
FTMGS: Fair Traceable Multi-Group Signatures

User Manual (DRAFT)

Version 0.2

Contents

1 Introduction 3

2 Operational Model 4

3 Sequence Diagrams 5
3.1 Group Setup . 5
3.2 Join New Member . 6
3.3 Sign / Verify . 6
3.4 Open / Check . 7
3.5 Reveal / Trace . 7

4 Implementation: Features and Security Issues 7

5 Performace 9

6 Installing the FTMGS Library 10

7 Compiling and Linking with the FTMGS Library 11

8 Abstract Data Types and Function API 11
8.1 Miscellaneous Data Types . 11
8.2 Abstract Data Types and Function API 12
8.3 Random Numbers . 13
8.4 Group Creation . 15
8.5 Joining New Members . 18
8.6 Signing and Verifying . 21
8.7 Signature Opening . 23
8.8 Member Tracing . 24
8.9 Claiming Authorship . 25
8.10 Linking Signatures . 27
8.11 Hashing . 29
8.12 Data Buffer . 30
8.13 ASN.1 Conversion of Data Structures 30

9 ASN.1 Definition of FTMGS Data Structures 32
9.1 Size of ASN.1 DER Encoding of FTMGS Data Structures 32
9.2 ASN.1 Definition of FTMGS Data Structures 33

10 Usage Example 38
1

Copyright (c) 2012 Vicente Benjumea, University of Malaga, Spain

Redistribution and use in source (LaTeX) and ’compiled’ forms (SGML, HTML, PDF,
PostScript, RTF and so forth) with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code (LaTeX) must retain the above copyright notice, this
list of conditions and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF,
PostScript, RTF and other formats) must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

2

1 Introduction

The FTMGS library implements the Fair Traceable Multi-Group Signatures
scheme as defined in [1].

Fair Traceable Multi-Group Signatures (FTMGS, pronounced: fat-mugs),
is a primitive that supports anonymity with extended concerns that rise in
realistic scenarios. It can be regarded as a primitive that has the flavor of
anonymous signatures with various revocations but with a refined notion of
access control (via multiple groups) and thus supporting anonymous activities
in a fashion similar to anonymous credential systems. The main issues that
make this primitive suitable to various trust relationships are:

• The group manager (GM) creates and manages a group with the help
of some Fairness Authorities (FA), which are only involved when special
circumstances arise.

• Users (U) join a group, and become members (M), if the group manager
(GM) allows them to do so.

• Members (M) issue group signatures (on behalf of the whole group) which
can be verified with the group public key (GPK). These group signatures
provide the guarantee the their issuers are indeed members of the group,
but they are anonymous and unlinkable, in the sense that there is no
direct way to identify which member issued a given signature, nor it is
even possible to link different signatures as having been issued by the
same member of the group.

• Belonging to a group usually implies that members fulfill the set of privi-
leges required by the group manager (GM) to join the group.

In authorization and access control scenarios, issuing a group signature is
a suitable way to prove, in an anonymous and unlinkable way, that the
issuer fulfills a set of privileges required by the GM to join the group.

Sometimes, in authorization scenarios, a user must simultaneously prove
that is a member of several groups at tehsame time, and thus she fulfills
the privileges to belong to all these groups, therefore she must issue group
signatures for all of them, and at the same time she must prove that all
these signatures were issued by the same real anonymous user, that is,
they have not been issued by a collusion of different users belonging to
different groups.

• It includes multi-group features to guarantee that several signatures have
been issued by the same anonymous user with no detriment of users
anonymity. This allows limited local linkability most useful in many cases
(linking is user controlled).

• It includes a mechanism to dissuade the group members from sharing their
private membership keys. This is very useful in increasing the incentive
for better access control to anonymous credentials.

• In the undesirable case of abuse of anonymity, the group manager in col-
laboration with the fairness authorities provide a mechanism to identify

3

which member of the group actually issued a given group signature, break-
ing in this way with the anonymity of the misbehaved user.

Note that this breaking of anonymity can only be done if all the fairness
authorities agree on doing so, because there are enough circumstances that
motivate such action. However, if any of the fairness authorities thinks
there are not enough reasons for that, then anonymity can not be broken.
In this way, the fairness authorities become the guarantee that anonymity
will be only broken when there are enough reasons to do so.

• On the other way, if a member is under suspicion, it is possible to obtain,
again if the fairness authorities agree, a member tracing key that allows
to identify the signatures that were issued by such a member of the group
under suspicion. Again, the fairness authorities become the guarantee
that anonymity will be only broken when there are enough reasons to do
so.

• This previous mechanism can also be used to revoke membership from the
group for a given member.

• Note that a single fairness authority alone cannot do the opening or re-
vealing. In this way, a users sensitive information can be guaranteed only
to be disclosed when there exist enough reasons.

2 Operational Model

The group manager creates a group with the collaboration of designated fairness
authorities. A user, that has been authorized by some external procedure, is
able to join the group by engaging in an interactive protocol with the group
manager. The external users authentication can be based on her identity (DSA
signature) or even an anonymous authentication supported by this new prim-
itive (FTMGS signature). At the end of the procedure, the group manager
gets some sensitive data regarding the new member (i.e. join transcript with
authentication information), and the user gets a membership private key that
enables her to issue signatures on behalf of the group.

When a user wants to carry out a transaction with a server, she sometimes
has to generate a proof to show she has the required privilege. This proof
usually implies that she belongs to several groups. In this case, she issues
suitable signatures for the involved groups, and establishes a link among them
to guarantee that they have been issued by the same single anonymous user.
This proof is anonymous and unlinkable.

Under critical circumstances, fairness authorities and the judge open a sig-
nature to identify a malicious user. If necessary, they may also reveal her tracing
trapdoor so that tracing agents, using the trapdoor, trace all the transactions
she issued.

The user owns a single master key, and this key is embedded, when joining
to the group, in every membership private key of hers. Because this master
key is actually the private key corresponding to her public key (e.g., her DSA
public key published via the PKI), she is dissuaded from sharing her membership
private keys. Moreover, this binding also guarantees that different users have
different master keys.

4

This master key provides a common nexus among all membership private
keys that belong to each user, so that she can link any two signatures of hers by
proving that the signatures have been issued by membership private keys into
which the same master key is embedded. This capability of linking helps our
scheme to enjoy multi-group features. Note that even when the user joins the
group by means of an anonymous authentication, the join procedure forces her
to use the same master key, so that the relationship between her master key
and public key still holds.

The group is created by the collaboration among the group manager and the
fairness authorities. The GM is able to join new members. Fairness authorities
are also involved in the setup process, in such a way that the keys related to
opening and revealing are distributed among the fairness authorities. Therefore,
opening a signature or revealing a member tracing key requires the agreement
and participation of fariness authorities.

