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CAṔITULO 3

CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL

En este tema recordaremos los conceptos básicos de álgebra lineal que han sido expuestos al

alumno en cursos anteriores e introduciremos una notación uniforme para los mismos [4, 5, 6].

Además, observaremos como muchos de dichos conceptos son también aplicables a espacios de

funciones, que serán usados en este curso en los temas de aproximación de funciones.

Tras una aplicación simple del producto de matrices en ingenieŕıa, para el modelado de

las pérdidas (disipación) en ĺıneas de transmisión, pasaremos a repasar el concepto de espacio

vectorial, dependencia lineal y bases. Presentaremos, además de los espacios vectoriales Rn y

Cn, espacios de funciones como Pn(a, b), los polinomios de grado a lo sumo n definidos en el

intervalo (a, b), y C0[a, b], las funciones reales de variable real continuas en [a, b]. Estos espacios

vectoriales tienen dimensión infinita. Es importante notar que todo espacio vectorial tiene base,

tanto si es de dimensión finita como infinita, al menos si aceptamos el axioma de elección [1], y

aśı haremos en este curso. Hay matemáticos, los constructivistas, que no aceptan dicho axioma,

en cuyo caso sólo utilizan los espacios vectoriales para los que se puede construir expĺıcitamente

una base [2].

Desde el punto de vista de los métodos numéricos es muy importante medir el error de un

algoritmo incluso cuando la respuesta es un vector. Para medir el tamaño de un vector se suele

introducir una norma en un espacio vectorial, y se habla de espacios normados, destacando entre

ellos los espacios de Banach. Todas las normas definidas en espacios normados de dimensión

finita son equivalentes entre śı, no aśı en dimensión infinita.

Para medir tamaños, también se puede introducir un producto interior, que conduce au-

tomáticamente a una norma asociada, y que además nos permite calcular ángulos entre vectores.

En espacios con producto interior podemos definir un concepto de ortogonalidad, y construir
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bases ortogonales. Los coeficientes de un vector respecto a una base ortogonal son sus coeficientes

de Fourier, que utilizaremos mucho en teoŕıa de la aproximación de funciones.

Introduciremos también las matrices, como representaciones de aplicaciones lineales. Estu-

diaremos sus tipos más importantes, cómo se opera con ellas, y sus propiedades. Estudiaremos

la resolución de sistemas lineales, el determinante, la inversa de una matriz, su traza, sus au-

tovalores y autovectores. Una matriz se puede escribir en diferentes formas canónicas, de entre

las que destaca la descomposición de Schur, la forma de Jordan y la descomposición en valores

singulares.

Finalmente introduciremos el concepto de normas matriciales, y presentaremos las normas

más utilizadas. Muchos de los conceptos y teoremas del álgebra lineal que presentaremos en este

tema se pueden encontrar en prácticamente todos los libros de análisis numérico, como [3], aśı

como en la mayoŕıa de los libros de álgebra y geometŕıa lineal [4, 5, 6].

3.1 Aplicaciones en ingenieŕıa

Hay muchos problemas f́ısicos y aplicaciones en ingenieŕıa que se modelan mediante problemas

lineales y cuyo estudio requiere la solución de un sistema de ecuaciones lineales. Con objeto de

concretar presentaremos un ejemplo de un circuito eléctrico pasivo, una ĺınea de transmisión.

Para el modelado de la transmisión de electricidad en un cable se utilizan ĺıneas de trans-

misión lineales tanto distribuidas (modelo continuo) como de parámetros concentrados (modelo

discreto). En la figura 3.1 aparece una fotograf́ıa de un cable coaxial (ĺınea de transmisión), una

sección del cual se puede modelar mediante el circuito de parámetros concentrados que aparece

en la figura 3.2, donde se ha considerado sólo la propagación de señales de baja frecuencia, por lo

que se ha despreciado la capacitancia y la inductancia por unidad de longitud, y sólo se considera

la resistencia y la conductancia por unidad de longitud. Aplicando las leyes de Kirchoff y la ley

de Ohm (V = I R) se obtienen fácilmente las ecuaciones de esta ĺınea con múltiples etapas.

Sin embargo, es usual modelar este problema mediante la técnica de la matriz de impedancias

[Z], método por el cuál se consideran una serie de etapas elementales, denominadas multipuertos,

cajas de dos entradas y dos salidas, que se concatenan para formar la ĺınea completa. Para esta

ĺınea tenemos tres cajas como las mostradas en la figura 3.3, que son de dos tipos, multipuertos

con una resistencia y con una conductancia.

La figura 3.4 muestra un multipuerto con una conductancia. De la ley de Ohm, sabemos

que V1 = I R = V2, y de las leyes de Kirchoff de los nudos que

I1 = I2 + I, I2 = I1 − I = I1 − V1 G,
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Figura 3.1. Cable coaxial (ĺınea de transmisión) modelo FLC78–50J de la

compañ́ıa Harris Corporation. c© Harris Corporation.
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Figura 3.2. Modelo pasivo de parámetros concentrados de una ĺınea de trans-

misión lineal que modela el cableado de una casa.
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Figura 3.3. Modelo de una ĺınea de transmisión lineal dividido en tres etapas

elementales.
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Figura 3.4. Etapa de una ĺınea de transmisión con una conductancia.

que se puede escribir de forma matricial como



V2

I2


 =




1 0

−G 1







V1

I1


 ,

y vectorialmente como x2 = P (G)x1.

Por otro lado, la figura 3.5 muestra un multipuerto con una resistencia. Observamos que

I1 = I2, V1 − V2 = R I, y I2 = V1 −R I1, con lo que obtenemos en forma matricial



V2

I2


 =




1 −R

0 1







V1

I1


 ,

y vectorialmente como x2 = Q(R)x1.

La red de la figura 3.3 se puede escribir fácilmente utilizando las expresiones de cada una de

las etapas como

x2 = Q(R1)x1, x3 = P (G2)x2, x4 = Q(R3)x3,

y finalmente, x4 = Q(R3) P (G2) Q(R1)x1, que conduce a

x4 ≡




V4

I4


 =




1 −R3

0 1







1 0

−G2 1







1 −R1

0 1







V1

I1


 ≡ x1
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Figura 3.5. Etapa de una ĺınea de transmisión con sólo una resistencia en

serie.

que multiplicando las matrices nos da finalmente

x4 =




1 + G2 R3 −R1 −R3 −R1 G2 R3

−G2 1 + R1 G2


 x1.

3.2 Espacios vectoriales, métricos, normados y con producto

interior

3.2.1 Espacios vectoriales

Un espacio vectorial V sobre un cuerpo de escalares K, está formado por un conjunto de vectores,

y dos operaciones, la suma de vectores, que dota a V de la estructura de grupo conmutativo, y

la multiplicación de vectores por escalares, que es distributiva respecto de la suma1.

Matemáticamente, V es un espacio vectorial sobre un cuerpo K (normalmente usaremos R
o C), dotado de dos operaciones binarias, la suma de vectores y el producto por escalar, y se

1Los espacios R2 y R3 fueron introducidos por los franceses Pierre de Fermat (1601–1665) y René Descartes

(1596–1650) alrededor de 1636 en el marco de la geometŕıa. El concepto de vector fue introducido por el polaco

Bernard Placidus Johann Nepomuk Bolzano (1781–1848) en 1804, para formalizar la geometŕıa. La definición

axiomática de espacio vectorial, y con ella de álgebra lineal, prácticamente en su forma actual, es debida al

italiano Giuseppe Peano (1858–1932) en 1888, quien indicó que basó sus ideas en los trabajos de los sajones

(ahora seŕıan alemanes) Gottfried Wilhelm von Leibniz (1646–1716) y August Ferdinand Möbius (1790–1868),

del prusiano (ahora seŕıa polaco) Hermann Günter Grassmann (1809–1877), y del irlandés Sir William Rowan

Hamilton (1805–1865).
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denota (V,+, ·) donde

+ : V × V −→ V, · : K× V −→ V,

verificando las siguientes propiedades

1. v1 + v2 = v2 + v1, ∀v1, v2 ∈ V,

2. (v1 + v2) + v3 = v1 + (v2 + v3), ∀v1, v2, v3 ∈ V,

3. ∃ ! 0 ∈ V, 0 + v = v + 0 = v, ∀v ∈ V,

4. ∀v ∈ V, ∃ ! − v ∈ V, v + (−v) = (−v) + v = 0,

5. 1 · v = v, 1 ∈ K, ∀v ∈ V,

6. α · (β · v) = (α · β) · v, ∀α, β ∈ K, ∀v ∈ V,

7. α · (v1 + v2) = α · v1 + α · v2, ∀α ∈ K, ∀v1, v2 ∈ V,

8. (α + β) · v) = α · v + β · v, ∀α, β ∈ K, ∀v ∈ V.

Ejemplos t́ıpicos de espacios vectoriales son Rn sobre R (Cn sobre C), es decir, los espacios de

n-tuplas de números reales (complejos) con la adición componente a componente, y el producto

por un escalar. También son espacios vectoriales sobre R (o sobre C) el conjunto de los polinomios

de grado menor o igual que n (sea Pn(a, b)), el conjunto de las funciones continuas definidas en

un intervalo C0[a, b] y el conjunto de funciones de clase k en un intervalo, Ck(a, b), es decir,

las funciones continuas con derivadas continuas hasta orden k, inclusive, en el intervalo abierto

(a, b). Este resultado es fácil de demostrar. Más aún, el conjunto de funciones Lp(a, b), definido

como

Lp = {f : R→ R :
∫ b

a
|f(x)|p dx < ∞}, p > 0,

también es un espacio vectorial. En este curso utilizaremos fundamentalmente L2, el espacio de

funciones de cuadrado integrable, L1, el espacio de funciones de módulo integrable, y L∞, que

se puede demostrar que es el espacio de funciones acotadas (véanse los ejercicios resueltos).

