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CAPITULO 3

CONCEPTOS BASICOS DE ALGEBRA LINEAL

En este tema recordaremos los conceptos bésicos de dlgebra lineal que han sido expuestos al
alumno en cursos anteriores e introduciremos una notacién uniforme para los mismos [4, 5, 6].
Ademads, observaremos como muchos de dichos conceptos son también aplicables a espacios de

funciones, que serdn usados en este curso en los temas de aproximacién de funciones.

Tras una aplicacion simple del producto de matrices en ingenieria, para el modelado de
las pérdidas (disipacién) en lineas de transmision, pasaremos a repasar el concepto de espacio
vectorial, dependencia lineal y bases. Presentaremos, ademds de los espacios vectoriales R" y
C™, espacios de funciones como P"(a,b), los polinomios de grado a lo sumo n definidos en el
intervalo (a,b), y C°[a, ], las funciones reales de variable real continuas en [a, b]. Estos espacios
vectoriales tienen dimensién infinita. Es importante notar que todo espacio vectorial tiene base,
tanto si es de dimensién finita como infinita, al menos si aceptamos el axioma de eleccién [1], y
asi haremos en este curso. Hay matemaéticos, los constructivistas, que no aceptan dicho axioma,
en cuyo caso sélo utilizan los espacios vectoriales para los que se puede construir explicitamente

una base [2].

Desde el punto de vista de los métodos numéricos es muy importante medir el error de un
algoritmo incluso cuando la respuesta es un vector. Para medir el tamafo de un vector se suele
introducir una norma en un espacio vectorial, y se habla de espacios normados, destacando entre
ellos los espacios de Banach. Todas las normas definidas en espacios normados de dimensién

finita son equivalentes entre si, no asi en dimension infinita.

Para medir tamanos, también se puede introducir un producto interior, que conduce au-
tomaticamente a una norma asociada, y que ademaés nos permite calcular dngulos entre vectores.

En espacios con producto interior podemos definir un concepto de ortogonalidad, y construir
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bases ortogonales. Los coeficientes de un vector respecto a una base ortogonal son sus coeficientes

de Fourier, que utilizaremos mucho en teoria de la aproximacion de funciones.

Introduciremos también las matrices, como representaciones de aplicaciones lineales. Estu-
diaremos sus tipos més importantes, cémo se opera con ellas, y sus propiedades. Estudiaremos
la resolucién de sistemas lineales, el determinante, la inversa de una matriz, su traza, sus au-
tovalores y autovectores. Una matriz se puede escribir en diferentes formas candnicas, de entre
las que destaca la descomposicién de Schur, la forma de Jordan y la descomposicién en valores

singulares.

Finalmente introduciremos el concepto de normas matriciales, y presentaremos las normas
mas utilizadas. Muchos de los conceptos y teoremas del dlgebra lineal que presentaremos en este
tema se pueden encontrar en précticamente todos los libros de andlisis numérico, como [3], asi

como en la mayoria de los libros de dlgebra y geometria lineal [4, 5, 6].

3.1 Aplicaciones en ingenieria

Hay muchos problemas fisicos y aplicaciones en ingenieria que se modelan mediante problemas
lineales y cuyo estudio requiere la solucién de un sistema de ecuaciones lineales. Con objeto de

concretar presentaremos un ejemplo de un circuito eléctrico pasivo, una linea de transmision.

Para el modelado de la transmisiéon de electricidad en un cable se utilizan lineas de trans-
misién lineales tanto distribuidas (modelo continuo) como de parametros concentrados (modelo
discreto). En la figura 3.1 aparece una fotografia de un cable coaxial (linea de transmisién), una
seccién del cual se puede modelar mediante el circuito de parametros concentrados que aparece
en la figura 3.2, donde se ha considerado sélo la propagacion de senales de baja frecuencia, por lo
que se ha despreciado la capacitancia y la inductancia por unidad de longitud, y sélo se considera
la resistencia y la conductancia por unidad de longitud. Aplicando las leyes de Kirchoff y la ley

de Ohm (V = I R) se obtienen ficilmente las ecuaciones de esta linea con multiples etapas.

Sin embargo, es usual modelar este problema mediante la técnica de la matriz de impedancias
[Z], método por el cuél se consideran una serie de etapas elementales, denominadas multipuertos,
cajas de dos entradas y dos salidas, que se concatenan para formar la linea completa. Para esta
linea tenemos tres cajas como las mostradas en la figura 3.3, que son de dos tipos, multipuertos

con una resistencia y con una conductancia.

La figura 3.4 muestra un multipuerto con una conductancia. De la ley de Ohm, sabemos

que V3 = I R = Vs, v de las leyes de Kirchoff de los nudos que

L =1L+1, L=L-1=1-VG,
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Figura 3.1. Cable coaxial (linea de transmisién) modelo FLC78-50J de la

compania Harris Corporation. (¢) Harris Corporation.
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Figura 3.2. Modelo pasivo de parametros concentrados de una linea de trans-

misién lineal que modela el cableado de una casa.
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Figura 3.3. Modelo de una linea de transmision lineal dividido en tres etapas

elementales.
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Figura 3.4. Etapa de una linea de transmision con una conductancia.

que se puede escribir de forma matricial como

Vo 1 0 Vi
Iy -G 1 I

y vectorialmente como x2 = P(G) x.

Por otro lado, la figura 3.5 muestra un multipuerto con una resistencia. Observamos que

=1, Vi —Vo=RI,y Iy =V, — RI, con lo que obtenemos en forma matricial
Vo 1 —-R Vi
Iy 0 1 I

y vectorialmente como x2 = Q(R) x;.

La red de la figura 3.3 se puede escribir facilmente utilizando las expresiones de cada una de

las etapas como
xg = Q(R1) x1, x3 = P(G2) %2, x4 = Q(R3) x3,

y finalmente, x4 = Q(R3) P(G2) Q(R1) X1, que conduce a

»
S
I
Il
Il

X1
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Vi V2

Figura 3.5. Etapa de una linea de transmisién con sélo una resistencia en

serie.

que multiplicando las matrices nos da finalmente

1+Ga2R3 —Ri—R3—R1G2R3

X4 = X1.

*GQ 1+ Rl G2

3.2 Espacios vectoriales, métricos, normados y con producto

interior

3.2.1 Espacios vectoriales

Un espacio vectorial V' sobre un cuerpo de escalares K, estd formado por un conjunto de vectores,
y dos operaciones, la suma de vectores, que dota a V' de la estructura de grupo conmutativo, y

la multiplicacién de vectores por escalares, que es distributiva respecto de la sumal.

Matematicamente, V' es un espacio vectorial sobre un cuerpo K (normalmente usaremos R

o C), dotado de dos operaciones binarias, la suma de vectores y el producto por escalar, y se

Los espacios R? y R® fueron introducidos por los franceses Pierre de Fermat (1601-1665) y René Descartes
(1596-1650) alrededor de 1636 en el marco de la geometria. El concepto de vector fue introducido por el polaco
Bernard Placidus Johann Nepomuk Bolzano (1781-1848) en 1804, para formalizar la geometria. La definicién
axiomatica de espacio vectorial, y con ella de algebra lineal, pricticamente en su forma actual, es debida al
italiano Giuseppe Peano (1858-1932) en 1888, quien indicé que basé sus ideas en los trabajos de los sajones
(ahora serfan alemanes) Gottfried Wilhelm von Leibniz (1646-1716) y August Ferdinand Mobius (1790-1868),
del prusiano (ahora serfa polaco) Hermann Giinter Grassmann (1809-1877), y del irlandés Sir William Rowan

Hamilton (1805-1865).
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denota (V,+,-) donde
+:VxV —V, S KxV —V,

verificando las siguientes propiedades
1. v 4+ wvy = vy + vy, Yvi,vg €V,
2. (v14wv2) +v3=v1+ (v2 + v3), Yui,vo,v3 €V,
3. J10eV, O+v=v+0=n, Yv eV,
4. YweV, Tl —veV, v+ (—v)=(-v)+v=0,
5 1-v=w, leK, WYwevV,
6. a-(f-v)=(a-0)- v, Va,3 €K, YveV,
7. a-(vp+v)=a v+ a- v, VaeK, Yvi,vp eV,

8. (a+p)v)=a-v+(-v, Vo, €K, YveV.

Ejemplos tipicos de espacios vectoriales son R"™ sobre R (C™ sobre C), es decir, los espacios de
n-tuplas de nimeros reales (complejos) con la adicién componente a componente, y el producto
por un escalar. También son espacios vectoriales sobre R (o sobre C) el conjunto de los polinomios
de grado menor o igual que n (sea P"(a, b)), el conjunto de las funciones continuas definidas en
un intervalo C%[a,b] y el conjunto de funciones de clase k en un intervalo, C¥(a,b), es decir,
las funciones continuas con derivadas continuas hasta orden k, inclusive, en el intervalo abierto
(a,b). Este resultado es facil de demostrar. Mas atn, el conjunto de funciones Ly (a,b), definido

como b
L= {fiR—R: [ [f@Pdo <o), p>0

también es un espacio vectorial. En este curso utilizaremos fundamentalmente Lo, el espacio de
funciones de cuadrado integrable, L1, el espacio de funciones de médulo integrable, y Lo, que

se puede demostrar que es el espacio de funciones acotadas (véanse los ejercicios resueltos).