Opening a signature is a matter of the distributed decryption, by the fairness
authorities, of part of the signature. Likewise, revealing a member tracing key
is also a matter of the distributed decryption, by the fairness authorities, of the
encrypted member’s tracing key.

Finally, the join transcript also holds some non-repudiable proofs that allow
to verify the integrity of the record, making the scheme robust against some
kind of database manipulation.

3 Sequence Diagrams

3.1 Group Setup

◦
/|\
/\

GM

◦
/|\
/\

FA1

· · ·
◦
/|\
/\

FAn

◦
/|\
/\

FA0

FA0-Setup

< <
〈 fapk 〉

FAj-Setup · · · FAj-Setup

GM-Init-Setup
〈 gpk 〉

> >

FAj-GrSetup · · · FAj-GrSetup

<
〈 fa1pk 〉

GM-GrSetup

...
. . .

<
〈 fanpk 〉

GM-GrSetup

5

Check GPK

◦
/|\
/\

Any

Check-GPK

Check-GPK-FA1

...

Check-GPK-FAn

3.2 Join New Member
◦
/|\
/\

User

◦
/|\
/\

GM

<
External User Authorization (DSA/FTMGS)

>

Extract-UMK
from-DSA/MSK

Extract-UAUTH
from-DSA/SG

Join-Usr
〈 pbl:u1 〉

>

Join-GM

<
〈 pbl:gm2 〉

Join-Usr
〈 pbl:u3 〉

>

Join-GM

<
〈 pbl:gm4 〉

Join-Usr

3.3 Sign / Verify

◦
/|\
/\

Member

◦
/|\
/\

Any

Sign
〈 msg, signature 〉

>

Verify

6

3.4 Open / Check

◦
/|\
/\

Judge

◦
/|\
/\

FA1

· · ·
◦
/|\
/\

FAn

◦
/|\
/\

GM

〈 sg 〉
> >

Open-DShare · · · Open-DShare

<
〈 dshare1 〉

Open-Sign

...
. . .

<
〈 dsharen 〉

Open-Sign
〈 op 〉

>

Open-Check
+ DB-Search

<
〈 usr-id 〉

3.5 Reveal / Trace

◦
/|\
/\

Judge

◦
/|\
/\

GM

◦
/|\
/\

FA1

· · ·
◦
/|\
/\

FAn

◦
/|\
/\
TA

〈 usr-id 〉
>

DB-Search

<
〈 mr 〉

〈 mr 〉
> >

Reveal-DShare · · · Reveal-DShare

<
〈 dshare1 〉

Reveal-MTKey

...
. . .

<
〈 dsharen 〉

Reveal-MTKey
〈 mtkey 〉

>

Trace

<
〈 sgi 〉

4 Implementation: Features and Security Issues

• Based on: FTMGS: Fair Traceable Multigroup Signatures [1].

7

• Developed in C (ANSI-C 89) and GNU/Linux (code also for Windows)

– Minor system dependencies (random entropy and word endianness)

– Easy port to other platforms

• Licensed under LGPLv2.1

• It uses GMP library (LGPL) for multiple precision arithmetic

• It uses LIBTASN1 library (LGPL) for ANS1 data conversion

– In future releases, this dependency will be removed for efficiency pur-
poses, and ASN1 conversion will be provided internally.

• It uses SHA library code from IETF RFC-6234 (license included in the
licenses directory)

• All functions are re-entrant

• Signatures of Knowledge follows the specified in Traceable Signatures [4].

• Non-Adaptive Drawing of Random Powers follows the specified in Trace-
able Signatures [4].

• Random Number generator based on NIST-SP-800-90 document (based
on SHA)

– Entropy source at seeding is /dev/random for True_Entropy, and
/dev/urandom for Pseudo_Entropy in a Linux environment, and
CryptGenRandom in a Windows environment.

– It implements Hash DRBG based on SHA-256, with the following
parameters: HSStrength = 256, MinEntropy = 256, SeedLen = 440.

– Validation based on FIPS-140-2

• Sophie-Germain Prime Numbers based on [3].

• Miller-Rabin number of tests based on FIPS-186-3 recomendations

– High-Security: (modulus factors, sophie-germain primes)

– Low-Security: (exponents for: Group: hj ; Join: ei; FA-PrivKey: xj)

High Security Low Security
Nbits 512 1024 2048 >2048
Ntests 40 40 56 64

Nbits 512 1024 2048 >2048
Ntests 7 5 4 4

• FTMGS Security Parameters:

Nu 1024 2048 3072
K 128 256 512

• Accepts DSA User Authentication in Join. DSA [1024, 2048, 3072].

• Precomputations enabled/disabled at compile time

• Current Development Status: Alpha

8

• Things To-Do:

– Change the names of API functions and types to make them shorter.

– Define and request an ASN.1 Object Identifier (OID) number for
FTMGS

– Prepare a battery of tests

– Accepting RSA User Authentication in Join

– Checking that a RSA modulus lacks of small prime factors

– Distributed generation of RSA modulus with unknown factorization

– Improving the automatic building and installation (GNU/Linux)

– Developing installation packages for Debian [optional]

– Porting the building and installation to other systems (Windows)

5 Performace

FTMGS Modular Exponentiations

Precomp No-Precomp
Join 50 64
Join (Join+UsrAuth) 55 69

Sign 19 19
Vrfy 22 28

Open NFAS×9 NFAS×9
Check 11 15 [1×VrfyJoinLog]
Check (Join+UsrAuth) 14 18

Reveal NFAS×20+12 NFAS×24+16 [(NFAS+1)×VrfyJoinLog]
Reveal (Join+UsrAuth) NFAS×23+15 NFAS×27+19
Trace 1 1

Claim 2 2 [1×check(y==gx)]
VrfyClaim 3 3

Link 4 4 [2×check(y==gx)]
VrfyLink 6 6

VrfyJoinLog 11 15
VrfyJoinLog (Join+UsrAuth) 14 18

9

FTMGS Timings (in seconds) [Pentium 32 bits 2GHz]

Precomp No-Precomp
Join 0.33 0.42 [+ searching for prime ei]
Join (Join+UsrAuth) 0.35 0.44 [+ searching for prime ei]

Sign 0.05 0.05
Vrfy 0.05 0.08

Open NFAS×0.02+0.01 NFAS×0.02+0.01
Check 0.07 0.11 [1×VrfyJoinLog]
Check (Join+UsrAuth) 0.08 0.12

Reveal NFAS×0.34+0.10 NFAS×0.39+0.13 [(NFAS+1)×VrfyJoinLog]
Reveal (Join+UsrAuth) NFAS×0.35+0.10 NFAS×0.39+0.15
Trace 0.01 0.01

Claim 0.01 0.01 [1×check(y==gx)]
VrfyClaim 0.01 0.01

Link 0.01 0.01 [2×check(y==gx)]
VrfyLink 0.01 0.01

VrfyJoinLog 0.07 0.11
VrfyJoinLog (Join+UsrAuth) 0.08 0.12

FTMGS Timings (in seconds) [Pentium 64 bits 3.2GHz]

