica de sus resultados.

Solucién. La definicién de la convergencia de la sucesién {z,} — xp, requiere que Ve > 0,
Jng, tal que Vn > ng, |z, — zr| < €. Como el alumno estudi6 en cursos anteriores, se puede

aplicar el criterio de Cauchy,
|xn+1 - xn|

= la| <1,
|xn - xn71|

que es la condiciéon buscada.

También podemos analizar la convergencia de la sucesién directamente. Iterando la sucesion
Tptl =axp+b= a?rp1+ab+b=acz,_o+a’b+ab+b,
luego
Tp =aTp_1+Db
=a’z,_o9+ab+b

=a’z, o+ (> +a+1)b

=a"zo+ (@t +a" 2+ a+1)b,
donde aparece una progresién geométrica facilmente sumable,
s=a"+a" 1 +.a+1, (1—a)s=1-ad",

con lo que obtenemos
1—a"

b.

Ty =a"x9 +

Con el término general de la sucesién en forma explicita podemos estudiar directamente su

convergencia. Para |a| < 1, es decir, —1 < a < 1, este limite converge ya que

lim o™ =0, lim z, = xp,
n—oo n—oo

y para |a| > 1 diverge. Sin embargo, los casos limites deben estudiarse con cuidado. Para a = 1,

tenemos que

1—a" n . n
=l4a+---+a"=n+1, lim " =1,

1—a n—oo



23

con lo que
lim z, =29 +0b lim (n+1),
n—00 n—o0
que diverge. Para a = —1, también diverge ya que la sucesién de signos alternados {(—1)"} no
tiene limite.
En resumen, la sucesién {x,} converge sélo cuando la pendiente |y'(z)| = |a| de la recta

y(z) = ax+b, es menor que la unidad. En el tema 7 estudiaremos en més detalle la convergencia

de sucesiones de este tipo y su uso para el cdlculo de ceros de funciones.

Ejercicios 2.18 Haga una andlisis de los errores del producto de n nimeros y calcule su error
relativo. ;Cudl es la relacion (si es que la hay) entre el error relativo del producto y los errores

de redondeo de los valores x;? ;Por qué?

Solucién. Para calcular el producto
n
JE2
=1
operaremos paso a paso
P2 = 21 X2, Pp3 = P13, ce Pn = Pn—1Tn,

que si operamos utilizando el modelo estandar de la aritmética flotante nos da

fUp2) = fi(fl(z1) fi(x2)) = z1 22 (1 + 01) (1 + 62) (1 + Jp2), |01], 021, [dpa] < u,

donde u es la unidad de redondeo, d; los errores relativos debidos a la representacién flotante

del nimero z;, y dp; los debidos al (i — 1)-ésimo producto. Acotando observamos que

|A(p2)| < |21 22] (14 u).

Procediendo de esta manera obtenemos también

| flps)| < |1 w2 23] (14 w)°,

y asi sucesivamente,

|fllpn)| < 212023 -+ | (14 )"

9

con lo que el error relativo en funcién de los errores de los datos toma la siguiente expresion,

cuya cota también presentamos.

er(pn)=W:H1+6 H1+5pz <(A4u)?'-1<14+2n-1)a,
" i=1 j=2

donde @ es la unidad de redondeo ajustada.
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Ejercicios 2.19 Calcule f(x) = 1—cosx, con aritmética flotante de seis digitos para el nimero

x = 0.000010. Explique su resultado. ;Puede obtener un valor mds exacto? ;Como? ;Por qué?

Solucién. Para z = 0.000010 = 10~°, podemos aproximar el coseno por su desarrollo de

Taylor alrededor de 0 obteniendo

$2

cosx ~1— 5 = 1—0.5 x 1071% = 1.00000,

donde hemos redondeado el resultado a 6 digitos significativos. De esta forma, obtenemos para

el valor de la funcién, con la misma precisién,
f(z) =1 — cosz = 0.000000,

cuando la respuesta exacta (con 10 digitos de precision) es
72
f(z)=1—cosz = 5 + 0(z*) =0.5x 10717

La respuesta que obtuvimos antes tenia un error relativo infinito.

Ejercicios 2.20 Estime el niimero de condicién de f(z) = v/x + 1 —+/x para x = 10*. Calcule
£(12345) con aritmética de seis digitos. Explique sus resultados. sPuede obtener un valor mds

exacto? ;Como? ;Por qué?

