The eXtensible Tutor Architecture: A New
Foundation for ITS

Goss NUZZO-JONES, Jason A. WALONOSKI, Neil T. HEFFERNAN, Tom LIVAK
Worcester Polytechnic Institute
100 Institute Rd, Worcester, MA 01609
(508) 831-5569
goss@wpi.edu, jwalon@wpi.edu, nth@wpi.edu, tomlivak@alum.wpi.edu

Abstract. The eXtensible Tutor Architecture (XTA) was designed as a platform for
creating and deploying many types of Intelligent Tutoring Systems across many
different platforms. The XTA presently has support for state graph pseudo-tutors and
JESS model-tracing cognitive tutors, in both a client and server context. Supported
interfaces are presently Java Swing / WebStart and HTML. The XTA was designed
with future development in mind, allowing easy specification of new tutor types,
tutoring strategies, and interface layers. It has been used as the foundation of the
Assistments Project, a wide scale server based ITS deployment. The Assistments
Project is on track to provide ITS content to 100,000 students in the state of
Massachusetts.

1. Introduction & Background

This research was conducted to develop a scalable, stable framework for deploying
Intelligent Tutoring Systems (ITS) of many types to a variety of platforms. The term
Intelligent Tutoring Systems covers a wide range of possible computer-based tutors, from
cognitive model tracing tutors [3], constraint-based tutors [10], to pseudo-tutors. Pseudo-
tutors are simplified cognitive models based on state graphs. The state graphs of pseudo-
tutors are finite graphs with each node representing a state of the interface, and each arc
representing an action made by a student. Student actions trigger transitions in the graph,
and the current state of the problem is represented by the graph. Pseudo-tutors are
behaviorally equivalent to rule-based tutors [1]. Our research attempted to support all these
types of tutors, but provide a clear path for future development and customization.

Additionally, our research was dependent on the needs of the Assistments Project.
This project required that we be able to support the full range of tutors, provide stability and
scalability, and deliver tutoring content to a host of clients — either rich client applications
such as Java WebStart, or thin light-weight HTML clients (possibly enriched by scripts and
Macromedia Flash™ ). To accomplish these client interface goals, we were required to
follow software engineering practice by cleanly separating the logic and presentation of
tutors.

The success of ITS in general is well known, demonstrating useful learning effects
[8]. There have been ITS that have been deployed on a wide scale [8], but they suffered
from some limitations, such as a lack of centralized logging, upgrade difficulties, and tutor
strategy inflexibility. It has been shown that centralized logging of student actions in
databases for experimental analysis is valuable [11]. Our research sought to address these
issues, as well as provide a rich feature base for future development of all tutor types.

Other projects [7] have sought to provide a rapid development environment and
stable runtime for deploying individual tutoring applications. However, this approach also
has shortcomings in terms of wide deployment and scalability, as well as separation of logic
and presentation. We attempted to resolve these problems by creating an environment that
can support many tutoring strategies (including those mentioned above), operate as both a



client and scaleable server application, provide logging capabilities for student analysis, and
remain highly extensible for future development. The results of this research were used as
the deployment mechanism for the Assistments Project, a mathematics ITS project based at
Worcester Polytechnic Institute and Carnegie Mellon University [12].

1.1 The eXtensible Tutor Architecture

The result of our research is a framework that we refer to as the eXtensible Tutor
Architecture (XTA). This framework controls the interface and behaviors of our intelligent
tutoring system via a collection of modular units. These units conceptually consist of a
curriculum unit, a problem unit, a strategy unit, and a logging unit. Each conceptual unit
has an abstract and extensible implementation allowing for evolving tutor types and content
delivery methods.