Una combinación lineal del conjunto de n vectores v1, v2, . . . , vn ∈ V , denotado {vi} ⊂ V ,

es una expresión de la forma

n∑

i=1

αi vi = α1 v1 + α2 v2 + · · ·+ αn vn,

donde {αi} ∈ K.
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Un conjunto de vectores {vi} se dice linealmente dependiente si existe alguna combinación

lineal de los mismos igual al vector 0,

α1 v1 + α2 v2 + · · ·+ αn vn = 0,

con al menos un αi 6= 0. Sea αi 6= 0, entonces vi se puede escribir como una combinación lineal

de los demás vj de la forma

vi = −α1

αi
v1 − · · · − αi−1

αi
vi−1 − αi+1

αi
vi+1 − · · · − αn

αi
vn.

Un conjunto de vectores {vi} se dice linealmente independiente si

n∑

i=1

αi vi = 0, ⇒ αi = 0, ∀i.

Un conjunto de vectores {ei} ⊂ V , linealmente independiente, se dice que forma una base

de V si todo vector v ∈ V se puede escribir de forma única como

v =
∑

αi ei.

Se puede demostrar que todas las bases de un determinado espacio vectorial tienen el mismo

número de vectores. El cardinal de cualquiera de estas bases se denomina dimensión del espacio

vectorial. Existen espacios vectoriales de dimensión finita (Rn de dimensión n, o Pn(a, b) de

dimensión (n + 1)), y de dimensión infinita (C0[a, b], Ck(a, b) o Lp(a, b)) [1].

Un concepto importante relacionado con espacios vectoriales es el concepto de dualidad. Se

denomina espacio dual, V ∗, del espacio vectorial V al espacio vectorial definido por todas las

formas lineales en V , es decir,

V ∗ = {f : V → K : f(α1 v1 + α2 v2) = f(α1 v1) + f(α2 v2), ∀v1, v2 ∈ V,∀α1, α2 ∈ K}.

Para V de dimensión finita, se puede demostrar que dim(V ) = dim(V ∗) y además, V = (V ∗)∗.

Más aún, ambos espacios son isomorfos [1]2. Sin embargo, si V es de dimensión infinita, ninguna

de las afirmaciones es cierta3.
2Aunque el alumno debe conocer el concepto de isomorfismo, no entremos en detalles en este curso.
3Inciso técnico: Estos espacios se denominan espacios vectoriales topológicos. El ejemplo más conocido es el

espacio vectorial topológico de las funciones, reales de variable real, continuas e infinitamente derivables de forma

continua, con soporte compacto, llamado S = C∞
′ ; su dual S∗ es el espacio de Schwartz de distribuciones, que

incluye a funciones generalizadas tan extrañas como la función delta de Dirac y todas sus infinitas derivadas. A

estas funciones, el francés Laurent Schwartz (1915-2002) las denominó distribuciones.
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3.2.2 Distancias y espacios métricos

Sea X un conjunto no vaćıo a cuyos elementos llamaremos puntos. Una distancia en X es una

aplicación d : X ×X −→ R que verifica

1. d(x, y) = 0 ⇔ x = y, ∀x, y ∈ X,

2. d(x, y) + d(x, z) ≥ d(y, z), ∀x, y, z ∈ X,

donde a 2 se le llama desigualdad triangular. Al par M = (X, d) se le llama espacio métrico4.

Consecuencia de la definición son estas otras propiedades (que el lector puede verificar

fácilmente)

3. d(x, y) ≥ 0, ∀x, y ∈ X,

4. d(x, y) = d(y, x), ∀x, y ∈ X.

Para los espacios métricos que son espacios vectoriales, cuyos puntos son vectores, se suele

utilizar el término espacios vectoriales topológicos. En este curso todos los espacios métricos

que estudiaremos serán espacios vectoriales.

Como primer ejemplo de espacio métrico tomemos Rn con la distancia p discreta5

d(x, y) =

(
n∑

i=1

|xi − yi|p
)1/p

.

Demostremos que es realmente una distancia. Claramente cumple con la primera propiedad

d(x, y) = 0 ⇔
n∑

i=1

|xi − yi|p ⇔ |xi − yi| = 0 ⇔ xi = yi, ∀i.

La segunda requiere el uso de varios lemas previos, la desigualdad de Young6, que nos permite

demostrar la desigualdad de Hölder, con la que finalmente demostraremos la desigualdad de

Minkowski7. Ésta última nos da directamente el resultado a probar.
4El concepto de espacio métrico se desarrolló entre 1900 y 1910, cristalizando ideas que ya hab́ıan surgido

en el siglo XIX. Sus hitos más importantes son la teoŕıa de ecuaciones integrales del sueco Erik Ivar Fredholm

(1866–1927) en 1900, la tesis sobre integración del francés Henri Léon Lebesgue (1875–1941) en 1902, la teoŕıa

espectral del prusiano (ahora seŕıa ruso) David Hilbert (1862–1943) en 1906, y la tesis sobre espacios métricos del

francés Maurice René Fréchet (1878–1973) en 1906.
5También se denomina distancia de Hölder, en honor al alemán Otto Ludwig Hölder (1859–1937). Para p = 2

coincide con la distancia eucĺıdea, en honor a Euclides de Alejandŕıa (≈325AC–≈265AC). Sorprendentemente,

de Euclides se sabe muy poco: trabajó en Alejandŕıa (Egipto), fue pupilo de Platón y escribió su famoso libro,

en trece volúmenes, “Los Elementos”, en el que axiomatiza la geometŕıa (eucĺıdea).
6Por el inglés William Henry Young (1863–1942).
7En honor al ruso (ahora seŕıa lituano) Hermann Minkowski (1864–1909).
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Lema 3.1 Desigualdad de Young. Sean α, β ≥ 0, p > 1, y q conjugado a (o dual de) p, que

significa que 1/p + 1/q = 1, es decir, q = p/(p− 1). Entonces se verifica

α β ≤ αp

p
+

βq

q
.

Demostración. Utilizando cálculo elemental, fijando β, el máximo de la función

f(α) = α β − αp

p
,

se obtiene haciendo

f ′(α) = 0, α = β1/(p−1) = βq/p,

con lo que obtenemos

α β − αp

p
≤ β(p+q)/p − βq

p
= βq − βq

p
=

βq

q
,

con lo que queda demostrado.

Lema 3.2 Desigualdad de Hölder en Rn. Si a, b ∈ Rn, entonces

n∑

i=1

|ai bi| ≤
(

n∑

i=1

|ai|p
)1/p (

n∑

i=1

|bi|q
)1/q

,

con p > 1 y 1/p + 1/q = 1.

Demostración. Basta aplicar la desigualdad de Young a unos α y β convenientemente

elegidos. Sean

α =
|ai|(

n∑

i=1

|ai|p
)1/p

, β =
|bi|(

n∑

i=1

|bi|q
)1/q

,

con lo que la desigualdad de Young conduce a

|ai|(
n∑

i=1

|ai|p
)1/p

|bi|(
n∑

i=1

|bi|q
)1/q

≤ 1
p

|ai|p
n∑

i=1

|ai|p
+

1
q

|bi|q
n∑

i=1

|bi|q
,

que sumando para todos los ı́ndices
n∑

i=1

|ai bi|
(

n∑

i=1

|ai|p
)1/p (

n∑

i=1

|bi|q
)1/q

≤ 1
p

+
1
q

= 1,

y el resultado queda demostrado.
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Lema 3.3 Desigualdad de Minkowski en Rn. Para R 3 ai, bi > 0 y p > 1, entonces
(

n∑

i=1

(ai + bi)p

)1/p

≤
(

n∑

i=1

(ai)p

)1/p

+

(
n∑

i=1

(bi)p

)1/p

Demostración. Con objeto de poder aplicar la desigualdad de Hölder, factorizaremos de

la forma
n∑

i=1

(ai + bi)p =
n∑

i=1

ai (ai + bi)p−1 +
n∑

i=1

bi (ai + bi)p−1,

donde, para 1/p + 1/q = 1, obtendremos

n∑

i=1

ai (ai + bi)p−1 ≤
(

n∑

i=1

(ai)p

)1/p (
n∑

i=1

(ai + bi)(p−1) q

)1/q

,

n∑

i=1

bi (ai + bi)p−1 ≤
(

n∑

i=1

(bi)p

)1/p (
n∑

i=1

(ai + bi)(p−1) q

)1/q

,

por lo tanto

n∑

i=1

(ai + bi)p ≤



(
n∑

i=1

(ai)p

)1/p

+

(
n∑

i=1

(bi)p

)1/p



(
n∑

i=1

(ai + bi)(p−1) q

)1/q

,

que podemos simplificar notando que

1
p

+
1
q

⇒ p + q = p q ⇒ p = pq − q = (p− 1) q,

y dividiendo por (
n∑

i=1

(ai + bi)p

)1/q

para obtener (
n∑

i=1

(ai + bi)p

)1−1/q

≤
(

n∑

i=1

(ai)p

)1/p

+

(
n∑

i=1

(bi)p

)1/p

,

que es la desigualdad de Minkowski que queŕıamos demostrar.

Otro ejemplo de espacio métrico es el espacio de funciones continuas definidas en el intervalo

[a, b] valuadas en los reales, C([a, b],R), con la distancia p continua

d(f, g) =
(∫ b

a
|f(x)− g(x)|p dx

)1/p

.

El lector notará que esta definición es correcta ya que el teorema de Riemann8 garantiza que

las funciones continuas son integrables. En general podemos definir el espacio Lp([a, b],R) ≡
8En honor a Georg Friedrich Bernhard Riemann (1826–1866) que nació en Breselenz, Hanover (ahora seŕıa

alemán).
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Lp([a, b]) como el espacio de funciones donde esta distancia está bien definida, tiene sentido (las

funciones son integrables, incluso si no son continuas) y es finita para cualquier par de funciones

de ese espacio9. Se demuestra que d es una distancia utilizando la desigualdad de Hölder para

integrales
∫ b

a
|f(x) · g(x)| dx ≤

(∫ b

a
|f(x)|p dx

)1/p

·
(∫ b

a
|g(x)|q dx

)1/q

.