Una combinacién lineal del conjunto de n vectores vy, ve, ..., v, € V, denotado {v;} C V,

es una expresién de la forma

n
E Q; Vi = Q1 V] + QU2 + -+ + Qi Up,
i=1

donde {a;} € K.
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Un conjunto de vectores {v;} se dice linealmente dependiente si existe alguna combinacién

lineal de los mismos igual al vector 0,
v +agvr+ - o vy =0,
con al menos un «a; # 0. Sea a; # 0, entonces v; se puede escribir como una combinacién lineal

de los demds v; de la forma

631 Q-1 Q41 Qn
’Ui:—iful_..._ vi—l_ vz_"_l__i
a; (67} &7} &7}

Un.

Un conjunto de vectores {v;} se dice linealmente independiente si

n
Zai Vi = O, = o = 0, Vi.
=1

Un conjunto de vectores {e;} C V, linealmente independiente, se dice que forma una base

de V si todo vector v € V' se puede escribir de forma tinica como

v = E Q€5

Se puede demostrar que todas las bases de un determinado espacio vectorial tienen el mismo
nimero de vectores. El cardinal de cualquiera de estas bases se denomina dimensién del espacio
vectorial. Existen espacios vectoriales de dimensién finita (R de dimensién n, o P"(a,b) de
dimensién (n + 1)), y de dimensién infinita (C°[a, b], C*(a,b) o Ly(a,b)) [1].

Un concepto importante relacionado con espacios vectoriales es el concepto de dualidad. Se
denomina espacio dual, V*, del espacio vectorial V al espacio vectorial definido por todas las

formas lineales en V', es decir,
VE={f:V =K: flarv1 + az2v2) = f(arv1) + flagva),Vv1,v2 € V, Yy, a0 € K}

Para V' de dimensién finita, se puede demostrar que dim(V') = dim(V*) y ademas, V = (V*)*.
Miés atin, ambos espacios son isomorfos [1]2. Sin embargo, si V es de dimensién infinita, ninguna

de las afirmaciones es cierta3.

2 Aunque el alumno debe conocer el concepto de isomorfismo, no entremos en detalles en este curso.

3Inciso técnico: Estos espacios se denominan espacios vectoriales topoldgicos. El ejemplo més conocido es el
espacio vectorial topoldgico de las funciones, reales de variable real, continuas e infinitamente derivables de forma
continua, con soporte compacto, llamado S = C;°; su dual 8™ es el espacio de Schwartz de distribuciones, que
incluye a funciones generalizadas tan extrafias como la funcién delta de Dirac y todas sus infinitas derivadas. A

estas funciones, el francés Laurent Schwartz (1915-2002) las denominé distribuciones.
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3.2.2 Distancias y espacios métricos

Sea X un conjunto no vacio a cuyos elementos llamaremos puntos. Una distancia en X es una
aplicacién d : X x X — R que verifica

1. d(z,y) =0 2=y, Vr,y € X,

2. d(m,y) + d(l‘, Z) > d(y7 Z)? Va:,y, S X7

donde a 2 se le llama desigualdad triangular. Al par M = (X, d) se le llama espacio métrico?.

Consecuencia de la definicién son estas otras propiedades (que el lector puede verificar
facilmente)

3. d(z,y) > 0,Vz,y € X,

4. d(z,y) = d(y,x), Vo,y € X.

Para los espacios métricos que son espacios vectoriales, cuyos puntos son vectores, se suele
utilizar el término espacios vectoriales topolégicos. En este curso todos los espacios métricos

que estudiaremos seran espacios vectoriales.

Como primer ejemplo de espacio métrico tomemos R"™ con la distancia p discreta®
1/p

n
d(z,y) = [ Yo —yil?
i=1
Demostremos que es realmente una distancia. Claramente cumple con la primera propiedad
n
dz,y) =0 & Y |lri—ylf & |ri-yl=0 & z=y, Vi
i=1

La segunda requiere el uso de varios lemas previos, la desigualdad de Young®, que nos permite
demostrar la desigualdad de Holder, con la que finalmente demostraremos la desigualdad de

Minkowski”. Esta dltima nos da directamente el resultado a probar.

4E] concepto de espacio métrico se desarrollé entre 1900 y 1910, cristalizando ideas que ya habfan surgido
en el siglo XIX. Sus hitos mas importantes son la teoria de ecuaciones integrales del sueco Erik Ivar Fredholm
(1866-1927) en 1900, la tesis sobre integracién del francés Henri Léon Lebesgue (1875-1941) en 1902, la teoria
espectral del prusiano (ahora serfa ruso) David Hilbert (1862-1943) en 1906, y la tesis sobre espacios métricos del

francés Maurice René Fréchet (1878-1973) en 1906.
"También se denomina distancia de Hélder, en honor al aleman Otto Ludwig Hélder (1859-1937). Para p = 2

coincide con la distancia euclidea, en honor a Euclides de Alejandria (=325 AC—~265 AC). Sorprendentemente,
de Euclides se sabe muy poco: trabajé en Alejandria (Egipto), fue pupilo de Platén y escribié su famoso libro,

en trece volumenes, “Los Elementos”, en el que axiomatiza la geometria (euclidea).
Por el inglés William Henry Young (1863-1942).
"En honor al ruso (ahora serfa lituano) Hermann Minkowski (1864-1909).
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Lema 3.1 Desigualdad de Young. Sean a,(3 > 0, p > 1, y q conjugado a (o dual de) p, que
significa que 1/p+1/q =1, es decir, ¢ = p/(p — 1). Entonces se verifica

se obtiene haciendo

con lo que obtenemos

aﬁ_&pgﬁ(p+q)/p_g:5q_ﬁ_g
p p p q

con lo que queda demostrado.

Lema 3.2 Desigualdad de Holder en R™. Sia,b € R"™, entonces

n n 1/p n 1/q
> laibil < (Z !az’|p> (Z|bz’\q> ,
i=1 i=1

=1

conp>1yl/p+1/g=1.

Demostraciéon. Basta aplicar la desigualdad de Young a unos « y ( convenientemente

elegidos. Sean

i
&= n 1/1” ﬁ -
i=1

n 1/q’
(Swr)
i=1
con lo que la desigualdad de Young conduce a
|a] s S SO 7] O S (]

n

n l/p n 1/q - n
(Z m-rp) (Z W) Ul Y
=1 =1

i=1 =1

)

que sumando para todos los indices

n

> laibil

i=1 1

n 1/p n 1/q S P q
(Sar) (mr)
i=1 i=1

y el resultado queda demostrado.
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Lema 3.3 Desigualdad de Minkowski en R™. Para R 3 a;,b; >0 y p > 1, entonces

n 1/p n 1/p n 1/p
() s (E) ()

i=1 =1 =1

Demostracién. Con objeto de poder aplicar la desigualdad de Holder, factorizaremos de

Zn:a2+b Zaz aﬁ—bpl—i—Zb (a; + b;)P
i=1

donde, para 1/p+1/q =1, obtendremos

n n 1/p n 1/q
D ai(ai+ b))t < (Z(ai)p> (Z(ai + bi)(pl)q> ;
i=1 :

=1

la forma

n n 1/p n 1/q
Starnrt< (Sor) (L)

i=1 i=1
por lo tanto

n n 1/p n 1/p n 1/q
S ((Sar) + (Sor) ) (Sene)
=1 =1 =1 i

que podemos simplificar notando que

11
*+5 = p+tqg=pqg = p=pg—q=(p—1)gq,

p
n 1/q
(Z(a,‘ + bi)p>

=1

n 1-1/q n 1/p n 1/p
<Z(ai + bi)p> < <Z(ai)p> + (Z(bi)p) ;

i=1 =1 i=1

y dividiendo por
para obtener

que es la desigualdad de Minkowski que queriamos demostrar.

Otro ejemplo de espacio métrico es el espacio de funciones continuas definidas en el intervalo

[a, b] valuadas en los reales, C([a,b],R), con la distancia p continua

(/ e \pdx)l/p-

El lector notard que esta definicién es correcta ya que el teorema de Riemann® garantiza que

las funciones continuas son integrables. En general podemos definir el espacio L,([a,b],R) =

8En honor a Georg Friedrich Bernhard Riemann (1826-1866) que nacié en Breselenz, Hanover (ahora serfa

alemdn).