The XTA is represented by the diagram given in Figure 1, illustrating the actual
composition of the units. This diagram shows the relationships between the different units
and their hierarchy. Within each unit, the XTA has been designed to be highly flexible in
anticipation of future tutoring methods and interface layers. This was accomplished through
encapsulation, abstraction, and clearly defined responsibilities for each component. These
software engineering practices allowed us to present a clear developmental path for future
components. That being said, the current implementation has full functionality in a variety
of useful contexts.

Logging Unit
Curriculum (Listens for
Events)
&
A&
Section Section

Problem(s)

Figure 1 - Abstract Unit Diagram

1.1.1 Curriculum Unit

The curriculum unit can be conceptually subdivided into two main pieces: the curriculum
itself, and sections. The curriculum is composed of one or more sections, with each section
containing problems or other sections. This recursive structure allows for a rich hierarchy
of different types of sections and problems.

Progress within a particular curriculum, and the sections of which is it composed,
are stored in a progress file — an XML meta-data store that indexes into the curriculum and
the current problem (one progress file per student per curriculum).



The section component is an abstraction for a particular listing of problems. This
abstraction has been extended to implement our current section types, and allows for future
expansion of the curriculum unit. Currently existing section types include “Linear”
(problems or sub-sections are presented in linear order), “Random” (problems or sub-
sections are presented in a pseudo-random order), and “Experiment” (a single problem or
sub-section is selected pseudo-randomly from a list, the others are ignored). Plans for
future sections types include a “Directed” section, where problem selection is directed by
the student’s knowledge model [2].

1.1.2 Problem Unit

The problem unit represents a problem to be tutored, including questions, answers, and
relevant knowledge-components required to solve the problem. For instance pseudo-tutors
are a hierarchy of questions connected by correct and incorrect answers, along with hint
messages and other feedback. Each of these questions is represented by a problem
composed of two main pieces: an interface and a behavior.

The interface definition is interpreted by the runtime and displayed for viewing and
interaction to the user. This display follows a two-step process, allowing for easy
customization to platform and interface specifications. The interface definition consists of
“high-level” interface elements (“widgets”), which can have complex behavior
(multimedia, spell-checking text fields, algebra parsing text fields). These “high-level”
widgets have a representation in the runtime composed of “low-level” widgets. “Low-
level” widgets are widgets common to many possible platforms of interface, and include
text labels, text fields, images, radio buttons, etc. These “low-level” widgets are then
consumed by an interface display application. Such applications consume “low-level”
widget XML, and produce an interface on a specific platform. At present we have
implemented a Java Swing interface display application, and a HTML inferface display
application that runs through a J2EE container. Because of our requirement to support
HTML thin clients, our interface widget set is somewhat limited compared to another
widget kit, such as Java Swing. However, the event model (described below) and
relationship of “high-level” to “low-level” widgets allow a significant degree of interface
customizability even with the limitations of HTML. Other technologies, such as JavaScript
and streaming video are presently being used to supplement our interface standard. Future
interface display applications are under consideration, such as Unreal Tournament for
Warrior Tutoring [9] (an entirely different domain, unrelated to our mathematics project),
and Macromedia Flash™ for rich content definition.

The behaviors for each problem define the results of actions on the interface. An
action might consist of pushing a button or selecting a radio button. Examples of behavior
definitions are state graphs, cognitive model tracing, or constraint tutoring, defining the
interaction that a specific interface definition possesses. To date, state graph or pseudo-
tutor definitions have been implemented in a simple XML schema, allowing for a rapid
development of pseudo tutors [13]. We have also implemented an interface to the JESS
(Java Expert System Shell) production system, allowing for full cognitive model behaviors.
A sample of the type of cognitive models we would wish to support is outlined in Jarvis et
al [6]. The abstraction of behaviors allows for easy extension of both their functionality and
by association their underlying XML definition.