Solucién. Para estimar el niimero de condicién de una funcién utilizamos la expresion que

lo define
[z + Azx) — f(x)

(@) = | — | = |

eligiendo un valor para Ax conveniente. Por ejemplo, para A, = 1, obtenemos como estimacion

V10 +2 — V10  + 1 — V10* + 1 + V10* 10*
VI0E+ 1 — V104 1

~]100.01 — 2 x 100.005 + 100

104
1100.005 — 100

r{f(2)} ==

que indica que esta funcién no estd mal condicionada. La diferencia cancelativa que contiene
no es catastréfica. El alumno puede comprobar, dado que f(z) € C?, que el valor exacto del

ntmero de condicién es 0.5, luego nuestra estimacién ha sido bastante buena.

Operando con 6 decimales,

f(12345) = V12346 — V12345 = 111.113 — 111.108 = 0.005.

0.5,
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Para obtener un valor aiin méas exacto operando con 6 digitos significativos, podemos realizar la

operacion exacta

Ver+1—yx T r+1—z 1
Wﬂf( b ve) = VEtl+tya Vetl+yz

que conduce al resultado

1 1
1234 = 0.004 2
J(12345) = 111113+ 111.108 _ 122.221 000450002,

que es un valor mucho més exacto, ya que redondeando el resultado en aritmética exacta a 6

digitos significativos obtenemos

£(12345) = 0.00450003.

Ejercicios 2.21 FEstime el error en la evaluacion de
f(z) = cosz - exp(102?),

para x = 2, si el error absoluto en x es 1075,

Solucién. Dado que el error absoluto en x, sea z +¢, con || = 107%, es muy pequefio respecto

al tamafio de la funcién, podemos aplicar Taylor para aproximar,
fla+e)=f(z) +ef(z) + O(e),
que nos da
f(x+107%) = f(2)+1075 (20 cos z—sin z) 07" = 104? (cosz+107% (202 cos z—sinz)+ O (107'%)),
con lo que el error absoluto cometido en la evaluacién de f(z) es aproximadamente
107% (20 cosz — sinz) el07” ~ —4.1 x 1012,

r=2

que es muy grande debido a la exponencial del cuadrado de x que crece muy rapido.

Ejercicios 2.22 Utilice una mantisa de cuatro cifras decimales para calcular las raices de
2 0 -4 __
z° 4+ 0.4002 x 10"z + 0.8 x 107" = 0.

Explique sus resultados. ;Puede mejorar estas raices? ;Como? ;Por qué?
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Solucién. Utilizando la férmula estdndar para las raices de una ecuacién cuadrética, a z2 +

bx + ¢ =0, que se escribe
bV —4dac

2a

T+

y operando paso a paso, obtenemos
b —4ac=0.16016 — 0.00032 = 0.1602 — 0.0003 = 0.1599,

que nos da como raices

1 1
7y = 5 (~0.4002 + V0.1509) = 7 (~0.4002 + 0.3999).
0.0003 0.8001
Te= o = 00002, wo =~ = —0.4000,

que es el resultado exacto redondeado a dicha precisién.

No es necesario mejorar el resultado obtenido, pues no es posible hacerlo.

Ejercicios 2.23 Calcular los numeros de condicion asociados a las siguientes operaciones:

x/y,x —y,/x,e*. Determinar los errores relativos.

Solucién. El nimero de condicién de una funcién real de 2 variables reales, f(z,y), se define

facilmente como®

f(x—l—Aac,y—i—Ay)—f(m,y)

_ f(z,y)
K{f(a,y)} = [(Az, Ay)] ’

1z, )

donde para medir el tamano del vector de variables independientes se deben utilizar normas de

vectores, como por ejemplo, la norma 1 o la norma infinito,

Iz )l =1zl +1yl, (@, 9)llec = max{|z[, [yl}.

De esta forma obtenemos para la divisién, usando norma infinito,

z+Azx

K{x}: y+Ay_% (7, y)loo
y Y 1(Az, Ay)|loo
:‘yﬁxwﬁy 1z, )l
(y+Ay)z | [[(Az, Ay)lle

< @ 9)lloo (A, Ay)lloo (2, y)lloo
- [(y + Ay) | [(Az, Ay)]lo’

5 z . 2. . .
°En el préximo capitulo estudiaremos en detalle las normas de vectores y matrices.
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donde suponiendo |Ay| < €ly|, con € < 1, podemos aproximar

{2 S el

Ejercicios 2.24 Examen 21/Marzo/1996. FEstudie la estabilidad de Hadamard de los sigu-

ientes problemas y determine cuando estdn bien condicionados:

1. La ecuacion diferencial

&y

L oy=0 yO0)=a FLo)=b

dz
2. La ecuacion algebraica no lineal f(x) = 2> —1=0.