3.2.3 Sucesiones de Cauchy y espacios métricos completos

Se llama sucesión en un espacio métrico M a una aplicación f : N −→ M . Normalmente se

denota el elemento f(n) de la forma xn y a la sucesión como {xn}.

El conjunto de las sucesiones de números reales x ≡ {xi} tales que

∞∑

i=1

|xi|p < ∞,

es un espacio métrico con la distancia

d(x, y) =

( ∞∑

i=1

|xi − yi|p
)1/p

.

Se denomina lp(R) ≡ lp. Para demostrar que d es una distancia se utiliza la desigualdad de

Hölder para sucesiones

∞∑

i=1

|xi · yi| ≤
( ∞∑

i=1

|xi|p
)1/p

·
( ∞∑

i=1

|yi|q
)1/q

.

Se dice que la sucesión {xn} ⊂ M es convergente y tiene por ĺımite a x0 ∈ M , si para todo

ε > 0, existe un n0 ∈ N, tal que

∀n ≥ n0, d(xn, x0) < ε.

Se denota como x0 = limn→∞ xn o como xn → x0.

Una sucesión {xn} ⊂ M es de Cauchy10 si dado ε > 0, existe un n0 ∈ N tal que

∀n,m ≥ n0, d(xn, xm) < ε.

9Inciso técnico: aqúı se debe utilizar la integración en el sentido de Lebesgue, quien generalizó la teoŕıa de la

integración de Riemann.
10En honor al francés Augustin-Louis Cauchy (1789–1857).
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Claramente, toda sucesión convergente es de Cauchy, no aśı al contrario, ya que el “ĺımite”

podŕıa estar fuera de M .

Un espacio métrico M es completo si toda sucesión de Cauchy es convergente, es decir, tiene

un ĺımite en M . La gran importancia de los espacios completos en análisis numérico es que

nos permiten determinar si un método numérico iterativo converge comparando solamente sus

iterados, sin necesidad de conocer el ĺımite, la solución exacta que estamos calculando.

3.2.4 Normas de vectores y espacios normados

Para medir la magnitud (tamaño) de un escalar (número) en un cuerpo K se utiliza una valo-

ración, que es una aplicación | · | : K −→ R verificando

1. |α| ≥ 0, (|α| = 0 ⇔ α = 0), ∀α ∈ K,

2. |α + β| ≤ |α|+ |β|, ∀α, β ∈ K,

3. |α · β| ≤ |α| · |β|, ∀α, β ∈ K.

Un cuerpo K con una valoración se denomina valorado. Se denomina valor absoluto a una

valoración tal que |α · β| = |α| · |β|.

Para medir la longitud (tamaño) de un vector en un espacio vectorial se suele utilizar una

norma. Una función ‖ · ‖ : V −→ R en un espacio vectorial V sobre un cuerpo valorado K es

una norma si cumple11

1. ‖x‖ ≥ 0, (‖x‖ = 0 ⇔ x = 0), ∀x ∈ V,

2. ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V, (llamada desigualdad triangular),

3. ‖α x‖ = |α| ‖x‖, ∀α ∈ K, ∀x ∈ V.

Un espacio vectorial dotado con una norma se denomina espacio normado.

En base a los axiomas de una norma se puede demostrar la siguiente desigualdad triangular

inversa válida en todo espacio normado,

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖, ∀x, y ∈ V.

11Inciso técnico: Cuando no se cumple la propiedad ‖x‖ = 0 ⇔ x = 0, decimos que ‖ · ‖ es una seminorma y

hablamos de espacios semi-normados. Muchos espacios vectoriales topológicos de interés no son normados, pero

śı semi-normados.
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Demostración: Hay que probar que

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖.

La segunda desigualdad se deduce fácilmente

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖.

La primera desigualdad se cambia de signo

‖x− y‖ ≥ ‖y‖ − ‖x‖,

y también se demuestra fácilmente,

‖y‖ = ‖y − x + x‖ ≤ ‖y − x‖+ ‖x‖ = ‖x− y‖+ ‖x‖.

En un espacio normado (V, ‖ · ‖), la aplicación d : V × V −→ R, d(u, v) = ‖u − v‖ es una

distancia, que se denomina distancia asociada y que verifica ∀u, v, w ∈ V y ∀α ∈ K,

1. d(x, y) = d(x− z, y − z),

2. d(α u, α v) = |α| d(u, v).

Por ello, todo espacio vectorial normado es un espacio métrico, aunque no es cierto lo contrario,

de hecho, muchos espacio métricos ni siquiera son espacios vectoriales.

Algunos ejemplos de normas en Rn son la norma eucĺıdea o norma dos que se define como

‖x‖2 =
√∑

i

|xi|2,

la norma uno

‖x‖1 =
∑

i

|xi|,

la norma infinito o del máximo

‖x‖∞ = max
i
|xi|,

y, en general, la norma p (p > 0)

‖x‖p =

(∑

i

|xi|p
)1/p

.

Entre los ejercicios resueltos se encuentra la demostración de que la norma ‖x‖p, cumple los

axiomas de norma y además que

lim
p→∞ ‖x‖p = ‖x‖∞.
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Se llama sucesión de vectores en un espacio vectorial V a una aplicación f : N −→ V . Al

elemento f(n) se le suele denotar como xn y a la sucesión como {xn}. Normalmente se considera

que los números naturales son 1, 2, . . . , es decir, no se incluye el cero (0). El espacio de las

sucesiones reales (o complejas) es un espacio vectorial. Cuando se le dota de una norma p, sea

‖ · ‖p, se le denomina espacio lp; cuando queremos destacar el cuerpo, se usa la notación lp(R)

o lp(C).

El espacio de las funciones continuas C0[a, b] (y por ende Pn(a, b) y Ck(a, b)) es un espacio

normado con la norma

‖f‖∞ = ‖f‖max = max
[a,b]

|f(x)|,

que está bien definida dado que el teorema de Weierstrass que garantiza que toda función

continua tiene máximo y mı́nimo en un intervalo compacto, y además, cumple los axiomas

de norma, como el lector puede comprobar fácilmente (basta utilizar las propiedades del valor

absoluto).

Los espacios Lp(a, b), son también espacios normados con la norma

‖f‖p =
(∫ b

a
|f(x)|p dx

)1/p

, f ∈ Lp(a, b).

Una reescritura adecuada de la demostración de que las normas ‖x‖p están bien definidas en

Rn, con ligeros cambios, se puede utilizar para demostrar que los espacios Lp(a, b) son espacios

normados, y que se cumple que

lim
p→∞ ‖f‖p = ‖f‖∞ = max

[a,b]
|f(x)|, ∀f ∈ L∞(a, b).

El lector notará que f ∈ L∞(a, b) implica que f ∈ Lp(a, b).

Se define la bola unidad en norma-p, sea B1,p, como el conjunto de vectores

B1,p = x ∈ V : ‖x‖p ≤ 1,

y esfera unidad en norma-p, sea S1,p, como

S1,p = δB1,p = x ∈ V : ‖x‖p = 1.

El lector puede dibujar fácilmente la bola unidad en R2 para las normas 1, 2, ∞, 1/2 y 4.

Se dice que dos normas ‖ · ‖p y ‖ · ‖q son equivalentes si existen dos constantes positivas m

y M tales que

m ‖x‖p ≤ ‖x‖q ≤ M ‖x‖p, ∀x ∈ V.
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Se puede demostrar que en un espacio vectorial de dimensión finita todas las normas son equi-

valentes entre śı. Entre los ejercicios resueltos se encuentra la demostración de la equivalencia

entre las normas dos, uno e infinito. La equivalencia entre normas garantiza que un vector

pequeño en una norma lo es en cualquier otra, y lo mismo para uno grande. Sin embargo, es

muy importante que el lector note que la equivalencia entre normas no es cierta en un espacio

normado de dimensión infinita, una norma puede indicar que una función es pequeña, y otra que

es grande. Esto será tenido en cuenta cuando estudiemos la teoŕıa de aproximación de funciones.

Se dice que la sucesión {xn} ⊂ V , donde V es un espacio normado con norma ‖ · ‖, tiene por

ĺımite (o converge) a x ∈ V si

∀ε > 0, ∃n0 ∈ N, tal que ∀n ≥ n0, ‖x− xn‖ < ε.

Normalmente se escribe

x = lim
n→∞xn,

o a veces xn → x, y se dice que la sucesión converge a x.

Comprobar la convergencia de una sucesión mediante la definición anterior es complicado ya

que requiere conocer el ĺımite. Es mejor comprobar si la sucesión es de Cauchy. Una sucesión

{xn} ⊂ V es de Cauchy si

∀ε > 0, ∃n0 ∈ N, tal que ∀n, m ≥ n0, ‖xn − xm‖ < ε.

Toda sucesión convergente es de Cauchy, sin embargo, no aśı al contrario. Un espacio normado

se dice completo si toda sucesión de Cauchy en dicho espacio es convergente (tiene ĺımite). Se

denomina espacio de Banach12 a un espacio normado completo. En un espacio de Banach es

fácil verificar si una sucesión converge, basta estudiar la distancia entre sus elementos conforme

el ı́ndice de éstos crece.