Upon user interaction, a two-tiered event model is used to respond to that
interaction. These tiers correspond to the two levels of widgets described above, and thus
there are “high-level” actions and “low-level” actions. When the user creates an event in the
interface, it is encoded as a “low-level” action and passed to the “high-level” interface
widget. The “high-level” interface widget may (or may not) decide that the “low-level”



action is valid, and encode it as a “high-level” action. An example of this is comparing an
algebra text field (scripted with algebraic equality rules) with a normal text field by
initiating two “low-level” actions such as entering “3+3” and “6” in each one. The algebra
text field would consider these to be the same “high-level” action, whereas a generic text
field would consider them to be different “high-level” actions. “High-level” actions are
processed by the interpreted behavior and the interface is updated depending on the
behavior’s response to that action. The advantage of “high-level” actions is that they allow
an interface widget or content developer to think in actions relevant to the widget, and
avoid dealing with a large number of trivial events.

1.1.3 Strategy Unit

The strategy unit allows for high-level control over problems and provides flow control
between problems. The strategy unit consists of tutor strategies and the agenda. Different
tutor strategies can make a single problem behave in different fashions. For instance, a
scaffolding tutor strategy arranges a number of problems in a tree structure, or scaffold.
When the student answers the root problem incorrectly, a sequence of other problems
associated with that incorrect answer is queued for presentation to the student. These
scaffolding problems can continue to branch as the roots of their own tree. It is important to
note that each problem is itself a self-contained behavior, and may be an entire state graph /
pseudo-tutor, or a full cognitive tutor.

Other types of tutor strategies already developed include message strategies,
explain strategies, and forced scaffolding strategies. The message strategy displays a
sequence of messages, such as hints or other feedback or instruction. The explain strategy
displays an explanation of the problem, rather than the problem itself. This type of tutoring
strategy would be used when it is already assumed that the student knew how to solve the
problem. The forced scaffolding strategy forces the student into a particular scaffolding
branch, displaying but skipping over the root problem.

The concept of a tutor strategy is implemented in an abstract fashion, to allow for
easy extension of the implementation in the future. Such future tutor strategies could
include dynamic behavior based on knowledge tracing of the student log data. This would
allow for continually evolving content selection, without a predetermined sequence of
problems.

This dynamic content selection is enabled by the agenda. The agenda is a
collection of problems arranged in a tree, which have been completed or have been queued
up for presentation. The contents of the agenda are operated upon by the various tutor
strategies, selecting new problems from sections (possibly within sections) within a
curriculum to append and choosing the next problem to travel to [4].

1.1.4 Logging Unit

The final conceptual unit of the XTA is the logging unit with full-featured relational
database connectivity. The benefits of logging in the domain of ITS have been
acknowledged, significantly easing data mining efforts, analysis, and reporting [11].
Additionally, judicious logging can record the data required to replay or rerun a user’s
session.

The logging unit receives detailed information from all the other units relating to
user actions and component interactions. These messages include notification of events
such as starting a new curriculum, starting a new problem, a student answering a question,
evaluation of the students’ answer, and many other user-level and framework-level events.



Capturing these events has given us an assortment of data to analyze for a variety of
needs. User action data captured allows us to examine usage-patterns, including detection
of system gaming (superficially going through tutoring-content without actually trying to
learn) [4]. This data also enables us to quickly build reports for teachers on their students,
as well as giving a complete trace of student work. This trace allows us to replay a user’s
session, which could be useful for quickly spotting fundamental misunderstandings on the
part of the user, as well as debugging the content and the system itself (by attempting to
duplicate errors).

The logging unit components are appropriately networked to leverage the benefits
of distributing our framework over a network and across machines. The obvious advantage
this provides is scalability.

1.1.5 System Architecture

The XTA provides a number of levels of scalability. To allow for performance scalability,
care was taken to ensure a low memory footprint. It is anticipated, based on simple unit
testing, that thousands of copies of the XTA could run on a single machine. More
importantly, the individual units described above are separated by network connections (see
Figure 2). This allows individual portions of the XTA to be deployed on different
computers. Thus, in a server context, additional capacity can be added without software
modification, and scalability is assured.