Precomp No-Precomp
Join 0.05 0.07
Join (Join+UsrAuth) 0.07 0.08

Sign 0.01 0.01
Vrfy 0.01 0.02

Open NFAS×0.0025 NFAS×0.0025
Check 0.01 0.02 [1×VrfyJoinLog]
Check (Join+UsrAuth) 0.01 0.02

Reveal NFAS×0.05 NFAS×0.05 [(NFAS+1)×VrfyJoinLog]
Reveal (Join+UsrAuth) NFAS×0.05 NFAS×0.06
Trace 0.00 0.00

Claim 0.00 0.00 [1×check(y==gx)]
VrfyClaim 0.00 0.00

Link 0.00 0.00 [2×check(y==gx)]
VrfyLink 0.00 0.00

VrfyJoinLog 0.01 0.01
VrfyJoinLog (Join+UsrAuth) 0.01 0.02

6 Installing the FTMGS Library

• It depends on the following external libraries: the system math library, the
GNU Multiple Precision (GMP) library, and the GNU LIBTASN1 library
(this latter dependency will probably be removed in the future).

10

• Change working directory to ’ftmgs’

$ cd ftmgs

• To cleanup the library

$ make cleanup

• To compile the library

$ make

• To install the library (as root)

make install

• To compile the test program

$ gcc -o test test.c -lftmgs -ltasn1 -lgmp -lm

• To run the test program

$./test

• To uninstall the library (as root)

make uninstall

Please, see the README file for more updated information

7 Compiling and Linking with the FTMGS Li-
brary

Source files that make use of the facilities provided by the FTMGS library should
include the header file ftmgs.h, where the public API is defined. This header
file is installed in the system include directory by the installation process, thus
the file should be included by the following directive:

#include <ftmgs.h>

The object files should be linked with the FTMGS library (libftmgs.a or
libftmgs.so in unix like systems), the GNU libtasn1 and GMP libraries and
the system math library:

$ gcc -o test test.c -lftmgs -ltasn1 -lgmp -lm

8 Abstract Data Types and Function API

8.1 Miscellaneous Data Types

The public API of FTMGS library is defined in the header file ftmgs.h, which
should be included.

11

FTMGS Version and Revision

FTMGS version and revision numbers are defined as preprocessor macros, to
allow their use from both, C programs and preprocessor conditionals. They
follow the following guidelines:

• Version Major: identifies changes in public API and functionality

• Version Minor: identifies internal changes that do not affect the public behavior

• Revision: for bug fixes

They are defined as follows, where a version major value lower than 1 iden-
tifies alpha or beta pre-releases.

#define FTMGS_VERSION_MAJOR 0

#define FTMGS_VERSION_MINOR 1

#define FTMGS_REVISION 0

Boolean Type

The boolean type and values are defined under preprocessor conditionals to
avoid clashing with other definitions. Additionally, the boolean values are
checked for their right definitions.

#ifndef BOOL_T_DEFINED__

#define BOOL_T_DEFINED__ 1

typedef char bool_t;

#endif

#ifndef TRUE

#define TRUE 1

#elif TRUE == 0

#error "Bad definition of symbol TRUE"

#endif

#ifndef FALSE

#define FALSE 0

#elif FALSE != 0

#error "Bad definition of symbol FALSE"

#endif

The boolean values are returned from functions to indicate either successful
or erroneous execution (TRUE or FALSE respectively).

Function Return Code

The type ftmgs_retcode_t defines the return code for incremental (iterative)
functions, which can be error (FTMGS_ERROR), success (FTMGS_OK), or still unfin-
ished (FTMGS_UNFINISHED), which means that the (iterative) operation is still
unfinished and it needs to be executed some more times, till either error or
success is found.

typedef enum ftmgs_retcode_t {
FTMGS_ERROR, FTMGS_OK, FTMGS_UNFINISHED

} ftmgs_retcode_t;

8.2 Abstract Data Types and Function API

The public API of FTMGS library is defined in the header file ftmgs.h, which
should be included.

12

All defined data in the FTMGS library, except for enumerations, are Ab-
stract Data Types (ADT), and therefore their internal representation is hidden
(and protected). This fact has several advantages.

• The internal representation is hidden, so there is no need to expose the internal data
types and internal implementation.

• As the internal representation is hidden, it diminishes the possibility (and temptation)
to bypass the API and dealing with the internal data representation.

• It improves the possibility of internal modifications that do not affect to the external
public API.

• It improves the binary compatibility of the library, since all data are defined as point-
ers to the internal representation, which can change without affecting to the external
pointers.

As abstract data types, except for enumerations, any variable to deal with
data must be declared as a pointer to the hidden data representation. Each
of them will be created through a function (the constructor) that allocates
memory space to hold the internal representation, and initializes the data to a
known initial state. Moreover, when such data is not useful anymore, then it
is necessary to call a function (the destructor) to free the allocated resources
associated with the internal representation. Additionally, there is also a function
(the cloner) that allows to clone the internal representation of the abstract data.

For each type in the library, these functions are named by the name of the
type followed by the word new, delete and clone respectively. For example, for
the type rndctx_t, the following code defines a variable to point to the internal
representation, calls the constructors, other functions from the API, cloning and
finally calls the destructors:

#include <ftmgs.h>

int main()

{
unsigned x;

rndctx_t* rctx; /* uninitialized variable */

rndctx_t* random_context = rndctx_t_new(); /* constructor */

/* ... */

bi_random_seed(random_context, PseudoEntropy);

/* ... */

x = bi_random_ui(10, random_context);

/* ... */

rctx = rndctx_t_clone(random_context); /* cloner */

/* ... */

rndctx_t_delete(random_context); /* destructor */

rndctx_t_delete(rctx); /* destructor */

return 0;

}

8.3 Random Numbers

The following values define the sources of entropy for seeding the random num-
ber generator:

• TrueEntropy: it seeds the random number generator with real random bits from a
source of entropy that uses random noise from internal devices. If there is not enough
real random bits, as required, from the source of entropy, then the operation blocks
until there are enough real random bits available. This mode is required for secure
cryptographic use.

13

• PseudoEntropy: it seeds the random number generator with random bits from a source
of entropy that uses random noise from internal devices. If there is not enough real
random bits, as required, from the source of entropy, then the rest of required bits
are generated internally following some pseudo-random number generation. This mode
is not valid for secure cryptographic use, but it can be used for other less secure
requirement scenarios.

• NoEntropy: it does not use any source of entropy for seeding. It seeds the random
number generator with the same fixed seed, so it is useful for debugging purposes,
since, as it starts with the same seed, it repeats the same sequence of generated random
numbers.

enum entropy_src_t {
TrueEntropy, PseudoEntropy, NoEntropy

};

Abstract Data Types

• rndctx_t: it is used to hold the internal context of the random number gener-
ator.