3.2. Espacios vectoriales, métricos, normados y con producto interior 95

L, ([a,b]) como el espacio de funciones donde esta distancia esta bien definida, tiene sentido (las
funciones son integrables, incluso si no son continuas) y es finita para cualquier par de funciones

de ese espacio?. Se demuestra que d es una distancia utilizando la desigualdad de Holder para

/ 1) - (@) da < (/ ’ )l ds ) " (/ b o(o)ft o) "

3.2.3 Sucesiones de Cauchy y espacios métricos completos

integrales

Se llama sucesién en un espacio métrico M a una aplicaciéon f : N — M. Normalmente se

denota el elemento f(n) de la forma x, y a la sucesién como {z,}.

El conjunto de las sucesiones de nimeros reales x = {x;} tales que

o0
Z |z P < o0,
i=1

es un espacio métrico con la distancia

1/p

d(e,y) = [ S las — uil?
=1

Se denomina [,(R) = [,. Para demostrar que d es una distancia se utiliza la desigualdad de

Holder para sucesiones

00 [e'e] 1/p 00 1/q
Mlwiyl < (D lwml? ] D] wil
=1 =1 =1

Se dice que la sucesién {x,} C M es convergente y tiene por limite a xo € M, si para todo

€ > 0, existe un ng € N, tal que
Vn > no, d(xp,x0) < €.

Se denota como xy = lim,,_,s T, 0 COMO T, — Z(.

Una sucesién {z,} C M es de Cauchy!" si dado € > 0, existe un ng € N tal que

Vn,m > ng, d(xp, Tm) < €.

9nciso técnico: aqui se debe utilizar la integracién en el sentido de Lebesgue, quien generalizé la teoria de la

integracién de Riemann.
YEn honor al francés Augustin-Louis Cauchy (1789-1857).
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Claramente, toda sucesiéon convergente es de Cauchy, no asi al contrario, ya que el “limite”

podria estar fuera de M.

Un espacio métrico M es completo si toda sucesion de Cauchy es convergente, es decir, tiene
un limite en M. La gran importancia de los espacios completos en andlisis numérico es que
nos permiten determinar si un método numérico iterativo converge comparando solamente sus

iterados, sin necesidad de conocer el limite, la solucién exacta que estamos calculando.

3.2.4 Normas de vectores y espacios normados

Para medir la magnitud (tamano) de un escalar (nimero) en un cuerpo K se utiliza una valo-

racion, que es una aplicacién | - | : K — R verificando
1. |a| >0, (la|] =0 < «a=0), Va € K,
2. |a+p8| <|of+ 18], Va, 3 € K,
3. a8 <|al- 8], Va, B € K.

Un cuerpo K con una valoracién se denomina valorado. Se denomina valor absoluto a una

valoracién tal que |a - 5] = |af - |3].

Para medir la longitud (tamano) de un vector en un espacio vectorial se suele utilizar una
norma. Una funcién || - || : V — R en un espacio vectorial V' sobre un cuerpo valorado K es

una norma si cumple!!
1. =] >0, (Jzl=0 < x=0), Vo €V,
2.z +yll < llzll + [yl Va,y €V, (llamada desigualdad triangular),
3. az| = o ||z, VaeK, VxelV.

Un espacio vectorial dotado con una norma se denomina espacio normado.

En base a los axiomas de una norma se puede demostrar la siguiente desigualdad triangular

inversa valida en todo espacio normado,

Hlzll =yl < llz—yll,  Vo,yeV.

1Tnciso técnico: Cuando no se cumple la propiedad ||z|| = 0 < x = 0, decimos que || - || es una seminorma y
hablamos de espacios semi-normados. Muchos espacios vectoriales topolégicos de interés no son normados, pero

si semi-normados.
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Demostraciéon: Hay que probar que
—llz =yl < llzll = llyll < llz = yll.
La segunda desigualdad se deduce facilmente
2]l = llz —y +yll < llz =yl + [lyll.
La primera desigualdad se cambia de signo
lz =yl = [lyll — [l
y también se demuestra facilmente,

Iyl = lly — =+ zl| < ly = zll + llzll = |z = yll + [|=]

En un espacio normado (V,| - ||), la aplicacién d : V. x V — R, d(u,v) = |ju — v|| es una
distancia, que se denomina distancia asociada y que verifica Yu,v,w € V y Va € K,

L. d(z,y) =d(z — z,y — 2),

2. dlau,av) = |a|d(u,v).
Por ello, todo espacio vectorial normado es un espacio métrico, aunque no es cierto lo contrario,

de hecho, muchos espacio métricos ni siquiera son espacios vectoriales.

Algunos ejemplos de normas en R” son la norma euclidea o norma dos que se define como

Izl = [ |l
i
la norma uno

[EE N
i

la norma infinito o del maximo

] = mavx 2],

Jall, = (Z rxi\p) "

i

y, en general, la norma p (p > 0)

Entre los ejercicios resueltos se encuentra la demostracién de que la norma |/z||,, cumple los
axiomas de norma y ademé&s que

lim ||z, = |2/ -
p—00
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Se llama sucesién de vectores en un espacio vectorial V' a una aplicacion f: N — V. Al
elemento f(n) se le suele denotar como z,, y a la sucesién como {z,,}. Normalmente se considera
que los numeros naturales son 1, 2, ..., es decir, no se incluye el cero (0). El espacio de las
sucesiones reales (o complejas) es un espacio vectorial. Cuando se le dota de una norma p, sea

|| - ||p, se le denomina espacio l,; cuando queremos destacar el cuerpo, se usa la notacién [,(R)

o I,(C).

El espacio de las funciones continuas C°[a, b] (y por ende P"(a,b) y C¥(a,b)) es un espacio

normado con la norma

[flloo = 11 fllmax = max | ()],

que estd bien definida dado que el teorema de Weierstrass que garantiza que toda funcién
continua tiene méaximo y minimo en un intervalo compacto, y ademads, cumple los axiomas
de norma, como el lector puede comprobar ficilmente (basta utilizar las propiedades del valor

absoluto).

Los espacios Ly(a,b), son también espacios normados con la norma

1= ( | b s i) T renan.

Una reescritura adecuada de la demostracién de que las normas ||z||, estdn bien definidas en
R™, con ligeros cambios, se puede utilizar para demostrar que los espacios Ly(a,b) son espacios

normados, y que se cumple que

S 1]l = 1 flloe = mé})?!f(fv)lv Vf € Loo(a;b).

la
El lector notard que f € Loo(a,b) implica que f € L,(a,b).
Se define la bola unidad en norma-p, sea B ;,, como el conjunto de vectores
Bip=zeV |zl <1,
y esfera unidad en norma-p, sea S ;,, como

Sl,p = 53171) =zxzeV: ”xHP =1.

El lector puede dibujar ficilmente la bola unidad en R? para las normas 1, 2, oo, 1/2 y 4.

Se dice que dos normas || - ||, ¥ || - || son equivalentes si existen dos constantes positivas m
vy M tales que
m|zll, < [lzlly < Mzl VeeV
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Se puede demostrar que en un espacio vectorial de dimensién finita todas las normas son equi-
valentes entre si. Entre los ejercicios resueltos se encuentra la demostracién de la equivalencia
entre las normas dos, uno e infinito. La equivalencia entre normas garantiza que un vector
pequeno en una norma lo es en cualquier otra, y lo mismo para uno grande. Sin embargo, es
muy importante que el lector note que la equivalencia entre normas no es cierta en un espacio
normado de dimension infinita, una norma puede indicar que una funcién es pequena, y otra que

es grande. Esto sera tenido en cuenta cuando estudiemos la teorfa de aproximacién de funciones.

Se dice que la sucesién {x,} C V, donde V es un espacio normado con norma || - ||, tiene por

limite (o converge) a z € V si
Ve>0, dnpeN, talque Yn>ng, |z—z,] <e

Normalmente se escribe

= lim z,,
n—oo

0 a veces T, — x, y se dice que la sucesién converge a x.

Comprobar la convergencia de una sucesién mediante la definicién anterior es complicado ya
que requiere conocer el limite. Es mejor comprobar si la sucesién es de Cauchy. Una sucesion

{zn} C V es de Cauchy si
Ve>0, dnpeN, talque Vn,m>mngy, |zn,—an| <e

Toda sucesion convergente es de Cauchy, sin embargo, no asi al contrario. Un espacio normado
se dice completo si toda sucesién de Cauchy en dicho espacio es convergente (tiene limite). Se
denomina espacio de Banach!? a un espacio normado completo. En un espacio de Banach es
facil verificar si una sucesién converge, basta estudiar la distancia entre sus elementos conforme

el indice de éstos crece.