3.2.5 Productos internos y espacios con producto interno

Otra manera de medir la distancia entre dos vectores o la tamaño de un vector es mediante

un producto interior, también llamado producto interno o escalar13. Un producto interno (o

escalar) en el espacio vectorial V sobre los complejos es una función, sea 〈·, ·〉 : V × V −→ C,

12En honor al austro-húngaro (ahora seŕıa polaco) Stefan Banach (1892–1945).
13Los espacios de Hilbert fueron introducidos como espacios de funciones en 1904. La versión más abstracta

fue introducida en 1908 por el alemán (ahora seŕıa estonio) Erhard Schmidt (1876–1959) alumno de Hilbert. La

versión axiomática actual es de la tesis doctoral de Banach de 1920.
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que cumple las siguientes propiedades

1. 〈x, x〉 ≥ 0, (〈x, x〉 = 0 ⇔ x = 0), ∀x ∈ V,

2. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉, ∀x, y, z ∈ V,

3. 〈α x, y〉 = α 〈x, y〉, ∀x, y ∈ V, ∀α ∈ C

4. 〈x, y〉 = 〈y, x〉, ∀x, y ∈ V,

donde α indica el número complejo conjugado de α. Un producto interno (o escalar) sobre los

reales, se define igual pero sin los complejos conjugados.

Asociada a todo producto interior podemos definir una norma ‖x‖2 = 〈x, x〉 que se denomina

asociada o subordinada a dicho producto. Es fácil comprobar que la función aśı definida cumple

los axiomas que caracterizan a una norma, por lo que se puede afirmar que todo espacio vectorial

con producto interior es un espacio normado. Sin embargo, el rećıproco no es cierto.

Como ejemplo de espacio con producto interior tenemos Cn con el denominado producto

escalar hermı́tico,

〈x, y〉 =
n∑

i=1

xi yi.

Este producto interior cumple todas las propiedades anteriores, como se puede comprobar

fácilmente. En Rn se puede definir un producto interior de manera similar no aplicando el

operador conjugado complejo, es decir, utilizando el producto escalar eucĺıdeo

〈x, y〉 =
n∑

i=1

xi yi,

que tiene asociada la norma eucĺıdea

‖x‖2 =
√∑

|xi|2 =
√
〈x, x〉.

Los axiomas de un producto interior garantizan la verificación de las siguientes propiedades

(donde la norma es la asociada a dicho producto interior),

1. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

2. 〈x, α y〉 = α 〈x, y〉.
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3. Desigualdad de Cauchy-Schwarz14

|〈x, y〉|2 ≤ ‖x‖2
2 ‖y‖2

2.

Demostración en C: Para todo α, β ∈ C se cumple que

0 ≤ 〈α x + β y, α x + β y〉

= α α 〈x, x〉+ α β 〈x, y〉+ α β 〈x, y〉+ β β 〈y, y〉,

tomando dos valores particulares de α y β,

α = 〈y, y〉, β = −〈x, y〉,

tenemos

0 ≤ ‖y‖4
2 ‖x‖2

2 − 2 ‖y‖2
2 |〈x, y〉|2 + ‖y‖2

2 |〈x, y〉|2,

‖y‖2
2 |〈x, y〉|2 ≤ ‖y‖4

2 ‖x‖2
2;

para y = 0 la desigualdad original se cumple trivialmente y para y 6= 0, la obtenemos

dividiendo por ‖y‖2
2.

Demostración en R: Para todo α ∈ R se cumple que

0 ≤ 〈α x + y, α x + y〉 = α2 〈x, x〉+ 2 α 〈x, y〉+ 〈y, y〉,

parábola en α cuyo mı́nimo (vértice) se encuentra en

α = −2 〈x, y〉
2 〈x, x〉 ,

que sustituyendo en la expresión anterior nos da

0 ≤ 〈x, y〉2
〈x, x〉 − 2

〈x, y〉2
〈x, x〉 + 〈y, y〉,

o lo que es lo mismo, el resultado a demostrar

〈x, y〉2 ≤ 〈x, x〉2 〈y, y〉.
14Hermann Amandus Schwarz (1843–1921) la publicó para integrales sobre superficies en un art́ıculo en 1885;

sin embargo, la desigualdad para integrales ya hab́ıa sido publicada en 1821 por Cauchy, y en 1859 por Viktor

Yakovlevich Bouniakowsky (1804–1899).
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4. Desigualdad triangular

‖x‖2 + ‖y‖2 ≥ ‖x + y‖2.

Demostración en C:

‖x + y‖2
2 = 〈x + y, x + y〉 = 〈x, x〉+ 〈x, y〉+ 〈x, y〉+ 〈y, y〉

= ‖x‖2
2 + ‖y‖2

2 + 2 Re {〈x, y〉} ≤ ‖x‖2
2 + ‖y‖2

2 + 2 |〈x, y〉|

≤ ‖x‖2
2 + ‖y‖2

2 + 2 ‖x‖2 ‖y‖2 = (‖x‖2 + ‖y‖2)2,

donde se ha utilizado la desigualdad de Cauchy-Schwarz.

5. Ley del paralelogramo (válida para normas asociadas a productores interiores)

‖x + y‖2
2 + ‖x− y‖2

2 = 2 ‖x‖2
2 + 2 ‖y‖2

2.

Demostración:

‖x + y‖2
2 + ‖x− y‖2

2 = 〈x + y, x + y〉+ 〈x− y, x− y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+ 〈x, x〉 − 〈y, x〉 − 〈x, y〉+ 〈y, y〉

= 2 〈x, x〉+ 2 〈y, y〉 = 2 ‖x‖2
2 + 2 ‖y‖2

2.

Los espacios con producto interior que con su norma asociada son de Banach se denominan

espacios de Hilbert. En estos espacios todas las sucesiones de Cauchy son convergentes y por

ello son los espacios preferidos en análisis numérico (siempre y cuando puedan ser utilizados).

La existencia en Rn de un producto interior nos permite definir el ángulo entre dos vectores

en dicho espacio, que se define como

θ = arccos
〈x, y〉

‖x‖2 ‖y‖2
.

La desigualdad de Cauchy-Schwarz garantiza la corrección de esta definición

| cos θ| = |〈x, y〉|
‖x‖2 ‖y‖2

≤ 1.

Los productos interiores permiten introducir el concepto de ortogonalidad en espacios vecto-

riales. Dos vectores son ortogonales si 〈x, y〉 = 0, y si además son unitarios ‖x‖2 = ‖y‖2 = 1 se

dice que son ortonormales. Un sistema (conjunto) de vectores de V es ortogonal (ortonormal)

si sus elementos son ortogonales (ortonormales) dos a dos.
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Se puede demostrar que un conjunto ortogonal es un conjunto de vectores linealmente inde-

pendientes. Además, en un espacio vectorial de dimensión finita n, un conjunto de n vectores

linealmente independientes definen uńıvocamente una base de dicho espacio y, por tanto, un

conjunto de n vectores ortogonales también.

Dada una base ortonormal {ei} de V , se puede escribir cualquier vector x ∈ V en la forma

x =
∑

i

αi ei =
∑

i

〈ei, x〉ei,

ya que 〈ej , x〉 = αj por ser 〈ei, ej〉 = δij , la delta de Kronecker15. A este desarrollo se le

denomina, en forma general, desarrollo de Fourier y a los coeficientes αi, coeficientes de Fourier.

Dada una base ortonormal {ei} y un vector v ∈ V , sus coeficientes de Fourier verifican la

desigualdad de Bessel ∑

i

α2
i ≤ ‖v‖2,

y además si el espacio es de dimensión finita se verifica la identidad de Parseval16

∑

i

α2
i = ‖v‖2.

En un espacio de dimensión infinita, un sistema ortonormal se dice completo o total si verifica

la identidad de Parseval.

El ejemplo clásico de serie de Fourier es la basada en polinomios trigonométricos. Sea

f : (0, T ) → R una función real periódica de periodo T , f(x + T ) = f(x), que además sea de

cuadrado integrable f ∈ L2(0, T ). Tomemos la siguiente base de L2(0, T )

{wn} ≡ {ei kn x} ≡ {1, cos knx, sin knx},

entonces se puede escribir

f(x) =
∞∑

n=−∞
cn ei kn x = a0 +

∞∑

n=1

(an cos kn + bn sin kn), kn =
2π

T
n,

donde los coeficientes de Fourier son, en forma compleja,

cn =
1
T

∫ T

0
f(x) e−i kn x dx, −∞ < n < ∞,

15Del prusiano (actualmente seŕıa polaco) Leopold Kronecker (1823–1891), quien dijo “Dios hizo los enteros, el

resto lo hizo el hombre”.
16También llamado teorema de Parseval, que el francés Marc-Antoine Parseval des Chênes (1755–1836), presentó

en su tesis en 1799, y publicó en 1801.
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o en forma real,

an =
1
T

∫ T

0
f(x) cos knx dx, 0 ≤ n < ∞,

bn =
1
T

∫ T

0
f(x) sin knx dx, 0 < n < ∞.

Se puede demostrar que el sistema ortogonal de polinomios trigonométricos es completo, por lo

que se verifica la desigualdad de Parseval

‖f‖ =
1
T

∫ T

0
f2 dx =

∞∑

i=−∞
c2
n

Todo sistema de vectores linealmente independientes en un espacio dotado de producto

interior, se puede ortogonalizar (ortonormalizar) por el procedimiento de ortogonalización de

Gram-Schmidt17. Sea un sistema de vectores {xn} ⊂ V linealmente independientes entre śı, el

sistema {yn} construido de la forma

y1 = x1, yn = xn −
n−1∑

i=1

〈xn, yi〉
‖yi‖2

yi, n > 1,

es ortogonal, por construcción, ya que si tenemos calculados los yi, i = 1, 2, . . . , n− 1, podemos

desarrollar xn en la base formada por éstos y obtener

xn =
n−1∑

i=1

〈xn, yi〉
‖yi‖2

yi + yn,

de donde yn es la “parte” de xn ortogonal a los vectores anteriores. También se puede obtener

un sistema ortonormal {zn} dado por

zn =
yn

‖yn‖ .