It is used extensively throughout the library, and it is required to have been
seeded previously.

Construction, Copy and Destruction

The following functions declare the constructor, cloner and destructor for the
aforementioned abstract data type:

rndctx_t* rndctx_t_new();

rndctx_t* rndctx_t_clone(const rndctx_t* o);

void rndctx_t_delete(rndctx_t* p);

API

• unsigned bi_random_seed(rndctx_t* rnd_ctx, unsigned entropy_src);

It allows to initialize and seed the context for the random number generator. The
source of entropy may be any of the aforementioned values with their explained
meaning. This function must be called once before using the generator context
in any other function. It returns the amount of bytes used from the entropy
source.

• unsigned bi_random_reseed(rndctx_t* rnd_ctx, unsigned entropy_src);

It allows to re-seed the context for the random number generator. The source of
entropy may be any of the aforementioned values with their explained meaning.
It returns the amount of bytes used from the entropy source.

• void bi_random_bytes(void* buf, unsigned buflen, rndctx_t* rnd_ctx);

It generates buflen random bytes that will be stored in the memory pointed to
by buf, by using the previously seeded random context rnd_ctx. The memory
pointed by buf must have been previously allocated with enough room to hold
buflen bytes.

• unsigned bi_random_ui(unsigned max, rndctx_t* rnd_ctx);

It returns a random unsigned number between 0 and max (max exclusive), by
using the previously seeded random context rnd_ctx.

14

8.4 Group Creation

The following values define the security parameters used when creating a group:

enum secpar_t {
Nu1 = 1024, Nu2 = 2048, Nu3 = 3072

};

Abstract Data Types

• ftmgs_fa_pbkey_t: it holds the modulus 〈n̂〉 and generator 〈ĝ〉 for the paillier
encryption scheme.

• ftmgs_faj_pbkey_share_t: it holds the fairness authority public key share 〈ŷj〉
for the paillier encryption scheme.

• ftmgs_faj_prkey_t: it holds the fairness authority private key 〈ôj〉 for the
paillier encryption scheme. It allows to recover the member’s tracing key.

• ftmgs_pbkey_t: it holds the group public key 〈n, a, ao, b, g, h, y, n̂, ĝ, ŷ〉. It allows
to verify group signatures, as well as provides support for all operations dealing
with the group.

• ftmgs_prkey_t: it holds the group manager private key, the prime factors of
the group modulus 〈p, q〉. It allows to join new members to the group.

• ftmgs_faj_gr_pbkey_share_t: it holds the fairness authority public key share
〈yj , hj〉 for the el-gamal encryption scheme for a given group.

• ftmgs_faj_gr_prkey_t: it holds the fairness authority private key 〈oj〉 for the
el-gamal encryption scheme for a given group. It allows to open signatures.

Construction, Copy and Destruction

The following functions declare the constructors, cloners and destructors for the
aforementioned abstract data types:

ftmgs_fa_pbkey_t* ftmgs_fa_pbkey_t_new();

ftmgs_fa_pbkey_t* ftmgs_fa_pbkey_t_clone(const ftmgs_fa_pbkey_t* o);

void ftmgs_fa_pbkey_t_delete(ftmgs_fa_pbkey_t* p);

ftmgs_faj_pbkey_share_t* ftmgs_faj_pbkey_share_t_new();

tmgs_faj_pbkey_share_t* ftmgs_faj_pbkey_share_t_clone(const ftmgs_faj_pbkey_share_t* o);

void ftmgs_faj_pbkey_share_t_delete(ftmgs_faj_pbkey_share_t* p);

ftmgs_faj_prkey_t* ftmgs_faj_prkey_t_new();

ftmgs_faj_prkey_t* ftmgs_faj_prkey_t_clone(const ftmgs_faj_prkey_t* o);

void ftmgs_faj_prkey_t_delete(ftmgs_faj_prkey_t* p);

ftmgs_pbkey_t* ftmgs_pbkey_t_new();

ftmgs_pbkey_t* ftmgs_pbkey_t_clone(const ftmgs_pbkey_t* o);

void ftmgs_pbkey_t_delete(ftmgs_pbkey_t* p);

ftmgs_prkey_t* ftmgs_prkey_t_new();

ftmgs_prkey_t* ftmgs_prkey_t_clone(const ftmgs_prkey_t* o);

void ftmgs_prkey_t_delete(ftmgs_prkey_t* p);

ftmgs_faj_gr_pbkey_share_t* ftmgs_faj_gr_pbkey_share_t_new();

ftmgs_faj_gr_pbkey_share_t* ftmgs_faj_gr_pbkey_share_t_clone(const ftmgs_faj_gr_pbkey_share_t* o);

void ftmgs_faj_gr_pbkey_share_t_delete(ftmgs_faj_gr_pbkey_share_t* p);

15

ftmgs_faj_gr_prkey_t* ftmgs_faj_gr_prkey_t_new();

ftmgs_faj_gr_prkey_t* ftmgs_faj_gr_prkey_t_clone(const ftmgs_faj_gr_prkey_t* o);

void ftmgs_faj_gr_prkey_t_delete(ftmgs_faj_gr_prkey_t* p);

API

The group setup process follows the sequence specified in the diagram in sec-
tion 3.1 and 3.1.
• void ftmgs_fa0_setup_mono(ftmgs_fa_pbkey_t* fa_pk_preimage,

unsigned nu,

rndctx_t* rnd_ctx);

It allows to create an initial public key modulus and generator for the fairness
authorities, where the security parameter nu may have any of the aforementioned
values. It is necessary that the random number generator context rnd_ctx had
been previously seeded.

Note: This function create the public key modulus and generator for the fairness
authorities for the paillier encryption scheme. It is necessary to be aware that
the security of the paillier encryption scheme relies on the unknown factorization
of this public modulus, and in this case, the entity that creates this modulus is
able to know such factorization, and it must be, therefore, a trusted authority
with an overall power over the others. Therefore, in order to improve the security
of the scheme, in next versions of this library, new functions for creating such a
public modulus in a distributed and collaborative manner will be incorporated.

� In a next version of this library, a ftmgs_fa0_setup() function will be in-
corporate to implement a protocol for the distributed generation of the RSA
modulus [5], to be played among the involved fairness authorities.

• void ftmgs_faj_setup(ftmgs_faj_pbkey_share_t* faj_pk,

ftmgs_faj_pbkey_share_t* faj_pk_preimage,

ftmgs_faj_prkey_t* faj_sk,

const ftmgs_fa_pbkey_t* fa_pk,

rndctx_t* rnd_ctx);

It is used by each fairness authority to generate the public and private keys
(faj_pk, and faj_sk respectively) for a given public modulus and generator
(fa_pk) created by using ftmgs_fa0_setup(). These keys are used to deal with
encryption/decryption of member tracing keys.