3.2.5 Productos internos y espacios con producto interno

Otra manera de medir la distancia entre dos vectores o la tamano de un vector es mediante

3

un producto interior, también llamado producto interno o escalar'®. Un producto interno (o

escalar) en el espacio vectorial V' sobre los complejos es una funcién, sea (-,-) : V. x V — C,

'2En honor al austro-htingaro (ahora serfa polaco) Stefan Banach (1892-1945).
13Los espacios de Hilbert fueron introducidos como espacios de funciones en 1904. La versién més abstracta

fue introducida en 1908 por el alemdn (ahora seria estonio) Erhard Schmidt (1876-1959) alumno de Hilbert. La

versién axiomatica actual es de la tesis doctoral de Banach de 1920.
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que cumple las siguientes propiedades
1. (z,z) >0, ((z,2) =0 & x=0), VeV,
2. (zy+2z)=(z,y)+(r,2), VryzeV,

3. (az,y) =a(z,y), Ve,yeV, VaeC

4. (z,y)=(y.7), Vz,yeV,
donde @ indica el nimero complejo conjugado de . Un producto interno (o escalar) sobre los
reales, se define igual pero sin los complejos conjugados.

Asociada a todo producto interior podemos definir una norma ||z||* = (x, z) que se denomina
asociada o subordinada a dicho producto. Es ficil comprobar que la funcién asi definida cumple
los axiomas que caracterizan a una norma, por lo que se puede afirmar que todo espacio vectorial

con producto interior es un espacio normado. Sin embargo, el reciproco no es cierto.

Como ejemplo de espacio con producto interior tenemos C" con el denominado producto

escalar hermitico,
n
i=1

Este producto interior cumple todas las propiedades anteriores, como se puede comprobar
facilmente. En R"™ se puede definir un producto interior de manera similar no aplicando el

operador conjugado complejo, es decir, utilizando el producto escalar euclideo
n
<x7 y) = Z Ti Yis
i=1
que tiene asociada la norma euclidea

lallz = /3 leil? = Vi, a).

Los axiomas de un producto interior garantizan la verificacién de las siguientes propiedades

(donde la norma es la asociada a dicho producto interior),

1. (x4y,2) = (x,2)+ (y,2).

2. (z,ay) = alx,y).
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3. Desigualdad de Cauchy-Schwarz!
[, y)* < [l[13 [lylI3-

Demostracion en C: Para todo «, 8 € C se cumple que

0 < (az+By,ar+pBy)

= aa(z,z)+af (z,y)+ab{z,y)+66{yy),

tomando dos valores particulares de a y 3,

a=<y,y>, ﬂ:_<xvy>7

tenemos

0 < llyllz lz13 — 2llyl3 [{z, 9)* + lyll3 [z, ),
13 [z, )7 < llyll2 Il ]3;

para y = 0 la desigualdad original se cumple trivialmente y para y # 0, la obtenemos

dividiendo por [|y||3.

Demostracion en R: Para todo o € R se cumple que
0<({az+y,ax+y) =a®(z,2)+2a(z,y) +(y.y),

parabola en a cuyo minimo (vértice) se encuentra en

2(x,y)
2(x,x)’

que sustituyendo en la expresiéon anterior nos da

(z,9)° (z,y)°
@y (o)

0< + (¥, ),

o lo que es lo mismo, el resultado a demostrar

(z,9)* < (z,2)* (y,9).

MHermann Amandus Schwarz (1843-1921) la publicé para integrales sobre superficies en un articulo en 1885;

sin embargo, la desigualdad para integrales ya habia sido publicada en 1821 por Cauchy, y en 1859 por Viktor
Yakovlevich Bouniakowsky (1804-1899).
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4. Desigualdad triangular
lzll2 + llyllz = NIz + yll2-

Demostracién en C:

lz+yll3 = (& +y,2+y) = (z,2) + (2,9) + (z,9) + (¥, 9)
= ||lz|I5 + lyl3 + 2Re {{z, v)} < ||=|13 + llyll3 + 2 |[{(z, v)|

< llll3 + lyl13 + 2 llzll2 lyll2 = (lll2 + llyll2)*,
donde se ha utilizado la desigualdad de Cauchy-Schwarz.

5. Ley del paralelogramo (valida para normas asociadas a productores interiores)
Iz + 913 + [l = yl3 = 2|15 + 2 [lylI5.
Demostracién:
lz +yl3 + llz =yl = (& +y.x+y) + (z —y,z —y)
= (z,2) + (,y) + (v, %) + (¥, 9) + (2, 2) = (y,2) — (,9) + (v, )

=2 (z,2) +2(y,y) = 2|3 + 2 |lyll3.

Los espacios con producto interior que con su norma asociada son de Banach se denominan
espacios de Hilbert. En estos espacios todas las sucesiones de Cauchy son convergentes y por

ello son los espacios preferidos en anélisis numérico (siempre y cuando puedan ser utilizados).

La existencia en R de un producto interior nos permite definir el d&ngulo entre dos vectores

en dicho espacio, que se define como

(z,y)

0 = arccos ————.
[zll2 llyll2

La desigualdad de Cauchy-Schwarz garantiza la correccién de esta definicién

@l

|cosf| = <1
]2 llyll2

Los productos interiores permiten introducir el concepto de ortogonalidad en espacios vecto-
riales. Dos vectores son ortogonales si (x,y) = 0, y si ademds son unitarios ||z|2 = [|y|l2 = 1 se
dice que son ortonormales. Un sistema (conjunto) de vectores de V' es ortogonal (ortonormal)

si sus elementos son ortogonales (ortonormales) dos a dos.
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Se puede demostrar que un conjunto ortogonal es un conjunto de vectores linealmente inde-
pendientes. Ademaés, en un espacio vectorial de dimensién finita n, un conjunto de n vectores
linealmente independientes definen univocamente una base de dicho espacio y, por tanto, un

conjunto de n vectores ortogonales también.

Dada una base ortonormal {e;} de V', se puede escribir cualquier vector z € V' en la forma

Tr = Zai € = Z<€i7$>€i,
i

i
ya que (ej,r) = a; por ser {(e;,e;) = &;;, la delta de Kronecker!®. A este desarrollo se le

denomina, en forma general, desarrollo de Fourier y a los coeficientes «;, coeficientes de Fourier.

Dada una base ortonormal {e;} y un vector v € V, sus coeficientes de Fourier verifican la

>oai < ol
7

y ademas si el espacio es de dimension finita se verifica la identidad de Parseva

> ai =l
7

En un espacio de dimension infinita, un sistema ortonormal se dice completo o total si verifica

desigualdad de Bessel

116

la identidad de Parseval.

El ejemplo clasico de serie de Fourier es la basada en polinomios trigonométricos. Sea
f:(0,7) — R una funcién real periédica de periodo T, f(z +T) = f(x), que ademds sea de
cuadrado integrable f € Ly(0,T'). Tomemos la siguiente base de Ls(0,T")

{w,} = {eik"”} = {1,cos kpz,sin kpz},

entonces se puede escribir

o

@)= Y cne T =ag+ > (an coskn + by sinky),  kn= on,

n=—00 n=1

donde los coeficientes de Fourier son, en forma compleja,

I i
cn:T/ f(x) e thn gy, —00 < n < 00,
0

5Del prusiano (actualmente serfa polaco) Leopold Kronecker (1823-1891), quien dijo “Dios hizo los enteros, el

resto lo hizo el hombre”.
5 También llamado teorema de Parseval, que el francés Marc-Antoine Parseval des Chénes (1755-1836), presenté

en su tesis en 1799, y publicé en 1801.
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o en forma real,

1 (T
an:T/ f(x) coskpxdz, 0<n< oo,
0

1 /7
bn:/ f(x) sink,x dx, 0<n<oo.
T Jo

Se puede demostrar que el sistema ortogonal de polinomios trigonométricos es completo, por lo

que se verifica la desigualdad de Parseval

T 00
=7 | Fa=Ya

1=—00

Todo sistema de vectores linealmente independientes en un espacio dotado de producto
interior, se puede ortogonalizar (ortonormalizar) por el procedimiento de ortogonalizacién de
Gram-Schmidt!?. Sea un sistema de vectores {x,} C V linealmente independientes entre si, el

sistema {y,} construido de la forma

n—1
{n, yi)
Y1 = T, yn:xn_ZWyh ’I’l>1,
=1 1Y
es ortogonal, por construccién, ya que si tenemos calculados los y;, ¢ = 1,2,...,n — 1, podemos

desarrollar z, en la base formada por éstos y obtener

n—1

T, Yi
Tn=) % Yi + Yn,
il

de donde y,, es la “parte” de x,, ortogonal a los vectores anteriores. También se puede obtener

un sistema ortonormal {z,} dado por

HynH

Zn

3.3 Matrices

Una matriz A € My, «,(K), donde a veces escribiremos A € K"*" estd formada por una tabla

de m-n escalares de un cuerpo K dispuestos en m filas y n columnas, para las que se han definido

'"Desarrollada por el danés Ludvik Henrik Ferdinand Oppermann (1817-1883) en 1863, y utilizado por el
también danés Jorgen Pedersen Gram (1850-1916), en su tesis doctoral sobre ecuaciones integrales (1879). Mads
tarde fue referenciado por el alemén (ahora seria estonio) Erhard Schmidt (1876-1959), en un articulo escrito
en 1905 y publicado en 1907, que lo hizo popular. Sin embargo, el procedimiento era ya conocido por el francés
Pierre-Simon Laplace (1749-1827), y fue utilizado en 1836 por el también francés Augustin-Louis Cauchy (1789—
1857).
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las operaciones de suma, producto, y producto por escalar'®.