3.3 Matrices

Una matriz A ∈Mm×n(K), donde a veces escribiremos A ∈ Km×n, está formada por una tabla

de m·n escalares de un cuerpo K dispuestos en m filas y n columnas, para las que se han definido
17Desarrollada por el danés Ludvik Henrik Ferdinand Oppermann (1817–1883) en 1863, y utilizado por el

también danés Jorgen Pedersen Gram (1850–1916), en su tesis doctoral sobre ecuaciones integrales (1879). Más

tarde fue referenciado por el alemán (ahora seŕıa estonio) Erhard Schmidt (1876–1959), en un art́ıculo escrito

en 1905 y publicado en 1907, que lo hizo popular. Sin embargo, el procedimiento era ya conocido por el francés

Pierre-Simon Laplace (1749–1827), y fue utilizado en 1836 por el también francés Augustin-Louis Cauchy (1789–

1857).
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las operaciones de suma, producto, y producto por escalar18.

Denotaremos al elemento de la i-ésima fila y de la j-ésima columna como aij , con el nombre de

la matriz en minúsculas, o directamente como (A)ij indicando expĺıcitamente éste. Lo habitual

es definir una matriz por sus elementos y escribir A ≡ (aij) donde los elementos vienen dados

por una tabla como la siguiente



a11 a12 · · · a1n

a21 a22 · · · a2n

... · · · ...

am1 am2 · · · amn




.

Definimos las siguientes operaciones binarias sobre matrices: suma

C = A + B, cij = aij + bij , A,B, C ∈Mm×n(K),

producto por escalar

C = α A, cij = α aij , A,C ∈Mm×n(K), α ∈ K

y producto de matrices

C = AB, cij =
n∑

k=1

aik bkj , A ∈Mm×n(K), B ∈Mn×p(K), C ∈Mm×p(K).

Se denomina 0 a la matriz nula, la que tiene todos sus elementos nulos. El espacio Mm×n(K) es

un espacio vectorial sobre el cuerpo K. Se denomina I a la matriz identidad, la que tiene todos

sus elementos diagonales iguales a uno (unitarios) y sus elementos no diagonales nulos, lo que

denotaremos (I)ij = δij , la delta de Kronecker.

El producto de matrices no es conmutativo AB 6= B A, aunque śı es distributivo respecto de

la suma, por lo que el espacio de las matrices cuadradasMn×n(K) está dotado de una estructura

de álgebra no conmutativa (con I, la matriz identidad y 0, la matriz nula).

En este curso nos limitaremos a matrices sobre el cuerpo de los reales (R) o de los complejos

(C), que denotaremos por Mm×n (sin especificar directamente el cuerpo de escalares).

18La teoŕıa de las matrices fue descubierta en 1857 por el inglés Arthur Cayley (1821–1895) con objeto de

simplificar la solución de sistemas de ecuaciones lineales simultáneos. Sin embargo, el nombre “matriz” fue

utilizado por primera vez por el también inglés James Joseph Sylvester (1814–1897) en 1850.
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3.3.1 Los vectores como matrices fila o columna

Los vectores de Rn (o Cn) se pueden interpretar como matrices de dos formas diferentes, como

vectores columna, Mn×1, que es lo habitual, o como vectores fila, M1×n. De esta forma se

puede utilizar el producto matricial para (pre-) multiplicar una matriz por un vector columna,

w = A v, w ∈Mm×1, A ∈Mm×n, v ∈Mn×1,

o para (post-) multiplicar una matriz por un vector fila

w = v A, w ∈M1×n, A ∈Mm×n, v ∈M1×m.

Para convertir vectores fila en vectores columna se utiliza el operador unario de trasposición de

matrices, definido como

C = A>, cij = aji, A ∈Mm×n, C ∈Mn×m.

El lector puede comprobar fácilmente que este operador se comporta, ante las operaciones sobre

matrices, de la siguiente forma

(A + B)> = A> + B>, (AB)> = B>A>, (α A)> = α A>,
(
A>

)>
= A,

y que además podemos escribir

w = Av, w> = v>A>.

En este curso siempre representaremos los vectores como vectores columna, v ∈ Mn×1, de

forma que cuando queramos escribir un vector fila escribiremos v>. De esta forma, el producto

interior (eucĺıdeo) entre dos vectores (columna) en Rn se puede escribir como

〈x, y〉 =
n∑

i=1

xi yi = x> y.

Para poder escribir el producto interior en Cn hemos de introducir otro operador unario para

matrices, la traspuesta hermı́tica, también llamada conjugada, definida por

C = A∗ = Ā>, cij = āji, A ∈Mm×n, C ∈Mn×m.

donde la barra Ā indica la matriz conjugada, cuyos elementos son los complejos conjugados de

los de A. Esta operación unaria se comporta de la siguiente forma respecto a las operaciones

matriciales

(A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗, (α A)∗ = α A>, (A∗)∗ = A,
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y permite escribir el producto interior en Cn de la forma

〈x, y〉 =
n∑

i=1

xi yi = x> y = x∗ y,

donde hemos utilizado x∗ como traspuesta conjugada del vector columna x.

3.3.2 Matrices como representación de aplicaciones lineales

Las matrices tienen una interpretación geométrica como aplicaciones lineales, funciones que,

por ejemplo en el plano, transforman cada paralelogramo colocado en el origen en otro para-

lelogramo también colocado en el origen; en Rn el comportamiento es similar respecto a un

hiper-paraleṕıpedo. Estas transformaciones del paralelogramo incluyen rotaciones, simetŕıas

especulares, escalados, cizalladuras (shear maps), y combinaciones de las anteriores.

Las transformaciones (funciones o aplicaciones) lineales entre espacios vectoriales de di-

mensión finita se representan mediante matrices19. Sean V y W dos espacios vectoriales con bases

BV = {v1, . . . , vn} y BW = {w1, . . . , wm}, respectivamente, y una aplicación lineal f : V −→ W ,

que transforma un vector v ∈ V en un vector w ∈ W de la forma

v =
n∑

j=1

αj vj , f(v) = w =
m∑

i=1

βi wi.

La matriz A ≡ (aij) que se dice que representa a f se define como

f(vj) =
m∑

i=1

aij wi, 1 ≤ j ≤ n,

y permite calcular los coeficientes βi de w en la base BW a partir de los coeficientes αj de v en

BV ; aprovechando la linealidad de f obtenemos

f(v) =
n∑

j=1

αj f(vj) =
n∑

j=1

αj

m∑

i=1

aij wi =
m∑

i=1




n∑

j=1

αj aij


 wi =

m∑

i=1

βi wi,

luego

βi =
n∑

j=1

aij αj .

Llamando α y β a los vectores (columna) cuyos elementos son los coeficientes αj y βi, de los

vectores v y w, respectivamente, podemos escribir, f(v) = w como

β = Aα.

19La diferenciación entre operadores lineales y matrices, que los representan, se debe a Carvallo en 1891.
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Dadas dos bases distintas de un mismo espacio vectorial, existe una aplicación lineal que

realiza el cambio de base entre ellas. La matriz que representa este cambio de base puede

ser aplicada directamente a las coordenadas de los vectores considerados éstos como vectores

columna, como ya hemos visto, o directamente a los vectores base, utilizando la traspuesta de

la matriz y considerando éstos como vectores fila. Sean {vi} y {wi} dos bases de V , de forma

que un vector cualquiera puede representarse como

u =
n∑

j=1

αj vj =
n∑

j=1

βj wj .

La representación de la aplicación cambio de base mediante una matriz A = (aij) nos indica,

como ya hemos visto, que podemos transformar la coordenadas αj y betai de v en las dos bases

de la forma

βi =
n∑

j=1

aij αj , β = Aα.

Igualmente podemos considerar que se transforman los vectores base sin cambiar las coorde-

nadas. Aplicando la transformación anterior

u =
n∑

i=1

βi wi =
n∑

i=1

n∑

j=1

aij αj wi =
n∑

j=1

αj

n∑

i=1

aij wi =
n∑

j=1

αj vj ,

con lo que obtenemos finalmente

vj =
n∑

i=1

wi aij , [v]> = [w]>A>,

donde [v] y [w] son matrices cuyas filas están definidas por las componentes de los vectores base

{vi} y {wi}, respectivamente.

3.3.3 Algunos tipos de matrices

Hay una serie de tipos de matrices que se obtienen cuando se encuentra algún tipo de patrón en

la distribución de sus elementos no nulos.

Se denominan matriz cuadrada a la que tiene el mismo número de filas que de columnas,

A ∈ Mn×n, y se dice que es una matriz de orden n. En caso contrario se dice que la matriz es

rectangular.

Sean n vectores columna, {a1, a2, . . . , an}, ai ∈ Rn. La matriz A cuyos vectores columna son

los ai se escribe como A ≡ [a1, a2, . . . , an]. Dados n vectores fila, {a>1 , a>2 , . . . , a>n }, escribimos

la matriz cuyos vectores fila son los a>i como A ≡ [a>1 , a>2 , . . . , a>n ].
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Dada la base ortonormal canónica {ei} de Rn, donde (ei)j = δij , y {i1, i2, . . . , in} una

permutación de los números 1, 2, . . . , n, la matriz cuyas columnas son P = [ei1 , ei2 , . . . , ein ],

se denomina matriz de perturbación. Esta matriz es la matriz identidad con sus columnas

permutadas.

Una matriz D es diagonal si son nulos sus elementos no diagonales, dij = 0, i 6= j. Se

denomina diagonal principal al vector formado por los elementos dii.

Una matriz es triangular superior (o inferior) si sus elementos por debajo (o encima) de la

diagonal principal son nulos. Para una matriz U triangular superior, uij = 0, i > j, y para una

L triangular inferior, lij = 0, i < j. Una matriz triangular (superior o inferior) se denomina

unitaria si todos los elementos de su diagonal principal son iguales a 1.