Note that faj_pk_preimage may be NULL, but otherwise it will hold the preim-
age for the public key faj_pk, that is faj_pk ≡ faj_pk_preimage2. This preim-
age is used by the Group Manager when creating the group.

Note that by squaring the preimage, it is assured that ŷj ∈ QR(n).

• void ftmgs_gm_init_setup(ftmgs_pbkey_t* gpk_preimage,

ftmgs_prkey_t* gsk,

unsigned nu,

rndctx_t* rnd_ctx);

It is used by the Group Manager (GM) to compute the modulus, generator and
related terms (a preimage of the group public key gpk), as well as the group
private key that allows the GM to join new members to the group. The security
parameter nu may have the aforementioned values.

• void ftmgs_faj_group_setup(ftmgs_faj_gr_pbkey_share_t* faj_gpk,

ftmgs_faj_gr_pbkey_share_t* faj_gpk_preimage,

ftmgs_faj_gr_prkey_t* faj_gsk,

const ftmgs_pbkey_t* gpk_preimage,

rndctx_t* rnd_ctx);

16

It is used by each fairness authority to generate the public and private keys
(faj_gpk, and faj_gsk respectively) for a given group public key (gpk_preimage)
created by using ftmgs_gm_init_setup(). These keys are used to deal with
encryption/decryption for opening signatures.

Note that faj_gpk_preimage may be NULL, but otherwise it will hold the preim-
age for the public key faj_gpk, that is faj_gpk ≡ faj_gpk_preimage2. This
preimage is used by the Group Manager when creating the group.

Note that by squaring the preimage, it is assured that yj ∈ QR(n) and hj ∈
QR(n).

• ftmgs_retcode_t ftmgs_gm_group_setup(ftmgs_pbkey_t* gpk,

ftmgs_pbkey_t* gpk_preimage,

unsigned nfas,

const ftmgs_fa_pbkey_t* fa_pk_preimage,

const ftmgs_faj_pbkey_share_t* faj_pk_preimage,

const ftmgs_faj_gr_pbkey_share_t* faj_gpk_preimage);

It is used by the Group Manager (GM) to incorporate into the group public key
the public key preimages for each fairness authority that will supervise opening
and revealing operations fro the group, where nfas specifies the total number of
required fairness authorities in the process.

This function belongs to an iterative process to incorporate the public keys
for all the fairness authorities, and therefore it returns FTMGS_UNFINISHED while
the number of incorporated fairness authority’s public keys is lower that the
amount of required fairness authorities (nfas). When the process is over, then
either FTMGS_OK or FTMGS_ERROR is returned to indicate success or failure in the
operation.

Note that gpk_preimage may be NULL, but otherwise it will hold the preimage
for the group public key gpk, that is gpk ≡ gpk_preimage2. This preimage is used
by any entity to check that the group members have the right order. Note that
by squaring the preimage, it is assured that group members belong to QR(n).

• bool_t ftmgs_check_gpk(const ftmgs_pbkey_t* gpk,

const ftmgs_pbkey_t* gpk_preimage);

It returns TRUE (1) if the group public key (gpk) is well formed with respect
to the preimage (gpk_preimage), which means that all members have the right
order and belong to QR(n). It returns FALSE (0) otherwise.

� In a next version of this library, this function will also check that the moduli
in the group public key do not have small prime factors [2].

• ftmgs_retcode_t ftmgs_check_gpk_fa(ftmgs_pbkey_t* gpk_aux,

const ftmgs_pbkey_t* gpk,

const ftmgs_fa_pbkey_t* fa_pk,

const ftmgs_faj_pbkey_share_t* faj_pk,

const ftmgs_faj_gr_pbkey_share_t* faj_gpk);

This function belongs to an iterative process to check that the public keys for
all the fairness authorities have been incorporated to the group public key, and
therefore it returns FTMGS_UNFINISHED while the number of checked fairness au-
thority’s public keys is lower that the amount of required fairness authorities
previously incorporated to the group public key. When the process is over, then
either FTMGS_OK or FTMGS_ERROR is returned to indicate success or failure in the
operation.

Note that the fairness authority’s public keys are used, instead of their preimages.
Also note that gpk_aux is used to temporarily hold the incorporation of checked
public keys while the iterative process is being carried out.

• unsigned ftmgs_get_nfas_reveal(const ftmgs_pbkey_t* gpk);

It returns the number of fairness authorities required to reveal a member tracing
key.

17

• unsigned ftmgs_get_nfas_open(const ftmgs_pbkey_t* gpk);

It returns the number of fairness authorities required to open a signature.

8.5 Joining New Members

Abstract Data Types

• dss_parms_t: it holds the DSS parameters 〈p, q, g〉, used by the user when
authenticated to join the group.

• dsa_pbkey_t: it holds the DSA user’s public key 〈y〉, used by the user when
authenticated to join the group.

• dsa_prkey_t: it holds the DSA user’s private key 〈x〉, used by the user when
authenticated to join the group.

• dlogx_t: it holds a user’s master private key 〈x〉, used by the user when au-
thenticated to join the group. It can come from the user’s DSA private key, or
from a group member’s private key.

• dlog_t: it holds a user’s master public key 〈n, g, y〉, used by the user when
authenticated to join the group. It can come from the user’s DSA public key
and DSS parameters, or from a group signature issued by the member when
authenticated in joining a new group.

• ftmgs_join_prv_t: it holds temporal user’s private data generated while the
iterative process of joining to a group.

• ftmgs_join_pbl_t: it holds temporal public data generated while the iterative
process of joining a new member to a group.

• ftmgs_mbr_ref_t: it holds the member’s reference 〈Ai, ei, Ci, Xi, Ui, Vi, E℘i ,Au〉
(join log) kept by the group manager for each member of the group. It holds
information to allow recovery, with the collaboration of the fairness authorities,
of tracing keys and opening signatures, as well as non-repudiable bindings with
the user.

• ftmgs_mbr_prkey_t: it holds the member’s private key 〈Ai, ei, xi, x′i〉 that allows
the member to issue anonymous and unlinkable group signatures. It holds,
among other data, the user’s master key.