Denotaremos al elemento de la i-ésima fila y de la j-ésima columna como a;;, con el nombre de
la matriz en minusculas, o directamente como (A);; indicando explicitamente éste. Lo habitual
es definir una matriz por sus elementos y escribir A = (a;;) donde los elementos vienen dados

por una tabla como la siguiente

ail ai2 e A1n
a1 a2 e a2n
aml AaAm2 - Omn

Definimos las siguientes operaciones binarias sobre matrices: suma
C=A+B, Cij = aij + byj, A, B,C € My,xn(K),
producto por escalar
C=aA, Cij = aay, A, C e Mpxn(K), acekK

y producto de matrices
C=AB, cj=> apby, A€ Mpn(K), BEMpp(K), CEMpep(K).
k=1

Se denomina 0 a la matriz nula, la que tiene todos sus elementos nulos. El espacio M, xn(K) es
un espacio vectorial sobre el cuerpo K. Se denomina I a la matriz identidad, la que tiene todos
sus elementos diagonales iguales a uno (unitarios) y sus elementos no diagonales nulos, lo que

denotaremos (I);; = d;5, la delta de Kronecker.

El producto de matrices no es conmutativo A B # B A, aunque si es distributivo respecto de
la suma, por lo que el espacio de las matrices cuadradas M, «,(K) estd dotado de una estructura

de 4lgebra no conmutativa (con I, la matriz identidad y 0, la matriz nula).

En este curso nos limitaremos a matrices sobre el cuerpo de los reales (R) o de los complejos

(C), que denotaremos por M,,x, (sin especificar directamente el cuerpo de escalares).

81,3 teorfa de las matrices fue descubierta en 1857 por el inglés Arthur Cayley (1821-1895) con objeto de
simplificar la solucién de sistemas de ecuaciones lineales simultdneos. Sin embargo, el nombre “matriz” fue

utilizado por primera vez por el también inglés James Joseph Sylvester (1814-1897) en 1850.
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3.3.1 Los vectores como matrices fila o columna

Los vectores de R™ (o C™) se pueden interpretar como matrices de dos formas diferentes, como
vectores columna, M1, que es lo habitual, o como vectores fila, M7y,. De esta forma se

puede utilizar el producto matricial para (pre-) multiplicar una matriz por un vector columna,
w= Awv, wE Mpxi, A€ Mupxn, vE Mpxi,

o para (post-) multiplicar una matriz por un vector fila
w=uvA, weE Mixn, AE Muyxn, vVE Mixm.

Para convertir vectores fila en vectores columna se utiliza el operador unario de trasposicién de

matrices, definido como
C = AT, Cij = Qji, A€ Mpyxn, C€E Mpxm.

El lector puede comprobar facilmente que este operador se comporta, ante las operaciones sobre

matrices, de la siguiente forma
-
(A+B) =AT+BT,  (AB)T=BTAT, (ad) =adT, (4T) =4

vy que ademas podemos escribir

w=Awv, w! =v" AT,

En este curso siempre representaremos los vectores como vectores columna, v € M, «1, de
forma que cuando queramos escribir un vector fila escribiremos v'. De esta forma, el producto

interior (euclideo) entre dos vectores (columna) en R™ se puede escribir como
n
(z,y) = Z%yz =z'y.
i=1

Para poder escribir el producto interior en C™ hemos de introducir otro operador unario para

matrices, la traspuesta hermitica, también llamada conjugada, definida por
C=A"= AT, Cij = C_ljia Ac Mpxn, C € Myxm.

donde la barra A indica la matriz conjugada, cuyos elementos son los complejos conjugados de
los de A. Esta operacién unaria se comporta de la siguiente forma respecto a las operaciones

matriciales

(A+B)*=A*+B*, (AB)'=B*A", (aA)f=aA’, (4" =4,
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y permite escribir el producto interior en C" de la forma
n
(wy) =) Tiyi=7 y=a"y,
i=1

donde hemos utilizado z* como traspuesta conjugada del vector columna x.

3.3.2 Matrices como representacion de aplicaciones lineales

Las matrices tienen una interpretaciéon geométrica como aplicaciones lineales, funciones que,
por ejemplo en el plano, transforman cada paralelogramo colocado en el origen en otro para-
lelogramo también colocado en el origen; en R™ el comportamiento es similar respecto a un
hiper-paralepipedo. Estas transformaciones del paralelogramo incluyen rotaciones, simetrias

especulares, escalados, cizalladuras (shear maps), y combinaciones de las anteriores.

Las transformaciones (funciones o aplicaciones) lineales entre espacios vectoriales de di-
mension finita se representan mediante matrices'®. Sean V y W dos espacios vectoriales con bases
By ={vi,...,vn} y Bw = {wi,...,wn}, respectivamente, y una aplicacién lineal f: V — W,

que transforma un vector v € V' en un vector w € W de la forma

v:Zajvj, f(v):w:Zﬂiwi.
=1 i=1

La matriz A = (a;;) que se dice que representa a f se define como

y permite calcular los coeficientes 3; de w en la base By, a partir de los coeficientes a;; de v en

By; aprovechando la linealidad de f obtenemos

n n m m n m
f) =Y ajflo) = a; Y ajwi=) ajaij | wi =Y Biw,
=1 =1 =t i=1 \j=1 i=1

luego
n
Bi=_ aia.
i=1

Llamando a y [ a los vectores (columna) cuyos elementos son los coeficientes «; y 3;, de los

vectores v y w, respectivamente, podemos escribir, f(v) = w como

6=Aa.

1913 diferenciacién entre operadores lineales y matrices, que los representan, se debe a Carvallo en 1891.
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Dadas dos bases distintas de un mismo espacio vectorial, existe una aplicacién lineal que
realiza el cambio de base entre ellas. La matriz que representa este cambio de base puede
ser aplicada directamente a las coordenadas de los vectores considerados éstos como vectores
columna, como ya hemos visto, o directamente a los vectores base, utilizando la traspuesta de
la matriz y considerando éstos como vectores fila. Sean {v;} y {w;} dos bases de V, de forma

que un vector cualquiera puede representarse como

n n
u = E Q; V5 = E ﬁjw]’.
j=1 j=1

La representacion de la aplicaciéon cambio de base mediante una matriz A = (a;;) nos indica,
como ya hemos visto, que podemos transformar la coordenadas «; y beta; de v en las dos bases

de la forma

Bi=Y ajaj;,  B=Aa
=1

Igualmente podemos considerar que se transforman los vectores base sin cambiar las coorde-

nadas. Aplicando la transformacién anterior
n n n n n n
u = E ﬂz w; = E E Ai5 O Wi = E Qg E Ai5 Wi = E a; vy,
i=1 i=1 j=1 j=1 =1 j=1

con lo que obtenemos finalmente
n
vj = sz‘ Qi [U]T = [w]TAT,
i=1

donde [v] y [w] son matrices cuyas filas estan definidas por las componentes de los vectores base

{v;} v {w;}, respectivamente.

3.3.3 Algunos tipos de matrices
Hay una serie de tipos de matrices que se obtienen cuando se encuentra algtin tipo de patrén en
la distribucién de sus elementos no nulos.

Se denominan matriz cuadrada a la que tiene el mismo nimero de filas que de columnas,

A € Myxn, v se dice que es una matriz de orden n. En caso contrario se dice que la matriz es

rectangular.
Sean n vectores columna, {a1,az,...,a,}, a; € R". La matriz A cuyos vectores columna son
los a; se escribe como A = [ay,az,...,a,]. Dados n vectores fila, {a{,aq,...,a, }, escribimos

T T T T]
7

la matriz cuyos vectores fila son los a; como A = [a{ ,a4,...,a,].
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Dada la base ortonormal canénica {e;} de R", donde (e;); = di;, ¥y {i1,%2,...,in} una
permutacién de los nimeros 1,2,...,n, la matriz cuyas columnas son P = [e;,,€iy,...,€i,],
se denomina matriz de perturbacién. Esta matriz es la matriz identidad con sus columnas

permutadas.

Una matriz D es diagonal si son nulos sus elementos no diagonales, d;; = 0, i # j. Se

denomina diagonal principal al vector formado por los elementos d;;.