3. La ecuacion algebraica lineal
rt+y =1,

0.99999z +y = 1.
Solucidn.

1. La solucion general de la ecuacién diferencial

d%y
W =Y, y(O) = a,

se escribe como

y(x) =Ae*+Be ®,

y aplicando las condiciones iniciales,
y(0)=A+ B =a,
y'(0)=A—-B=0,

se obtiene finalmente
+b —b
y(:L“) = a4 5 e’ + ¢ 5 e *.

Por lo tanto, la solucién existe y es tunica, pero el problema no estd bien condicionado

fisicamente a no ser que a = —b, ya que sino

lim y(z) = sign (a + b) oc.

T—00
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Si suponemos a = —b para que el problema esté bien condicionado fisica y matematicamente,
la solucién serd

y=ae ¥ =—be *.

Estudiemos la estabilidad de Hadamard en ese caso, es decir, el problema perturbado

d
—y(O):lH—eg:—cH—eg.

— Ae" +Be® 0) =
y(l’) e+ e -, y() a + €1, dx

La solucién de este problema perturbado es

y(z) = ate e’ + <a~|— o _62> e .

2 2

Por tanto, este problema no estd bien condicionado en el sentido de Hadamard ya que a
no ser que €1 + ea = 0,

lim y(x) = sign (&1 + €3) 0o.

Tr—00

. La ecuacién algebraica no lineal f(z) = 22 — 1 = 0, tiene dos raices x = +1, por tanto la

solucién existe y es tinica. Si se considera el polinomio més general az? +bx +c = 0, esta
claro que la ecuacion considerada corresponde a a = 1,b = 0,¢ = —1. Para estudiar su

estabilidad en el sentido de Hadamard, supongamos pequenos errores en estos coeficientes,
a=1+e€, b =0+ eq, c=—1+e3,
por lo que el polinomio perturbado sera
(1+e)z?+ezx—1+e=0.

Las raices del polinomio perturbado son

2
€ €5
_ + 1—
X 2(1+€1) \/4 (1+61)2 + €3,

por lo que se ve que si €1, €3 y €3 son pequenos, las raices del polinomio perturbado son
préximas a la solucién del problema no perturbado, es decir, &1. Por tanto, este problema,

esta bien condicionado en el sentido de Hadamard.

3. La ecuacién algebraica lineal

r+y=1,

0.99999z +y = 1.
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tiene como solucién dnica x = 0 e y = 1. El problema perturbado asociado es

(I+e)z+(14+e)y=1+es,

(0.99999 + e4) x + (1 + €5)y = 1 + €.
El determinante de su matriz de coeficientes es
det = (14+€1)(1+e5) — (14 €2)(0.99999 + ¢4),

que es nulo para €1 = €5 = e = 0 y ¢4 = 0.00001, es decir, para esos valores no existe
solucién (el problema es incompatible si €3 # €5) o existen infinitas soluciones (si €3 = €g).

Si el determinante no es nulo, la solucién es

T 1 1+e5 —(1+¢€2) 1+ €3
= .
Y —(0.99999 + €4) 14+ € 1+ e€6
El condicionamiento de un sistema lineal se mide mediante su ntimero de condicionamiento,
definido como

k(A) = A 1A

Utilizando normas uno e infinito para determinarlo, tenemos que

n
Al = max " |ai;| = max 1.99999, 2 = 2,
J 9
=1

n
|Alloo = m?XZ |aij| = max2,1.99999 = 2,
i=1

1 1 -1 105 —10°

= 1-0.99999 ’
~0.99999 1 —99999 107

A*l

|A7Y; = max199999,2 - 105 = 2 - 10°,

JA™Y |0 = 200000.
Por lo que, finalmente
R(A) = A1 |AT = Al [A™ oo = 4 - 10°.

Por lo tanto, este problema esta extremadamente mal condicionado. Para ordenadores con
menos de seis cifras significativas, la segunda ecuacién es la misma que la primera y, por

tanto, existen infinitas soluciones.
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