The runtime can also transform with little modification into a client application or a
server application instantiated over a web server or other network software launch, such as
Java WebStart. Both types of applications allow for pluggable client interfaces due to a
simple interface and event model, as described in the interface unit. A client side
application contains all the network components described above (Figure 2) as well as
content files required for tutoring, and has the capacity to contact a remote /ogging unit to
record student actions. Running the XTA in a server situation results in a thin client for the
user (at present either HTML or Java WebStart), which operates with the interface and
event model of the server. Thus the server will run an instance of the XTA for every
concurrent user, illustrating the need for a small memory footprint. The XTA instances on
the server contact a centralized logging unit and thus allow for generated reports available
through a similar server [4].

2. Methods and Results

The XTA has been deployed as the foundation of the Assistments Project [12]. This project
provides mathematics tutors to Massachusetts students over the web and provides useful
reports to teachers based on student performance and learning. The system has been in use
for a year, and has had nearly 1000 total users. These users have resulted in over 1.3 million
actions for analysis and student reports [4]. To date, we regularly support a live
concurrency of approximately 50 users from Massachusetts schools. Additionally, during
load testing, a single machine can serve over 500 simulated clients from a single J2EE /
database server combination. The primary server used in this test was a Pentium™ 4 with 1
gigabyte of RAM running Gentoo Linux. Our objective is to support 100,000 students
across the state of Massachusetts. 100,000 students divided across 5 school days would be
20,000 users a day. Massachusetts’s schools have 7 class periods, which would be roughly
equivalent to supporting 3,000 users concurrently. This calculation is clearly based on
estimations, and it should be noted that we have not load tested to this degree.

Tutors that have been deployed include scaffolding state diagram pseudo-tutors with
a variety of strategies (see Figure 3 for a pseudo-tutor in progress). We have also deployed



a small number of JESS cognitive tutors for specialized applications. It should be noted that
the tutors used in the scaling test described above were all pseudo-tutors, and it is estimated
that a much smaller number of JESS tutors could be supported.

B
70°

130°
A C D

Use the figure above to answer the questions.

70
What is the measure of angle A?
Hmm, no.

Let me break this down for you.
First you need to find the measure of angle BCA . What do vou think it is?

Submit

Angles BCD and BCA are supplementary. That means their sum is 180 degrees.

Done Hint More

Figure 2 - Pseudo-tutor in Progress

In summary, the launch of the XTA has been successful. The configuration being
used in the Assistments project is a central server as described above, where each student
uses a thin HTML client and data is logged centrally. The software has been considered
stable for several months, and has been enthusiastically reviewed by public school staff.
Since September 2004, the software has been in use at least three days a week over the web
by a number of schools across central Massachusetts. This deployment is encouraging, as it
demonstrates the stability and initial scalability of the XTA, and provides significant room
to grow.

3. Conclusions

The larger objective of this research was to build a framework that could support 100,000
students using ITS software across the state of Massachusetts. We are encouraged by our
initial results from the Assistments Project, which indicate that the XTA has graduated
from conceptual framework into a usable platform (available at http://www.assistment.org).
However, this test of the software was primarily limited to pseudo-tutors, though model-
tracing tutors are supported. One of the significant drawbacks of model-tracing tutors in a
server context is the large amount of resources they consume. This resource consumption
could be prohibitive in scaling to the degree that is described in our results without
additional measures such as load balancing. Another partial solution to this might be the
support of constraint-based tutors [10], which could conceivably take fewer resources, and
we are presently exploring this concept. These constraint tutors could take the form of a
simple JESS model (not requiring an expensive model trace), or another type of scripting
language embedded in the state-graph pseudo-tutors.

Related research in our lab has yielded web-based systems for teachers to create and
assign curriculums to their students, generate numerous reports on their students’ strengths
and weaknesses [4], as well as an application for rapidly authoring ITS content for use with
the XTA [13]. Research and work in all of these areas is ongoing. Overall analysis of the
system and its learning effects are covered in [12].