Una matriz es triangular superior (o inferior) si sus elementos por debajo (o encima) de la
diagonal principal son nulos. Para una matriz U triangular superior, u;; = 0, ¢ > j, y para una
L triangular inferior, l;; = 0, i < j. Una matriz triangular (superior o inferior) se denomina

unitaria si todos los elementos de su diagonal principal son iguales a 1.

Los elementos de la diagonal inmediatamente inferior (o superior) a la diagonal principal se
llaman elementos de la subdiagonal (superdiagonal) principal. Se denomina matriz bidiagonal
inferior (superior) a la matriz cuyas tnicos elementos no nulos estan en la diagonal y subdiagonal
(superdiagonal) principales. Una matriz es tridiagonal si todos sus elementos no nulos estan en

la diagonal, subdiagonal y superdiagonal principales.
Una matriz es de Hessenberg superior (o inferior) si sus elementos por debajo de la subdi-
agonal (o encima de la superdiagonal) son nulos, es decir, a;; =0sii>j+1 (o j>1i+1).

Se denomina producto exterior de dos vectores z,y € C™ a la matriz cuadrada A = xy*,

cuyos elementos son a;; = z; ;. En R" se tiene A = zy'.

3.3.4 La traza, el determinante y la inversa

Se define la traza tr (A) de una matriz A de orden n como la suma de sus elementos de la

diagonal principal
n
tr (A) = Z Qg
i=1

El determinante de una matriz cuadrada det(A) es una forma multilineal alternada asociada
a dicha matriz que se puede definir de forma recursiva: para n = 1, sea [a] la matriz de M1
cuyo dnico elemento es el escalar a, entonces definimos det([a]) = a; para n > 1, sea A una
matriz de M,,xn, definimos det(A) = Z?:l(—l)jJrl aij det(Ay;), donde Ay, es la matriz de
M (—1)x(n—1) que se obtiene suprimiendo la primera fila y la j-ésima columna de A.

A partir de la definicién de determinante se pueden demostrar las siguientes propiedades:

1. det(AB) = det(A) det(B), A, B € Muxn,
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2. det(a A) = a™ det(A), A€ Muxn, a€R(0oaeC),

3. det(A") = det(A), A€ Myxn,

4. det(A*) = det(4), A€ Muxn.

La relacién entre el determinante de la suma det(A 4 B) y los de los sumandos det(A) y det(B)

no se conoce en el caso generalQO.

Se dice que una matriz (cuadrada) A es no singular si det(A) # 0. Dada una matriz no
singular A, siempre es posible encontrar su matriz inversa, que es tnica y se denota por A~

que cumple que AA ' =A"1A=1.

Utilizando la definicién de inversa se pueden demostrar las siguientes propiedades:
1. (AB)"'=A"t'B"Y A B € Muxn,

2. (@A)'=14"1 AeMpxn, a€R(0a€eC,

3.(AT) T =(ATHT, A€ Muxa,

4. (A7t =(A7YH*, A€ Muxn,

5. det(A™1) = 1/det(A).

3.3.5 Sistemas de ecuaciones lineales

Gracias a la definicion del producto de matrices, un sistema de ecuaciones lineales se puede
escribir como Ax = b, donde A € M, «, se denomina matriz de coeficientes, x € M, «1 es el
vector de incognitas y b € M, x1 es el término no homogéneo. La existencia y unicidad de su

solucién viene dada por el teorema del rango o de Rouché-Frobenius, que se demuestra en los

cursos de algebra lineal [1].

Se define el rango de una matriz A, rango (A), como el nimero de filas (columnas) linealmente
independientes de A, y coincide con la dimensién del subespacio vectorial {y = Ax,Vx € R"}.

Se puede demostrar que

29M4s atin, es un problema muy dificil. El problema matemético atin sin resolver més importante del siglo XXI
es la hipétesis (o conjetura) de Riemann. Este problema es equivalente a mostrar que det(D,+Ch) = O n'/?te ,
para todo € > 0, donde D,, € M, xn es la matriz de divisores, cuyo elemento (¢,7) es 1 si ¢ es multiplo de j, y
0 en otro caso, y Cp, € Muxn es la matriz cuyos elementos (2,1), (3,1), ..., (n,1) son iguales a 1 y todos los
demads nulos. El Instituto de Matematicas Clay anuncié en el 2000 que premiard con un millén de délares a quien

resuelva este problema.
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1. rango (A + B) <rango (A) + rango (B), A, B € Myxn,
2. rango (o A) =rango (4), R3a#0, A€ M,xn,

3. rango (A B) < min{rango (A),rango (B)}, A, B € Myxn,

El teorema del rango o de Rouché-Frobenius asegura que son equivalentes las siguientes

sentencias:

1. El sistema de n ecuaciones lineales A x = b tiene solucién unica.

2. El sistema lineal homogéneo A x = 0 tiene como tnica solucién x = 0.
3. Existe la inversa A~! de A.

4. det(A) # 0, es decir, A es no singular.

5. rango (A) = n.

Como corolario de este teorema observamos que el sistema lineal de ecuaciones homogéneo,

Ax =0, tiene una solucién no trivial (z # 0) si y solamente si det(A) = 0.

3.3.6 Tipos fundamentales de matrices

En este curso usaremos fundamentalmente matrices cuadradas. Una matriz cuadrada se dice
simétrica si A = A", hermitica?! si A = A*, antisimétrica si AT = —A y antihermitica si
A = —A*. Las matrices hermiticas (simétricas) son muy importantes debido a su actuacién

dentro de un producto interior complejo de la forma

(Az,y) = (Az) y=a"A%y = (z, A" y), A € Myyxn(C),
(o en el caso real,

(Az,y) = (Ax)Ty =2t ATy = (2,ATy), A€ Mupn(R)

donde se ha sustituido la traspuesta hermitica por la traspuesta). En un contexto més amplio, se
dice que la matriz A* (A”) representa la aplicacién dual o adjunta de la aplicacién representada
por A con respecto al producto interior complejo (real). El concepto de operador (diferencial)
dual es muy importante ya que sustenta la teoria de Sturm-Liouville que el alumno ha estudiado

en cursos anteriores y que revisaremos brevemente en un tema posterior.

2LA veces se dice hermitiana, del inglés Hermitian.
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Una matriz real se dice ortogonal si su inversa es igual a su traspuesta,
o' =071, o'o=00" =1
De forma similar, una matriz compleja es unitaria si su inversa es igual a su traspuesta hermitica,
Us=U"1, U'U=U0U"=1.
Los vectores filas y columnas de una matriz ortogonal (o unitaria) son ortonormales entre si y

su determinante es de médulo unitario.

Demostracién en C: Sea una matriz unitaria U con vectores columna wu;, y U* su traspuesta
T

hermitica, cuyos vectores fila son u; = u, , es decir,

U=[uiug - upl, U* : ,

*
u’fL

donde hemos utilizado corchetes cuadrados para indicar una matriz definida por sus vectores.
Esta notacién nos permite escribir el producto U* U = I explicitamente multiplicando vectores

fila por vectores columna de la forma

U U= | @ | [ur - uy)=1,

de donde se obtiene la condicién de ortonormalidad u; u; = (u;, u;) = 05, la delta de Kronecker.

Ademsds, aplicando determinantes a la definicién de matriz unitaria,
1 =det(I) = det(U* U) = det(U*) det(U) = det(U) det(U) = | det(U)|?,

luego el médulo del determinante es 1.

3.3.7 Autovalores y autovectores

Se dice que A es un autovalor de una matriz A y que x # 0 es uno de sus autovectores asociados,
si Ax = Ax. Para determinar los autovalores se puede tener en cuenta el teorema del rango que

afirma que el sistema (A — A1)z = 0 tiene solucién no trivial (distinta del vector 0), si y sélo



3.3. Matrices 113

si su determinante es nulo, |A — A I| = 0. Este determinante es un polinomio de grado n en A
y se denomina polinomio caracteristico; sus raices son los autovalores de A. Los autovectores
asociados a un autovalor dado forman un subespacio vectorial que se denomina autoespacio
S(A),

S(A\) ={z:Ax = Az},

y cuya dimension es my(A) = n —rango (A — X 1).

Los autovalores tienen una interpretacion geométrica sencilla. Consideremos, para simpli-
ficar, el plano, y una matriz de 2 x 2, que representa una transformacién geométrica en él.
Aplicando dicha matriz a un circulo unidad centrado en el origen, éste se transforma en una
elipse (si la matriz tiene rango 2). Los vectores que definen los ejes mayor y menor de la elipse
corresponden a los dos autovectores de la matriz. Cada uno de estos autovectores corta al
circulo en un punto. La matriz ha actuado sobre el vector que pasa por el origen y ese punto
multiplicdndolo por un niimero, éste es el autovalor correspondiente. Si las autovectores se usan
para definir una base, la matriz de la transformacién geométrica toma en dicha base una forma

diagonal, la forma mas simple posible.