Los elementos de la diagonal inmediatamente inferior (o superior) a la diagonal principal se

llaman elementos de la subdiagonal (superdiagonal) principal. Se denomina matriz bidiagonal

inferior (superior) a la matriz cuyas únicos elementos no nulos están en la diagonal y subdiagonal

(superdiagonal) principales. Una matriz es tridiagonal si todos sus elementos no nulos están en

la diagonal, subdiagonal y superdiagonal principales.

Una matriz es de Hessenberg superior (o inferior) si sus elementos por debajo de la subdi-

agonal (o encima de la superdiagonal) son nulos, es decir, aij = 0 si i > j + 1 (o j > i + 1).

Se denomina producto exterior de dos vectores x, y ∈ Cn a la matriz cuadrada A = x y∗,

cuyos elementos son aij = xi yj . En Rn se tiene A = x y>.

3.3.4 La traza, el determinante y la inversa

Se define la traza tr (A) de una matriz A de orden n como la suma de sus elementos de la

diagonal principal

tr (A) =
n∑

i=1

aii.

El determinante de una matriz cuadrada det(A) es una forma multilineal alternada asociada

a dicha matriz que se puede definir de forma recursiva: para n = 1, sea [a] la matriz de M1×1

cuyo único elemento es el escalar a, entonces definimos det([a]) = a; para n > 1, sea A una

matriz de Mn×n, definimos det(A) =
∑n

j=1(−1)j+1 a1j det(A1j), donde A1j es la matriz de

M(n−1)×(n−1) que se obtiene suprimiendo la primera fila y la j-ésima columna de A.

A partir de la definición de determinante se pueden demostrar las siguientes propiedades:

1. det(AB) = det(A) det(B), A, B ∈Mn×n,
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2. det(α A) = αn det(A), A ∈Mn×n, α ∈ R (o α ∈ C),

3. det(A>) = det(A), A ∈Mn×n,

4. det(A∗) = det(A), A ∈Mn×n.

La relación entre el determinante de la suma det(A + B) y los de los sumandos det(A) y det(B)

no se conoce en el caso general20.

Se dice que una matriz (cuadrada) A es no singular si det(A) 6= 0. Dada una matriz no

singular A, siempre es posible encontrar su matriz inversa, que es única y se denota por A−1,

que cumple que AA−1 = A−1 A = I.

Utilizando la definición de inversa se pueden demostrar las siguientes propiedades:

1. (AB)−1 = A−1 B−1, A, B ∈Mn×n,

2. (α A)−1 = 1
α A−1, A ∈Mn×n, α ∈ R (o α ∈ C,

3. (A>)−1 = (A−1)>, A ∈Mn×n,

4. (A∗)−1 = (A−1)∗, A ∈Mn×n,

5. det(A−1) = 1/det(A).

3.3.5 Sistemas de ecuaciones lineales

Gracias a la definición del producto de matrices, un sistema de ecuaciones lineales se puede

escribir como Ax = b, donde A ∈ Mn×n se denomina matriz de coeficientes, x ∈ Mn×1 es el

vector de incógnitas y b ∈ Mn×1 es el término no homogéneo. La existencia y unicidad de su

solución viene dada por el teorema del rango o de Rouché-Frobenius, que se demuestra en los

cursos de álgebra lineal [1].

Se define el rango de una matriz A, rango (A), como el número de filas (columnas) linealmente

independientes de A, y coincide con la dimensión del subespacio vectorial {y = A x,∀x ∈ Rn}.
Se puede demostrar que

20Más aún, es un problema muy dif́ıcil. El problema matemático aún sin resolver más importante del siglo XXI

es la hipótesis (o conjetura) de Riemann. Este problema es equivalente a mostrar que det(Dn+Cn) = O
�
n1/2+ε

�
,

para todo ε > 0, donde Dn ∈ Mn×n es la matriz de divisores, cuyo elemento (i, j) es 1 si i es múltiplo de j, y

0 en otro caso, y Cn ∈ Mn×n es la matriz cuyos elementos (2, 1), (3, 1), . . . , (n, 1) son iguales a 1 y todos los

demás nulos. El Instituto de Matemáticas Clay anunció en el 2000 que premiará con un millón de dólares a quien

resuelva este problema.
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1. rango (A + B) ≤ rango (A) + rango (B), A, B ∈Mn×n,

2. rango (α A) = rango (A), R 3 α 6= 0, A ∈Mn×n,

3. rango (AB) ≤ min{rango (A), rango (B)}, A, B ∈Mn×n,

El teorema del rango o de Rouché-Frobenius asegura que son equivalentes las siguientes

sentencias:

1. El sistema de n ecuaciones lineales A x = b tiene solución única.

2. El sistema lineal homogéneo Ax = 0 tiene como única solución x = 0.

3. Existe la inversa A−1 de A.

4. det(A) 6= 0, es decir, A es no singular.

5. rango (A) = n.

Como corolario de este teorema observamos que el sistema lineal de ecuaciones homogéneo,

Ax = 0, tiene una solución no trivial (x 6= 0) si y solamente si det(A) = 0.

3.3.6 Tipos fundamentales de matrices

En este curso usaremos fundamentalmente matrices cuadradas. Una matriz cuadrada se dice

simétrica si A = A>, hermı́tica21 si A = A∗, antisimétrica si A> = −A y antihermı́tica si

A = −A∗. Las matrices hermı́ticas (simétricas) son muy importantes debido a su actuación

dentro de un producto interior complejo de la forma

〈A x, y〉 = (A x)∗ y = x∗A∗ y = 〈x, A∗ y〉, A ∈Mn×n(C),

(o en el caso real,

〈Ax, y〉 = (Ax)T y = xT AT y = 〈x,AT y〉, A ∈Mn×n(R)

donde se ha sustituido la traspuesta hermı́tica por la traspuesta). En un contexto más amplio, se

dice que la matriz A∗ (AT ) representa la aplicación dual o adjunta de la aplicación representada

por A con respecto al producto interior complejo (real). El concepto de operador (diferencial)

dual es muy importante ya que sustenta la teoŕıa de Sturm-Liouville que el alumno ha estudiado

en cursos anteriores y que revisaremos brevemente en un tema posterior.
21A veces se dice hermitiana, del inglés Hermitian.
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Una matriz real se dice ortogonal si su inversa es igual a su traspuesta,

O> = O−1, O>O = O O> = I.

De forma similar, una matriz compleja es unitaria si su inversa es igual a su traspuesta hermı́tica,

U∗ = U−1, U∗ U = U U∗ = I.

Los vectores filas y columnas de una matriz ortogonal (o unitaria) son ortonormales entre śı y

su determinante es de módulo unitario.

Demostración en C: Sea una matriz unitaria U con vectores columna ui, y U∗ su traspuesta

hermı́tica, cuyos vectores fila son u∗i ≡ u>i , es decir,

U = [u1 u2 · · · un], U∗ =




u∗1
...

u∗n




,

donde hemos utilizado corchetes cuadrados para indicar una matriz definida por sus vectores.

Esta notación nos permite escribir el producto U∗ U = I expĺıcitamente multiplicando vectores

fila por vectores columna de la forma

U∗ U =




u∗1
...

u∗n



· [u1 · · · un] = I,

de donde se obtiene la condición de ortonormalidad u∗i uj = 〈ui, uj〉 = δij , la delta de Kronecker.

Además, aplicando determinantes a la definición de matriz unitaria,

1 = det(I) = det(U∗ U) = det(U∗) det(U) = det(U) det(U) = | det(U)|2,

luego el módulo del determinante es 1.

3.3.7 Autovalores y autovectores

Se dice que λ es un autovalor de una matriz A y que x 6= 0 es uno de sus autovectores asociados,

si Ax = λx. Para determinar los autovalores se puede tener en cuenta el teorema del rango que

afirma que el sistema (A − λ I)x = 0 tiene solución no trivial (distinta del vector 0), si y sólo
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si su determinante es nulo, |A − λ I| = 0. Este determinante es un polinomio de grado n en λ

y se denomina polinomio caracteŕıstico; sus ráıces son los autovalores de A. Los autovectores

asociados a un autovalor dado forman un subespacio vectorial que se denomina autoespacio

S(λ),

S(λ) = {x : Ax = λ x},

y cuya dimensión es mg(λ) = n− rango (A− λ I).

Los autovalores tienen una interpretación geométrica sencilla. Consideremos, para simpli-

ficar, el plano, y una matriz de 2 × 2, que representa una transformación geométrica en él.

Aplicando dicha matriz a un ćırculo unidad centrado en el origen, éste se transforma en una

elipse (si la matriz tiene rango 2). Los vectores que definen los ejes mayor y menor de la elipse

corresponden a los dos autovectores de la matriz. Cada uno de estos autovectores corta al

ćırculo en un punto. La matriz ha actuado sobre el vector que pasa por el origen y ese punto

multiplicándolo por un número, éste es el autovalor correspondiente. Si las autovectores se usan

para definir una base, la matriz de la transformación geométrica toma en dicha base una forma

diagonal, la forma más simple posible.

Se denomina multiplicidad algebraica (ma(λ)) de un autovalor λ a su multiplicidad como

ráız del polinomio caracteŕıstico, es decir, al número de veces que está repetido como ráız de

dicho polinomio. Se denomina multiplicidad geométrica (mg(λ)) de un autovalor a la dimensión

del autoespacio S(λ) que tiene asociado, es decir, al número de autovectores linealmente inde-

pendientes que están asociados a dicho autovalor. Se cumple siempre que n ≥ ma ≥ mg.

Los autovalores indican el “tamaño” de una matriz ya que

Ax = λ x, ⇒ 〈Ax, A x〉 = |λ|2 〈x, x〉 ≥ 0

por lo que

|λ|2 =
‖Ax‖2

2

‖x‖2
2

,

y de este modo, el autovalor mide lo grande o pequeña que es una matriz cuando actúa sobre

un vector de su autoespacio asociado.