Construction, Copy and Destruction

The following functions declare the constructors, cloners and destructors for the
aforementioned abstract data types:

dss_parms_t* dss_parms_t_new();

dss_parms_t* dss_parms_t_clone(const dss_parms_t* o);

void dss_parms_t_delete(dss_parms_t* p);

dsa_pbkey_t* dsa_pbkey_t_new();

dsa_pbkey_t* dsa_pbkey_t_clone(const dsa_pbkey_t* o);

void dsa_pbkey_t_delete(dsa_pbkey_t* p);

dsa_prkey_t* dsa_prkey_t_new();

dsa_prkey_t* dsa_prkey_t_clone(const dsa_prkey_t* o);

void dsa_prkey_t_delete(dsa_prkey_t* p);

18

dlogx_t* dlogx_t_new();

dlogx_t* dlogx_t_clone(const dlogx_t* o);

void dlogx_t_delete(dlogx_t* p);

dlog_t* dlog_t_new();

dlog_t* dlog_t_clone(const dlog_t* o);

void dlog_t_delete(dlog_t* p);

ftmgs_join_prv_t* ftmgs_join_prv_t_new();

ftmgs_join_prv_t* ftmgs_join_prv_t_clone(const ftmgs_join_prv_t* o);

void ftmgs_join_prv_t_delete(ftmgs_join_prv_t* p);

ftmgs_join_pbl_t* ftmgs_join_pbl_t_new();

ftmgs_join_pbl_t* ftmgs_join_pbl_t_clone(const ftmgs_join_pbl_t* o);

void ftmgs_join_pbl_t_delete(ftmgs_join_pbl_t* p);

ftmgs_mbr_ref_t* ftmgs_mbr_ref_t_new();

ftmgs_mbr_ref_t* ftmgs_mbr_ref_t_clone(const ftmgs_mbr_ref_t* o);

void ftmgs_mbr_ref_t_delete(ftmgs_mbr_ref_t* p);

ftmgs_mbr_prkey_t* ftmgs_mbr_prkey_t_new();

ftmgs_mbr_prkey_t* ftmgs_mbr_prkey_t_clone(const ftmgs_mbr_prkey_t* o);

void ftmgs_mbr_prkey_t_delete(ftmgs_mbr_prkey_t* p);

API

The join process follows the sequence specified in the diagram in section 3.2.
• void extract_umk_from_dsa(dlogx_t* x, const dsa_prkey_t* dsa_sk);

It is used to extract the user’s master key from a DSA private key that have
been used (a DSA signature used as authentication method) when the user was
authorized to join the group. This user’s master key will be used in the joining
process, and it will be embedded into the user’s member private key.

• void extract_uauth_from_dsa(dlog_t* uauth,

const dsa_pbkey_t* dsa_pk,

const dss_parms_t* dss_parms);

It is used to extract the user’s authentication from a DSA public key that have
been used (a DSA signature used as authentication method) when the user was
authorized to join the group. This user’s authentication will be used in the
joining process, and it will be embedded into the member’s reference with non-
repudiation purposes.

• void extract_umk_from_msk(dlogx_t* x, const ftmgs_mbr_prkey_t* msk);

It is used to extract the user’s master key from a FTMGS group member’s
private key that have been used (a FTMGS signature used as authentication
method) when the user was authorized to join the group. This user’s master
key will be used in the joining process, and it will be embedded into the user’s
member private key.

• void extract_uauth_from_sg(dlog_t* uauth,

const ftmgs_sign_t* sg,

const ftmgs_pbkey_t* gpk);

It is used to extract the user’s authentication from a FTMGS signature that
have been used (a FTMGS signature used as authentication method) when the
user was authorized to join the group. This user’s authentication will be used in
the joining process, and it will be embedded into the member’s reference with
non-repudiation purposes.

• void extract_dsa_from_umk(dsa_prkey_t* dsa_sk, const dlogx_t* x);

19

This function is used to extract (and create) a DSA private key from a user’s
master key (which can also be extracted from a member’s private key), in this
way it discourages the user from sharing her member’s private keys with other
users, since in this case, they will be able to recover her DSA private key and it
will allow them to impersonate the user in a world-wide manner.

� void extract_umk_from_rsa(dlogx_t* x, const rsa_prkey_t* sk);

It is used to extract the user’s master key from a RSA private key that have
been used (a RSA signature used as authentication method) when the user was
authorized to join the group. This user’s master key will be used in the joining
process, and it will be embedded into the user’s member private key.

� This function is not currently defined in the API. It will be included in a next
version of this library.

� void extract_uauth_from_rsa(dlog_t* uauth,

const rsa_sign_t* sg,

const rsa_pbkey_t* pk);

It is used to extract the user’s authentication from a RSA signature that have
been used (a RSA signature used as authentication method) when the user was
authorized to join the group. This user’s authentication will be used in the
joining process, and it will be embedded into the member’s reference with non-
repudiation purposes.

� This function is not currently defined in the API. It will be included in a next
version of this library.

� void extract_rsa_from_umk(rsa_prkey_t* rsa_sk, const dlogx_t* x);

This function is used to extract (and create) a RSA private key from a user’s
master key (which can also be extracted from a member’s private key), in this
way it discourages the user from sharing her member’s private keys with other
users, since in this case, they will be able to recover her RSA private key and it
will allow them to impersonate the user in a world-wide manner.

� This function is not currently defined in the API. It will be included in a next
version of this library.

• ftmgs_retcode_t ftmgs_join_usr(ftmgs_join_prv_t* prv,

ftmgs_join_pbl_t* pbl,

ftmgs_mbr_prkey_t* msk,

const ftmgs_pbkey_t* gpk,

const dlogx_t* umk,

const dlog_t* u_auth,

rndctx_t* rnd_ctx);

This function belongs to an iterative protocol, at the user’s side, to join a new
member to a FTMGS group, and therefore it returns FTMGS_UNFINISHED while
the protocol is still unfinished. When the protocol is over, then either FTMGS_OK

or FTMGS_ERROR is returned to indicate success or failure in the operation.

The protocol follows the sequence specified in the diagram in section 3.2. The
protocol starts at the user’s side, then the private and public outcome (prv
and pbl) are stored for the next iteration, and the public outcome (pbl) is sent
(usually its ASN.1 DER encoding) to the group manager, which plays its part
or the protocol, then the public outcome (pbl) is stored for the next iteration,
and sent (usually its ASN.1 DER encoding) again to the user, which plays again
this protocol till the end. Note that the user’s side of the protocol is the starting
and ending points of the protocol.

As result, if everything was fine, the user gets her member’s private key (msk)
that allows her to issue FTMGS group signatures, and therefore, being authen-
ticated as a member of the group.

If the user was authorized (and authenticated) to join the group by any exter-
nal means, then the user’s master key (umk) and user’s authentication (u_auth)

20

should be extracted from the external authentication, otherwise they should be
NULL. Note that both, user and group manager, should follow the same conven-
tions for these cases in order to play a valid join protocol.

Note that prv and pbl are used to temporarily hold respectively the private and
public data between iterations while the iterative protocol is being carried out.

• ftmgs_retcode_t ftmgs_join_gm(ftmgs_join_pbl_t* pbl,

ftmgs_mbr_ref_t* mr,

const ftmgs_pbkey_t* gpk,

const ftmgs_prkey_t* gsk,

const dlog_t* u_auth,

rndctx_t* rnd_ctx);

This function belongs to an iterative protocol, at the group manager’s side, to
join a new member to a FTMGS group, and therefore it returns FTMGS_UNFINISHED
while the protocol is still unfinished. When the protocol is over, then either
FTMGS_OK or FTMGS_ERROR is returned to indicate success or failure in the opera-
tion.