Se denomina multiplicidad algebraica (mq(A)) de un autovalor A a su multiplicidad como
raiz del polinomio caracteristico, es decir, al nimero de veces que esta repetido como raiz de
dicho polinomio. Se denomina multiplicidad geométrica (mgy())) de un autovalor a la dimension
del autoespacio S(A) que tiene asociado, es decir, al nimero de autovectores linealmente inde-

pendientes que estan asociados a dicho autovalor. Se cumple siempre que n > mg, > my.

Los autovalores indican el “tamano” de una matriz ya que
Az =iz, = (Az, Az)=\*(z,z)>0

por lo que

- K
I3
y de este modo, el autovalor mide lo grande o pequena que es una matriz cuando actia sobre

un vector de su autoespacio asociado.

Al conjunto de todos los autovalores de una matriz se le denomina espectro de dicha matriz,

y al mayor de sus autovalores en valor absoluto radio espectral, que se escribe como

p(A) = max{|A|: |A—XI| =0}.

Se dice que dos matrices A y B son semejantes si existe una matriz P no singular (|P| # 0)

tal que B = P~' AP. En ese caso los determinantes de las dos matrices son iguales, |A| = |B].
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Las matrices semejantes tienen los mismos autovalores, ya que
Az =Mz, = PYAPPlo=XP 'z, = BPla=xP 'z,

cuyo autovector es y = P~! 2. La traza, el determinante y el rango de una matriz son invariantes
ante transformaciones de semejanza.

Se pueden calcular el determinante y la traza si se conocen todos sus autovalores, en concreto

n

det(A) = H)\i, tr(A) = z": i
i—1

i=1

donde Ax; = \; x;.
Los autovalores de una matriz hermitica A = A* (en C), o simétrica A = AT (en R), son
reales, ya que en ese caso
(Az,z) = (x, A% z) = (z, Ax),
por lo que con = un autovector, Ax = A=,
(Az,z) = Nz, 2) = Mz, 2) = (z,Az) = (z,\2) = Mz, z),

porlo que A=Ay XA €R.

Los autovectores de una matriz hermitica (o simétrica) correspondientes a dos autovalores

distintos son ortogonales entre si. Sean Ax; = A\;jz; y Ax; = \j ;. Se tiene que para
0= (Az;,z;) — (@i, Axj) = Ai(wi, x5) — Aj(zi, 25) = (A — Aj) (@4, 25),

ya que los autovalores son reales. Si los autovalores son distintos (i # j), es necesario que los
autovectores sean ortogonales

<xi> $j> = 0.
De esta forma los autovectores de una matriz hermitica definen un conjunto de n vectores

ortogonales entre si, es decir, cada matriz hermitica define una base ortonormal. Cqd.

Finalmente, recordaremos el teorema de Cayley-Hamilton??, que dice que toda matriz A
satisface su ecuacién caracteristica |A — ANI| = pa(A) = 0, es decir, pa(A) = 0 donde A™ =
A" A, Demostrar este resultado no es facil. Seguidamente, por completitud, presentamos dos

demostraciones interesantes del mismo.

Demostraciéon. Recordemos que un determinante se puede calcular utilizando su desarrollo

respecto a cualquiera de sus filas de la forma

n

1Bl = (=1)7* by | By
j=1

22Probado por el inglés Arthur Cayley (1821-1895) en 1857.
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Llamemos matriz de adjuntos de B, Adj(B), a la que tiene por elementos
(Adj(B))i = (=1) 7 [By],

de forma que el determinante se puede calcular como
n
1Bl = bi; (Adj(B))s,
j=1

para cualquier fila . Podemos escribir esta identidad de forma matricial

det(B) I = |B|I = BAdj(B).

Tomemos B = A — A1, lo que da
pa(N) T =(A—=XI)Adj(A—\1I). (3.1)

Los elementos (Adj(A—AT));; son polinomios en A de grado a lo sumo n—1, por ser determinantes

de matrices de (n — 1) x (n — 1). Podemos escribir estos polinomios en forma matricial, sea

Adj(A—=NI)=Bo+BiA+---+ B, \" 1
donde B; son matrices de niimeros reales (independientes de \). Si ahora escribimos

pa(N) =co+ e A+ -+ A",
la ecuacién (3.1) nos da
col +e i AN+, \"T=(A=XI)(By+Bi A+ -+ B, A" 1),
que igualando coeficientes en A conduce a las identidades matriciales
col = ABy,

61] = ABl—Bo,

CQI = ABQ—B17

Cn—1 I = A Bn—l - Bn—Za

cnl = —Bp-1,
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que buscando potencias de A nos dan

C()I = AB(),
CIA = A/42B1—14307

02A2 = A3B2 —AzBl,

Cn—1 An_l = A" Bn—l - An_l Bn—27

cn A" = —A"B,_1,
que sumadas en columnas nos da la expresiéon (matricial) deseada

pa(A) =col+c1 A+ A+ +¢, A" =0.

Otra demostracion. Podemos utilizar el “truco del determinante”. El polinomio caracte-

ristico pa(A) = |A — A I| = |B()\)| se puede calcular desarrollando su primera fila de la forma,

pa(N) = B =Y (=1)*" (ay; — b)) [Bii(V)],

Jj=1

donde el determinante del menor (—1)71|By;()\)| = p;(\) es un polinomio de grado (a lo sumo)

n — 1. De esta forma

pa(A) =p1(N)(a11 — A) + p2(A)(a12) + - -+ + pn(A)(a1n).

El “truco del determinante” consiste en recordar que en un primer curso de Algebra Lineal
se demostro que si desarrollamos un determinante a partir de una fila dada, pero utilizando los

menores de otra, éste es automaticamente cero. De esta forma obtenemos las expresiones

0 =pi(A)(az1) +pa(X)(az2 — X) + - - + pp(X)(azn),

0 =p1(A)(an1) +p2(M)(an2) + -+ pn(A)(ann = A).
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Ahora bien, si evaluamos formalmente esta serie de expresiones en A,

pa(A) = pi(A)(annl —A) +pa(A)(ar2 1) + -+ pu(A)(a1n I).

0 = pi(A)(aar I) +p2(A)(aza I — A) + - + pn(A) (a2, I),

0 = pl(A)(amI)—i—pg(A)(anQI)—i—--'—i—pn(A)(a,mI—A),

multiplicamos cada una de estas expresiones matriciales por cada uno de los vectores unitarios

(en columnas) de la base candénica de R™, sea {e'}, obtenemos

pa(A)e' = pi(A)(arre' —Ael) +pa(A)(arzel) + -+ pa(A)(aineh).

0e? =0 = pi(A)(aze®) +p2(A)(aze* — Ae®) + -+ pu(A)(azn €?),

0e"=0 = pi(A)(an1e™) +p2(A)(anze™) + -+ pu(A)(ann e™ — Ae™),

y sumamos todas estos ecuaciones por columnas, recordando que Ae! es la primera columna
de A, obtenemos que son nulos los factores que multiplican a los p;(4) =0, 1 < j < n. Por
ello pa(A)e! = 0. Permutando ciclicamente los vectores de la base canénica es obvio que

pa(A)e? =0, ..., pa(A)e” =0, con lo que pa(A) = 0 idénticamente.

3.3.8 Formas candnicas de matrices

La semejanza entre matrices permite definir una serie de formas canénicas para la escritura de

las mismas.

1. Forma normal de Schur. Para toda matriz A existe una matriz unitaria U, con U~ =
U*, tal que T = U* AU es una matriz triangular. El producto de los elementos de la
diagonal de T es igual al determinante de A, es decir, |A| = |T'| =[], txx. El teorema de

la forma normal de Schur serd demostrado en los ejercicios resueltos.

2. Descomposiciéon en ejes principales. La aplicacién de la forma normal de Schur a
una matriz hermitica A, nos indica que existe una matriz unitaria U tal que U* AU = A
es una matriz diagonal, ya que la forma normal de Schur garantiza que U* AU = A es

triangular superior, y que (U* AU)* = A* es triangular inferior, pero como A es hermitica,
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(U*AU)* =U* AU, luego A es diagonal. Los vectores columna (o fila) de U se denominan

ejes principales de la matriz hermitica A, y permiten diagonalizarla.

Los elementos en la diagonal de la matriz A son los autovalores de A. También esto es
facil de demostrar. Podemos escribir la matriz U mediante sus vectores columna, sean u;,
U = [uj,us,...,u,]. Como U es unitaria, sus vectores columna son ortonormales, y como

AU =UU* AU = U A se puede escribir

A 0O - 0

o en la notacion de columnas,
[Aul,AUQ, e ,Aun] = [)\1 ul,)\Q Uy . . . ,)\nun],

es decir, Au; = A\; u;.