Al conjunto de todos los autovalores de una matriz se le denomina espectro de dicha matriz,

y al mayor de sus autovalores en valor absoluto radio espectral, que se escribe como

ρ(A) = max{|λ| : |A− λ I| = 0}.

Se dice que dos matrices A y B son semejantes si existe una matriz P no singular (|P | 6= 0)

tal que B = P−1 AP . En ese caso los determinantes de las dos matrices son iguales, |A| = |B|.
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Las matrices semejantes tienen los mismos autovalores, ya que

Ax = λA x, ⇒ P−1 AP P−1 x = λA P−1 x, ⇒ B P−1 x = λA P−1 x,

cuyo autovector es y = P−1 x. La traza, el determinante y el rango de una matriz son invariantes

ante transformaciones de semejanza.

Se pueden calcular el determinante y la traza si se conocen todos sus autovalores, en concreto

det(A) =
n∏

i=1

λi, tr (A) =
n∑

i=1

λi,

donde Axi = λi xi.

Los autovalores de una matriz hermı́tica A = A∗ (en C), o simétrica A = A> (en R), son

reales, ya que en ese caso

〈Ax, x〉 = 〈x, A∗ x〉 = 〈x,A x〉,
por lo que con x un autovector, Ax = λx,

〈Ax, x〉 = 〈λx, x〉 = λ〈x, x〉 = 〈x,A x〉 = 〈x, λ x〉 = λ〈x, x〉,

por lo que λ = λ y λ ∈ R.

Los autovectores de una matriz hermı́tica (o simétrica) correspondientes a dos autovalores

distintos son ortogonales entre śı. Sean Axi = λi xi y Axj = λj xj . Se tiene que para

0 = 〈Axi, xj〉 − 〈xi, A xj〉 = λi〈xi, xj〉 − λj〈xi, xj〉 = (λi − λj) 〈xi, xj〉,

ya que los autovalores son reales. Si los autovalores son distintos (i 6= j), es necesario que los

autovectores sean ortogonales

〈xi, xj〉 = 0.

De esta forma los autovectores de una matriz hermı́tica definen un conjunto de n vectores

ortogonales entre śı, es decir, cada matriz hermı́tica define una base ortonormal. Cqd.

Finalmente, recordaremos el teorema de Cayley-Hamilton22, que dice que toda matriz A

satisface su ecuación caracteŕıstica |A − λ I| = pA(λ) = 0, es decir, pA(A) = 0 donde An =

An−1 A. Demostrar este resultado no es fácil. Seguidamente, por completitud, presentamos dos

demostraciones interesantes del mismo.

Demostración. Recordemos que un determinante se puede calcular utilizando su desarrollo

respecto a cualquiera de sus filas de la forma

|B| =
n∑

j=1

(−1)j+1 bij |Bij |.

22Probado por el inglés Arthur Cayley (1821–1895) en 1857.
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Llamemos matriz de adjuntos de B, Adj(B), a la que tiene por elementos

(Adj(B))ij = (−1)j+1 |Bij |,

de forma que el determinante se puede calcular como

|B| =
n∑

j=1

bij (Adj(B))ij ,

para cualquier fila i. Podemos escribir esta identidad de forma matricial

det(B) I = |B| I = B Adj(B).

Tomemos B = A− λ I, lo que da

pA(λ) I = (A− λ I)Adj(A− λ I). (3.1)

Los elementos (Adj(A−λ I))ij son polinomios en λ de grado a lo sumo n−1, por ser determinantes

de matrices de (n− 1)× (n− 1). Podemos escribir estos polinomios en forma matricial, sea

Adj(A− λ I) = B0 + B1 λ + · · ·+ Bn λn−1,

donde Bj son matrices de números reales (independientes de λ). Si ahora escribimos

pA(λ) = c0 + c1 λ + · · ·+ cn λn,

la ecuación (3.1) nos da

c0 I + c1 λ I + · · ·+ cn λn I = (A− λ I) (B0 + B1 λ + · · ·+ Bn λn−1),

que igualando coeficientes en λ conduce a las identidades matriciales

c0 I = AB0,

c1 I = AB1 −B0,

c2 I = AB2 −B1,

...

cn−1 I = ABn−1 −Bn−2,

cn I = −Bn−1,
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que buscando potencias de A nos dan

c0 I = AB0,

c1 A = A2 B1 −AB0,

c2 A2 = A3 B2 −A2 B1,

...

cn−1 An−1 = An Bn−1 −An−1 Bn−2,

cn An = −AnBn−1,

que sumadas en columnas nos da la expresión (matricial) deseada

pA(A) = c0 I + c1 A + c2 A2 + · · ·+ cn An = 0.

Otra demostración. Podemos utilizar el “truco del determinante”. El polinomio caracte-

ŕıstico pA(λ) = |A− λ I| ≡ |B(λ)| se puede calcular desarrollando su primera fila de la forma,

pA(λ) = |B(λ)| =
n∑

j=1

(−1)j+1 (a1j − λ δ1j) |B1j(λ)|,

donde el determinante del menor (−1)j+1 |B1j(λ)| ≡ pj(λ) es un polinomio de grado (a lo sumo)

n− 1. De esta forma

pA(λ) = p1(λ)(a11 − λ) + p2(λ)(a12) + · · ·+ pn(λ)(a1n).

El “truco del determinante” consiste en recordar que en un primer curso de Álgebra Lineal

se demostró que si desarrollamos un determinante a partir de una fila dada, pero utilizando los

menores de otra, éste es automáticamente cero. De esta forma obtenemos las expresiones

0 = p1(λ)(a21) + p2(λ)(a22 − λ) + · · ·+ pn(λ)(a2n),

...

0 = p1(λ)(an1) + p2(λ)(an2) + · · ·+ pn(λ)(ann − λ).
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Ahora bien, si evaluamos formalmente esta serie de expresiones en A,

pA(A) = p1(A)(a11 I −A) + p2(A)(a12 I) + · · ·+ pn(A)(a1n I).

0 = p1(A)(a21 I) + p2(A)(a22 I −A) + · · ·+ pn(A)(a2n I),

...

0 = p1(A)(an1 I) + p2(A)(an2 I) + · · ·+ pn(A)(ann I −A),

multiplicamos cada una de estas expresiones matriciales por cada uno de los vectores unitarios

(en columnas) de la base canónica de Rn, sea {ei}, obtenemos

pA(A) e1 = p1(A)(a11 e1 −Ae1) + p2(A)(a12 e1) + · · ·+ pn(A)(a1n e1).

0 e2 = 0 = p1(A)(a21 e2) + p2(A)(a22 e2 −Ae2) + · · ·+ pn(A)(a2n e2),

...

0 en = 0 = p1(A)(an1 en) + p2(A)(an2 en) + · · ·+ pn(A)(ann en −Aen),

y sumamos todas estos ecuaciones por columnas, recordando que Ae1 es la primera columna

de A, obtenemos que son nulos los factores que multiplican a los pj(A) = 0, 1 ≤ j ≤ n. Por

ello pA(A) e1 = 0. Permutando ćıclicamente los vectores de la base canónica es obvio que

pA(A) e2 = 0, . . . , pA(A) en = 0, con lo que pA(A) = 0 idénticamente.

3.3.8 Formas canónicas de matrices

La semejanza entre matrices permite definir una serie de formas canónicas para la escritura de

las mismas.

1. Forma normal de Schur. Para toda matriz A existe una matriz unitaria U , con U−1 =

U∗, tal que T = U∗AU es una matriz triangular. El producto de los elementos de la

diagonal de T es igual al determinante de A, es decir, |A| = |T | = ∏
k tkk. El teorema de

la forma normal de Schur será demostrado en los ejercicios resueltos.

2. Descomposición en ejes principales. La aplicación de la forma normal de Schur a

una matriz hermı́tica A, nos indica que existe una matriz unitaria U tal que U∗AU = Λ

es una matriz diagonal, ya que la forma normal de Schur garantiza que U∗A U = Λ es

triangular superior, y que (U∗AU)∗ = Λ∗ es triangular inferior, pero como A es hermı́tica,
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(U∗AU)∗ = U∗AU , luego Λ es diagonal. Los vectores columna (o fila) de U se denominan

ejes principales de la matriz hermı́tica A, y permiten diagonalizarla.

Los elementos en la diagonal de la matriz Λ son los autovalores de A. También esto es

fácil de demostrar. Podemos escribir la matriz U mediante sus vectores columna, sean ui,

U = [u1, u2, . . . , un]. Como U es unitaria, sus vectores columna son ortonormales, y como

AU = U U∗AU = U Λ se puede escribir

A [u1, . . . , un] = [u1, . . . , un]




λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λn




,

o en la notación de columnas,

[A u1, A u2, . . . , A un] = [λ1 u1, λ2 u2, . . . , λn un],

es decir, Aui = λi ui.

3. Descomposición en valores singulares. Toda matriz A ∈ Mn×m se puede factorizar

en la forma

A = V D U,

donde V ∈ Mm×m y U ∈ Mn×n son matrices unitarias y D ∈ Mm×n es una matriz

diagonal. Los r = rango (A) valores µi > 0 en la diagonal de la matriz D se denominan

valores singulares, que coinciden con las ráıces cuadradas de los valores propios de la

matriz A∗A (que es hermı́tica), es decir, A∗Axi = µ2
i xi. La demostración del teorema

de la descomposición de en valores singulares de una matriz (rectangular) aparece en los

ejercicios resueltos de este tema.

Los valores singulares se pueden interpretar geométricamente. Si A es una transformación

lineal de un espacio eucĺıdeo, entonces convierte la esfera unidad en ese espacio en un

elipsoide de otro espacio eucĺıdeo. Los valores singulares son las longitudes de los semi-ejes

de este elipsoide. Las matrices V y U nos dan información sobre la posición de los ejes y

sobre los vectores del primer espacio que se transforman en éstos, respectivamente.