The protocol follows the sequence specified in the diagram in section 3.2. The
protocol starts at the user’s side, then the private and public outcome (prv
and pbl) are stored for the next iteration, and the public outcome (pbl) is sent
(usually its ASN.1 DER encoding) to the group manager, which plays its part
or the protocol, then the public outcome (pbl) is stored for the next iteration,
and sent (usually its ASN.1 DER encoding) again to the user, which plays again
this protocol till the end. Note that the user’s side of the protocol is the starting
and ending points of the protocol.

As result, if everything was fine, the group manager gets the member’s reference
(mr) that allows the Judge (with collaboration of GM and FAs) opening and
reveal operations.

If the user was authorized (and authenticated) to join the group by any external
means, then the user’s authentication (u_auth) should be extracted from the
external authentication, otherwise it should be NULL. Note that both, user and
group manager, should follow the same conventions for these cases in order to
play a valid join protocol.

Note that pbl is used to temporarily hold the public data between iterations
while the iterative protocol is being carried out.

• bool_t ftmgs_vrfy_join_log(const ftmgs_mbr_ref_t* mr,

const ftmgs_pbkey_t* gpk);

It returns TRUE (1) if the member’s reference (mr) is consistent and well formed,
which means that the non-repudiable bindings and proofs still hold, and therefore
the record has not been manipulated. It returns FALSE (0) otherwise.

8.6 Signing and Verifying

The following values allow to choose the operation mode for the SHA hash
engine:

enum sha_mode_t {
Sha1, Sha224, Sha256, Sha384, Sha512

};

Abstract Data Types

• ftmgs_sign_t: it holds a FTMGS signature 〈T1, · · · , T7, σ
℘〉 issued by a member

of the group.

21

Construction, Copy and Destruction

The following functions declare the constructor, cloner and destructor for the
aforementioned abstract data type:

ftmgs_sign_t* ftmgs_sign_t_new();

ftmgs_sign_t* ftmgs_sign_t_clone(const ftmgs_sign_t* o);

void ftmgs_sign_t_delete(ftmgs_sign_t* p);

API

The signing process follows the sequence specified in the diagram in section 3.3.
• bool_t ftmgs_sign_dat(unsigned which_sha,

ftmgs_sign_t* sg,

const void* dat, unsigned datlen,

const ftmgs_pbkey_t* gpk,

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It issues a FTMGS signature (sg) for group public key (gpk) with member’s pri-
vate key (msk). The SHA engine, as selected by which_sha from aforementioned
values, is applied to some given data bytes (dat) of length (datlen).

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the signature, the digest is calculated by ap-
plying the selected SHA engine to the user’s data, and then the signature it is
issued over this digest as specified in the next functions:
digest = SHAw(dat︸︷︷︸

datlen

)

• bool_t ftmgs_vrfy_dat(unsigned which_sha,

const ftmgs_sign_t* sg,

const void* dat, unsigned datlen,

const ftmgs_pbkey_t* gpk);

It returns TRUE (1) if a FTMGS signature (sg) can be verified for group public
key (gpk), and returns FALSE (0) otherwise. The SHA engine, as selected by
which_sha from aforementioned values, is applied to some given data bytes (dat)
of length (datlen).

Compatibility note: when verifying a signature, the digest is calculated by ap-
plying the selected SHA engine to the user’s data, and then the verification it is
applied over this digest as specified in the next functions:
digest = SHAw(dat︸︷︷︸

datlen

)

• bool_t ftmgs_sign_dgst(ftmgs_sign_t* sg,

const void* dat_digest,

unsigned dat_digestlen,

const ftmgs_pbkey_t* gpk,

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It issues a FTMGS signature (sg) for group public key (gpk) with member’s pri-
vate key (msk). The signature is applied to some given data digest (dat_digest)
of length (dat_digestlen) that has been generated by some hashing functions 8.11.

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the signature, the SHA hash (truncated to
security parameter k bits) is applied to the following data in the same order as
specified (numbers are represented as a big-endian byte sequence):
c = SHAk(digest ||B1|| · · · ||B6||n|| · · · ||n︸ ︷︷ ︸

6

||g||h||T−1
2 ||T5||T7||y||T

−1
1 ||a||b||a0||T3||T4||T6)

22

• bool_t ftmgs_vrfy_dgst(const ftmgs_sign_t* sg,

const void* dat_digest,

unsigned dat_digestlen,

const ftmgs_pbkey_t* gpk);

It returns TRUE (1) if a FTMGS signature (sg) can be verified for group public key
(gpk) , and returns FALSE (0) otherwise. The verification is applied to some given
data digest (dat_digest) of length (dat_digestlen) that has been generated by
some hashing functions 8.11.

Compatibility note: when verifying a signature, the SHA hash (truncated to
security parameter k bits) is applied to the following data in the same order as
specified (numbers are represented as a big-endian byte sequence):
c′ = SHAk(digest ||B1|| · · · ||B6||n|| · · · ||n︸ ︷︷ ︸

6

||g||h||T−1
2 ||T5||T7||y||T

−1
1 ||a||b||a0||T3||T4||T6)

8.7 Signature Opening

Abstract Data Types

• ftmgs_opensharej_t: it holds a decryption share 〈ω̂jσ, ω̂℘jσ〉 of the opening of a
signature.

• ftmgs_openacc_t: it holds the incremental product of the opening decryption
shares.

• ftmgs_open_t: it holds the member’s reference 〈ωσ〉 result of opening a signa-
ture.

Construction, Copy and Destruction

The following functions declare the constructors, cloners and destructors for the
aforementioned abstract data types:

ftmgs_opensharej_t* ftmgs_opensharej_t_new();

ftmgs_opensharej_t* ftmgs_opensharej_t_clone(const ftmgs_opensharej_t* o);

void ftmgs_opensharej_t_delete(ftmgs_opensharej_t* p);

ftmgs_openacc_t* ftmgs_openacc_t_new();

ftmgs_openacc_t* ftmgs_openacc_t_clone(const ftmgs_openacc_t* o);

void ftmgs_openacc_t_delete(ftmgs_openacc_t* p);

ftmgs_open_t* ftmgs_open_t_new();

ftmgs_open_t* ftmgs_open_t_clone(const ftmgs_open_t* o);

void ftmgs_open_t_delete(ftmgs_open_t* p);

API

The opening process follows the sequence specified in the diagram in section 3.4.
• bool_t ftmgs_open_dshare_j(ftmgs_opensharej_t* osj,

const ftmgs_sign_t* sg,

const ftmgs_faj_gr_pbkey_share_t* faj_gpk,

const ftmgs_faj_gr_prkey_t* faj_gsk,

const ftmgs_pbkey_t* gpk,

rndctx_t* rnd_ctx);

It is used by a fairness authority (with key-pair faj_gsk and faj_gpk) to generate
a decryption share (osj) of the opening of a FTMGS signature (sg) for group
public key gpk.