. Descomposicion en valores singulares. Toda matriz A € M, «,, se puede factorizar

en la forma

A=VDU,

donde V € Myxm v U € My« son matrices unitarias y D € M,,x, €s una matriz
diagonal. Los r = rango (A) valores u; > 0 en la diagonal de la matriz D se denominan
valores singulares, que coinciden con las raices cuadradas de los valores propios de la
matriz A* A (que es hermitica), es decir, A* Az; = p? z;. La demostracién del teorema
de la descomposicién de en valores singulares de una matriz (rectangular) aparece en los

ejercicios resueltos de este tema.

Los valores singulares se pueden interpretar geométricamente. Si A es una transformacién
lineal de un espacio euclideo, entonces convierte la esfera unidad en ese espacio en un
elipsoide de otro espacio euclideo. Los valores singulares son las longitudes de los semi-ejes
de este elipsoide. Las matrices V' y U nos dan informacién sobre la posicion de los ejes y

sobre los vectores del primer espacio que se transforman en éstos, respectivamente.

La aplicacién mas importante de la descomposicién en valores singulares es la seleccién de
los términos dominantes (cuyos valores singulares son los més grandes) en una aplicacién
lineal o matricial. Es decir, permite calcular aproximaciones en un subespacio vectorial de

una aplicacion lineal en el correspondiente espacio vectorial.
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4. Forma candnica de Jordan. Toda matriz cuadrada A de orden n X n es semejante a una
matriz diagonal por bloques que tiene bloques de Jordan J(\;, n;) sobre la diagonal. Sean
A1, ..., A; los k autovalores distintos de A con multiplicidades geométricas y algebraicas
Mgi ¥ Mai, ©=1, ..., k, respectivamente. Entonces para cada autovalor \; existen my;

(@)

nimeros naturales n;”, j= 1, 2, ... mg;, (tinicos salvo por su orden), tales que

Mgq

E : (@)
Meq; = n] ;
Jj=1

y una matriz no singular P (que en general no es tinica) tal que, J = P! A P toma la

forma (canénica de Jordan)
Jg, ) 0 0
0

T, )

J(Ak? ngk))

0

k
0 0 J(Aknih))

que se puede escribir como J = D+ N, donde D es una matriz diagonal y N es una matriz

nilpotente N™ = 0. De hecho cada bloque de Jordan toma la forma

T ") = A Lo+ N,

()

donde In@) es la matriz identidad en ./\/ln@)xn(i) y Nn(“ es nilpotente, (Nn(i))"j . Escrito
j L j j

en forma matricial se tiene

Ai 10 0 0

0 N 1 0 0

IO n(i)) _ 0 0 N\ 0 0
LR

0 0 O A1

0 0 O 0 N
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Los polinomios caracteristicos de cada uno de los bloques de Jordan J(\;, ngl)) son

(1) i
i =N =T ) = a1,

y se denominan divisores elementales.

3.3.9 Normas de matrices

Podemos definir una norma matricial de la misma forma que se define una vectorial, dado que las
matrices forman un espacio vectorial. Sin embargo, en ese caso, no sabemos como se comporta
la norma ante un producto de matrices. Por ello, conviene utilizar normas matriciales que
sean submultiplicativas, es decir, tales que ||A B|| < ||A]| [|B||. Atun asi, no hay posibilidad de
relacionar directamente estas normas matriciales con alguna norma vectorial, algo muy 1util en
muchos casos. Es por ello que usualmente se utilizan normas matriciales subordinadas a una

norma vectorial, que estdn ligadas directamente con ésta y permiten la desigualdad ||Az| <
A ]

Dada una norma vectorial || - ||, se define su norma matricial asociada o subordinada como
A ]|
[A[l = sup :
Izl0 117l

Haciendo u = z/||z||, se obtiene esta otra definicién equivalente a la anterior

[All = sup [[Aul].
llull=1
Presentaremos seguidamente varios ejemplos de normas matriciales que utilizaremos a lo

largo de este curso.

e Norma matricial de Frobenius (o de Schur): Es un ejemplo de norma matricial, que
se puede demostrar que no estd asociada o subordinada a ninguna norma vectorial, y se

define como
1/2

) = Al = {303 Jayl

Aunque no es una norma subordinada, si es submultiplicativa y estd relacionada con la
norma vectorial euclidea, ya que se tiene que

2

Az => "1 aiz|
i

7
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que aplicando la desigualdad de Cauchy-Schwarz, siendo a;. el i-ésimo vector fila de A, se

deduce
2

Yo aizzs| = Wai, @) < llapl )3 = { D lail | | D l=il ]
j j

J

y por tanto

TAZIE <Y lagP | [ D1l | = | D12l { D0 layl?

J J J
_ 2 2
= F(A)" [|[]3-
Sin embargo, la norma de Frobenius es muy poco utilizada en las aplicaciones practicas.

e Norma matricial uno: La norma matricial asociada a la norma vectorial uno, se deduce

facilmente

Azl =D 1> aga| <D0 lag] ]
j i

i

=0 aijl el =) {2l Y ais] | <max (D agl ) Y |l
P j i ! i j
por lo que

Al < mj‘o\XZ |aij.
[

Hemos obtenido una cota superior, ahora tenemos que demostrar que es éptima y co-
incide con el supremo, para lo que bastarda demostrar la igualdad para algunos vectores
convenientemente elegidos. Sean éstos los vectores base e; para los que se verifica
1 Aejll = laisl = laijllle;ll,
i i
por lo que la norma matricial uno de A es el maximo de la sumas por columnas de los
valores absolutos de sus elementos. Por esta razén también se conoce como norma del

méximo por columnas?3.

e Norma matricial infinito: La norma matricial asociada a la norma vectorial del méximo

o infinito, se obtiene de forma del todo similar. Operando

[ A z[loc = max > aijaj| < m?XZ |aij| |z;]
i i

23Una regla sencilla permite recordar esta definicién, 1 corresponde a vertical |, es decir, a suma por columnas.
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<max | Y Jai;| max|z;| | = max |z;| max ) |ay,
? - J J ? -
J J

por lo que

[ Ao < mgXZ\@ij\-
i

Para demostrar la igualdad basta considerar el vector x = (£1,...,£1), con |[z]c = 1, ¥
observar que
1Az ]| 0o = mazi(Y_ +ay) = mazi (Y +aij) ||z oo,
J J
por lo que eligiendo de forma adecuada el signo + 6 - en cada componente de x se obtiene
el resultado buscado, y por lo tanto la norma infinito de A coincide con el maximo de la
sumas por filas de los valores absolutos de sus elementos. A esta norma también se la

llama norma del méximo por filas?%.

Norma matricial dos: La norma matricial asociada a la norma vectorial euclidea o
norma dos no es la norma de Frobenius, como ya hemos indicado, pero se puede determinar

facilmente siguiendo el siguiente proceso. Como
|AZ|5 = (Az, Az) = (z, A" Ax),

es necesario estudiar el producto A* A que es una matriz hermitica ((A* A)* = A* A) y, por
tanto, sus autovalores A; son reales y sus n autovectores definen una base ortonormal, {u;}.
Estos autovectores coinciden con las columnas de la matriz unitaria que la transforma en
su forma canénica de Schur, que es diagonal. Todo vector x se puede escribir en dicha
base de autovectores como

T = Z(x,uj) uj = ij uj,
J

J
y de esta forma
A3 = (2, A" Ax) = Y wiwi, y widjug) =Y Y N Trag (ui, uy),
i j i g
que aplicando (u;,u;) = d;; nos da

A3 =YXl <Y N2 < Amaw 12113,
i i

24Una regla sencilla permite recordar esta definicién, oo corresponde a horizontal —, es decir, a suma por filas.
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donde
Amaz = max |Aj| = p(A* A).
J

Por lo tanto,
|A]13 < p(A* A).

Ahora bien tomando el vector x igual a un autovector asociado al mayor autovalor Ap,qz,

se obtiene la igualdad

[Alla = v/ p(A* A).

Es interesante notar que para cualquier norma matricial asociada a una norma vectorial se
cumple
p(A) < ||All,

ya que para todos los autovalores A de A se tiene
Al < Al
Para verificarlo basta tomar un autovector x, para el que
[Az]| = [|Az| = [A[ll=]] < [JA[] [l
De hecho se puede probar que el radio espectral satisface la ecuacién

p(A) = inf 1AL,

en la que se toma el infimo sobre todas las normas matriciales subordinadas. De esta forma,
si p(A) < 1 entonces sabemos que existe alguna norma matricial subordinada tal que || A/« =

p(A) < 1, aunque determinar dicha norma en la practica es muy dificil.

Se puede demostrar que para toda matriz y para todo € > 0, existe una norma vectorial

| - llk tal que la norma matricial || - ||k inducida por esta norma vectorial es tal que
[Allx < p(A) + e

Asi, el radio espectral es el infimo de todas las normas matriciales subordinadas de A. La

demostracién se encuentra en la seccién 4.6 de [3]
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