3.1 Future Work

Other planned improvements to the system include dynamic curriculum sections, which
will select the next problem based on the student’s performance (calculated from logged
information). Similarly, new tutor strategies could alter their behavior based on knowledge
tracing of the student log data. Also, new interface display applications are under
consideration, using the interface module API. As mentioned, such interfaces could include
Unreal Tournament™ (for applications such as Warrior Tutoring and other domains),
Macromedia Flash™, or a Microsoft NET™ application. All the components of the XTA
were implemented in a modular and highly extensible way, so that adding new functionality
is programmatically quite easy. We believe the customizable nature of the XTA could
make it a valuable tool in the continued evolution of Intelligent Tutoring Systems.

References

[1] Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

[2] Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons
learned. The Journal of the Learning Sciences, 4 (2), 167-207.

[3]1 Anderson, J.R., & Pelletier, R. (1991). A development system for model-tracing tutors. In
Proceedings of the International Conference of the Learning Sciences, 1-8.

[4] Feng, Mingyu, Heffernan, N.T. (2005). Informing Teachers Live about Student Learning: Reporting
in the Assistment System. Submitted to the 12" Annual Conference on Artificial Intelligence in
Education 2005, Amsterdam

[5] Heffernan, N. T. & Croteau, E. (2004) Web-Based Evaluations Showing Differential Learning for
Tutorial Strategies Employed by the Ms. Lindquist Tutor. Proceedings of 7th Annual Intelligent
Tutoring Systems Conference, Maceio, Brazil. Pages 491-500.

[6] Jarvis, M., Nuzzo-Jones, G. & Heffernan. N. T. (2004) Applying Machine Learning Techniques to
Rule Generation in Intelligent Tutoring Systems. Proceedings of 7th Annual Intelligent Tutoring
Systems Conference, Maceio, Brazil. Pages 541-553

[7] Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. & Hockenberry, M. (2004) Opening the
Door to Non-Programmers: Authoring Intelligent Tutor Behavior by Demonstration. Proceedings of
7th Annual Intelligent Tutoring Systems Conference, Maceio, Brazil. Pages 162-173

[8] Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to
school in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

[9] Livak, T., Heffernan, N. T., Moyer, D. (2004) Using Cognitive Models for Computer Generated
Forces and Human Tutoring. /3th Annual Conference on (BRIMS) Behavior Representation in
Modeling and Simulation. Simulation Interoperability Standards Organization. Arlington, VA.
Summer 2004

[10] Mitrovic, A., & Ohlsson, S. (1999) Evaluation of a Constraint-Based Tutor for a Database Language.
Int. J. on Artificial Intelligence in Education 10 (3-4), pp. 238-256.

[11]Mostow, J., Beck, J., Chalasani, R., Cuneo, A., & Jia, P. (2002¢c, October 14-16). Viewing and
Analyzing Multimodal Human-computer Tutorial Dialogue: A Database Approach. Proceedings of
the Fourth IEEE International Conference on Multimodal Interfaces (ICMI 2002), Pittsburgh, PA,
129-134.

[12]Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Aniszczyk, C., Choksey, S., Livak, T.,
Mercado, E., Turner, T.E., Upalekar. R, Walonoski, J.A., Macasek. M.A., Rasmussen, K.P. (2005)
The Assistment Project: Blending Assessment and Assisting. Proceedings of the 1 2" Annual
Conference on Artificial Intelligence in Education 2005, Amsterdam

[13] Turner, T.E., Macasek, M.A., Nuzzo-Jones, G., Heffernan, N..T, Koedinger, K. (2005). The
Assistment Builder: A Rapid Develoment Tool for ITS. Poster, 1 2™ Annual Conference on Artificial
Intelligence in Education 2005, Amsterdam