La aplicación más importante de la descomposición en valores singulares es la selección de

los términos dominantes (cuyos valores singulares son los más grandes) en una aplicación

lineal o matricial. Es decir, permite calcular aproximaciones en un subespacio vectorial de

una aplicación lineal en el correspondiente espacio vectorial.
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4. Forma canónica de Jordan. Toda matriz cuadrada A de orden n×n es semejante a una

matriz diagonal por bloques que tiene bloques de Jordan J(λi, ni) sobre la diagonal. Sean

λ1, . . . , λk los k autovalores distintos de A con multiplicidades geométricas y algebraicas

mgi y mai, i=1, . . . , k, respectivamente. Entonces para cada autovalor λi existen mgi

números naturales n
(i)
j , j= 1, 2, . . .mgi, (únicos salvo por su orden), tales que

mai =
mgi∑

j=1

n
(i)
j ,

y una matriz no singular P (que en general no es única) tal que, J = P−1 AP toma la

forma (canónica de Jordan)

J =




J(λ1, n
(1)
1 ) 0 · · · 0

0
. . .

J(λ1, n
(1)
mg1)

...
. . .

...

J(λk, n
(k)
1 )

. . . 0

0 · · · 0 J(λk, n
(k)
mgk)




,

que se puede escribir como J = D+N , donde D es una matriz diagonal y N es una matriz

nilpotente Nn = 0. De hecho cada bloque de Jordan toma la forma

J(λi, n
(i)
j ) = λi In

(i)
j

+ N
n

(i)
j

,

donde I
n

(i)
j

es la matriz identidad en M
n

(i)
j ×n

(i)
j

y N
n

(i)
j

es nilpotente, (N
n

(i)
j

)n
(i)
j . Escrito

en forma matricial se tiene

J(λi, n
(i)
j ) =




λi 1 0 · · · 0 0

0 λi 1 · · · 0 0

0 0 λi
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 · · · λi 1

0 0 0 · · · 0 λi




.
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Los polinomios caracteŕısticos de cada uno de los bloques de Jordan J(λi, n
(i)
j ) son

(λi − λ)n
(i)
j = |J(λi, n

(i)
j )− λ I|,

y se denominan divisores elementales.

3.3.9 Normas de matrices

Podemos definir una norma matricial de la misma forma que se define una vectorial, dado que las

matrices forman un espacio vectorial. Sin embargo, en ese caso, no sabemos como se comporta

la norma ante un producto de matrices. Por ello, conviene utilizar normas matriciales que

sean submultiplicativas, es decir, tales que ‖AB‖ ≤ ‖A‖ ‖B‖. Aún aśı, no hay posibilidad de

relacionar directamente estas normas matriciales con alguna norma vectorial, algo muy útil en

muchos casos. Es por ello que usualmente se utilizan normas matriciales subordinadas a una

norma vectorial, que están ligadas directamente con ésta y permiten la desigualdad ‖Ax‖ ≤
‖A‖ ‖x‖.

Dada una norma vectorial ‖ · ‖, se define su norma matricial asociada o subordinada como

‖A‖ = sup
‖x‖6=0

‖Ax‖
‖x‖ .

Haciendo u = x/‖x‖, se obtiene esta otra definición equivalente a la anterior

‖A‖ = sup
‖u‖=1

‖Au‖.

Presentaremos seguidamente varios ejemplos de normas matriciales que utilizaremos a lo

largo de este curso.

• Norma matricial de Frobenius (o de Schur): Es un ejemplo de norma matricial, que

se puede demostrar que no está asociada o subordinada a ninguna norma vectorial, y se

define como

F (A) = ‖A‖F =


∑

i

∑

j

|aij |2



1/2

.

Aunque no es una norma subordinada, śı es submultiplicativa y está relacionada con la

norma vectorial eucĺıdea, ya que se tiene que

‖Ax‖2
2 =

∑

i

∣∣∣∣∣∣
∑

j

aij xj

∣∣∣∣∣∣

2

,
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que aplicando la desigualdad de Cauchy-Schwarz, siendo ai· el i-ésimo vector fila de A, se

deduce
∣∣∣∣∣∣
∑

j

aij xj

∣∣∣∣∣∣

2

= |〈ai·, x〉|2 ≤ ‖ai·‖2
2 ‖x‖2

2 =


∑

j

|aij |2




∑

j

|xj |2

 ,

y por tanto

‖Ax‖2
2 ≤

∑

i


∑

j

|aij |2




∑

j

|xj |2

 =


∑

j

|xj |2




∑

i

∑

j

|aij |2



= F (A)2 ‖x‖2
2.

Sin embargo, la norma de Frobenius es muy poco utilizada en las aplicaciones prácticas.

• Norma matricial uno: La norma matricial asociada a la norma vectorial uno, se deduce

fácilmente

‖Ax‖1 =
∑

i

∣∣∣∣∣∣
∑

j

aij xj

∣∣∣∣∣∣
≤

∑

i

∑

j

|aij | |xj |

=
∑

j

∑

i

|aij | |xj | =
∑

j

(
|xj |

∑

i

|aij |
)
≤ max

j

(∑

i

|aij |
) ∑

j

|xj |,

por lo que

‖A‖1 ≤ max
j

∑

i

|aij |.

Hemos obtenido una cota superior, ahora tenemos que demostrar que es óptima y co-

incide con el supremo, para lo que bastará demostrar la igualdad para algunos vectores

convenientemente elegidos. Sean éstos los vectores base ej para los que se verifica

‖Aej‖1 =
∑

i

|aij | =
∑

i

|aij |‖ej‖1,

por lo que la norma matricial uno de A es el máximo de la sumas por columnas de los

valores absolutos de sus elementos. Por esta razón también se conoce como norma del

máximo por columnas23.

• Norma matricial infinito: La norma matricial asociada a la norma vectorial del máximo

o infinito, se obtiene de forma del todo similar. Operando

‖A x‖∞ = max
i

∣∣∣∣∣∣
∑

j

aij xj

∣∣∣∣∣∣
≤ max

i

∑

j

|aij | |xj |

23Una regla sencilla permite recordar esta definición, 1 corresponde a vertical |, es decir, a suma por columnas.
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≤ max
i


∑

j

|aij | max
j
|xj |


 = max

j
|xj | max

i

∑

j

|aij |,

por lo que

‖A‖∞ ≤ max
i

∑

j

|aij |.

Para demostrar la igualdad basta considerar el vector x = (±1, ...,±1), con ‖x‖∞ = 1, y

observar que

‖Ax‖∞ = maxi(
∑

j

±aij) = maxi(
∑

j

±aij)‖x‖∞,

por lo que eligiendo de forma adecuada el signo + ó - en cada componente de x se obtiene

el resultado buscado, y por lo tanto la norma infinito de A coincide con el máximo de la

sumas por filas de los valores absolutos de sus elementos. A esta norma también se la

llama norma del máximo por filas24.

• Norma matricial dos: La norma matricial asociada a la norma vectorial eucĺıdea o

norma dos no es la norma de Frobenius, como ya hemos indicado, pero se puede determinar

fácilmente siguiendo el siguiente proceso. Como

‖Ax‖2
2 = 〈Ax, Ax〉 = 〈x,A∗Ax〉,

es necesario estudiar el producto A∗A que es una matriz hermı́tica ((A∗A)∗ = A∗A) y, por

tanto, sus autovalores λj son reales y sus n autovectores definen una base ortonormal, {ui}.
Estos autovectores coinciden con las columnas de la matriz unitaria que la transforma en

su forma canónica de Schur, que es diagonal. Todo vector x se puede escribir en dicha

base de autovectores como

x =
∑

j

〈x, uj〉uj =
∑

j

xj uj ,

y de esta forma

‖Ax‖2
2 = 〈x,A∗Ax〉 = 〈

∑

i

xi ui,
∑

j

xj λj uj〉 =
∑

i

∑

j

λj xi xj 〈ui, uj〉,

que aplicando 〈ui, uj〉 = δij nos da

‖Ax‖2
2 =

∑

j

λj |xj |2 ≤
∑

j

|λj | |xj |2 ≤ λmax ‖x‖2
2,

24Una regla sencilla permite recordar esta definición, ∞ corresponde a horizontal −, es decir, a suma por filas.
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donde

λmax = max
j
|λj | = ρ(A∗A).

Por lo tanto,

‖A‖2
2 ≤ ρ(A∗A).

Ahora bien tomando el vector x igual a un autovector asociado al mayor autovalor λmax,

se obtiene la igualdad

‖A‖2 =
√

ρ(A∗A).

Es interesante notar que para cualquier norma matricial asociada a una norma vectorial se

cumple

ρ(A) ≤ ‖A‖,

ya que para todos los autovalores λ de A se tiene

|λ| ≤ ‖A‖.

Para verificarlo basta tomar un autovector x, para el que

‖Ax‖ = ‖λ x‖ = |λ| ‖x‖ ≤ ‖A‖ ‖x‖.

De hecho se puede probar que el radio espectral satisface la ecuación

ρ(A) = inf
‖·‖
‖A‖,

en la que se toma el ı́nfimo sobre todas las normas matriciales subordinadas. De esta forma,

si ρ(A) < 1 entonces sabemos que existe alguna norma matricial subordinada tal que ‖A‖∗ =

ρ(A) < 1, aunque determinar dicha norma en la práctica es muy dif́ıcil.

Se puede demostrar que para toda matriz y para todo ε > 0, existe una norma vectorial

‖ · ‖K tal que la norma matricial ‖ · ‖K inducida por esta norma vectorial es tal que

‖A‖K ≤ ρ(A) + ε.

Aśı, el radio espectral es el ı́nfimo de todas las normas matriciales subordinadas de A. La

demostración se encuentra en la sección 4.6 de [3]
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BIBLIOGRAFÍA
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