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

23

Compatibility note: when issuing the proof of correctness, the SHA hash (trun-
cated to security parameter k bits) is applied to the following data in the same
order as specified (numbers are represented as a big-endian byte sequence):
c = SHAk(digest ||B1||B2||n||n||g||yj ||T2||ω̂jσ)
where digest = SHAk(T1|| · · · ||T7||c||sx||sx′ ||se||sr||sh′)

• ftmgs_retcode_t ftmgs_open_sign(ftmgs_open_t* op,

ftmgs_openacc_t* osa,

const ftmgs_sign_t* sg,

const ftmgs_opensharej_t* osj,

const ftmgs_faj_gr_pbkey_share_t* faj_gpk,

const ftmgs_pbkey_t* gpk);

This function belongs to an iterative process to incrementally open a FTMGS
signature (sg) for all the fairness authority’s opening decryption shares (osj),
and therefore it returns FTMGS_UNFINISHED while the number of added decryption
shares is lower that the amount of required fairness authorities. When the pro-
cess is over, then either FTMGS_OK or FTMGS_ERROR is returned to indicate success
or failure in the operation.

In case of success, op holds the outcome of the opening operation, and osa is
a temporary value that must be held while the iterative process is not finished.
Note that if the decryption share is not properly constructed with respect to the
fairness authority’s public key (faj_gpk) and group public key (gpk), then the
operation will fail.

• bool_t ftmgs_open_check(const ftmgs_open_t* op,

const ftmgs_mbr_ref_t* mr,

const ftmgs_pbkey_t* gpk);

It checks if the outcome of the opening of a signature (op) matches a given
member’s reference (mr), and in such case, it also checks that this member’s
reference is consistent (ftmgs_vrfy_join_log()).

It returns TRUE (1) if both match, and returns FALSE (0) otherwise.

8.8 Member Tracing

Abstract Data Types

• ftmgs_mtkey_sharej_t: it holds a decryption share 〈τ̂ji, τ̂℘ji〉 of the revealing of
a member’s tracing key.

• ftmgs_mtkey_acc_t: it holds the incremental product of the revealing decryp-
tion shares.

• ftmgs_mtkey_t: it holds the member’s tracing key 〈τi〉 result of opening a sig-
nature.

Construction, Copy and Destruction

The following functions declare the constructors, cloners and destructors for the
aforementioned abstract data types:

ftmgs_mtkey_sharej_t* ftmgs_mtkey_sharej_t_new();

ftmgs_mtkey_sharej_t* ftmgs_mtkey_sharej_t_clone(const ftmgs_mtkey_sharej_t* o);

void ftmgs_mtkey_sharej_t_delete(ftmgs_mtkey_sharej_t* p);

ftmgs_mtkey_acc_t* ftmgs_mtkey_acc_t_new();

ftmgs_mtkey_acc_t* ftmgs_mtkey_acc_t_clone(const ftmgs_mtkey_acc_t* o);

void ftmgs_mtkey_acc_t_delete(ftmgs_mtkey_acc_t* p);

ftmgs_mtkey_t* ftmgs_mtkey_t_new();

ftmgs_mtkey_t* ftmgs_mtkey_t_clone(const ftmgs_mtkey_t* o);

void ftmgs_mtkey_t_delete(ftmgs_mtkey_t* p);

24

API

The reveal process follows the sequence specified in the diagram in section 3.5.
• bool_t ftmgs_reveal_dshare_j(ftmgs_mtkey_sharej_t* mtk_shj,

const ftmgs_mbr_ref_t* mr,

const ftmgs_faj_pbkey_share_t* faj_pk,

const ftmgs_faj_prkey_t* faj_sk,

const ftmgs_pbkey_t* gpk,

rndctx_t* rnd_ctx);

It is used by a fairness authority (with key-pair faj_sk and faj_pk) to gener-
ate a decryption share (mtk_shj) of the revealing the member’s tracing key of
a member’s reference (mr) for group public key gpk. It also checks that this
member’s reference is consistent (ftmgs_vrfy_join_log()).

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the proof of correctness, the SHA hash (trun-
cated to security parameter k bits) is applied to the following data in the same
order as specified (numbers are represented as a big-endian byte sequence):
c = SHAk(digest ||B1||B2||n̂2||n̂2||ĝ||ŷj ||Ui||τ̂ji)
where digest = SHAk(Ai||ei||Ci||Xi||Ui||Vi||g||y||n||c||sx′ ||sr||sx)

• ftmgs_retcode_t ftmgs_reveal_mtkey(ftmgs_mtkey_t* mtk,

ftmgs_mtkey_acc_t* mtka,

const ftmgs_mtkey_sharej_t* mtk_shj,

const ftmgs_mbr_ref_t* mr,

const ftmgs_faj_pbkey_share_t* faj_pk,

const ftmgs_pbkey_t* gpk);

This function belongs to an iterative process to incrementally reveal a member’s
tracing key for a given member’s reference (mr) for all the fairness authority’s re-
vealing decryption shares (mtk_shj), and therefore it returns FTMGS_UNFINISHED

while the number of added decryption shares is lower that the amount of re-
quired fairness authorities. When the process is over, then either FTMGS_OK or
FTMGS_ERROR is returned to indicate success or failure in the operation.

In case of success, mtk holds the outcome of the reveal operation, and mtka is
a temporary value that must be held while the iterative process is not finished.
Note that if the decryption share is not properly constructed with respect to the
fairness authority’s public key (faj_pk) and group public key (gpk), then the
operation will fail.

• bool_t ftmgs_trace(const ftmgs_sign_t* sg, const ftmgs_mtkey_t* mtk);

It checks if the outcome of revealing a member’s tracing key (mtk) matches a
given group signature (sg).

It returns TRUE (1) if both match, and returns FALSE (0) otherwise.

8.9 Claiming Authorship

Abstract Data Types

• ftmgs_claim_t: it holds the proof 〈π℘〉 of the claiming of a signature authorship.

Construction, Copy and Destruction

The following functions declare the constructor, cloner and destructor for the
aforementioned abstract data type:

ftmgs_claim_t* ftmgs_claim_t_new();

ftmgs_claim_t* ftmgs_claim_t_clone(const ftmgs_claim_t* o);

void ftmgs_claim_t_delete(ftmgs_claim_t* p);

25

API

• bool_t ftmgs_claim_dat(unsigned which_sha,

ftmgs_claim_t* clm,

const ftmgs_sign_t* sg,

const void* dat,

unsigned datlen,

const ftmgs_pbkey_t* gpk,

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It issues a FTMGS claim (clm) for group public key (gpk) with member’s pri-
vate key (msk) for a signature (sg). The SHA engine, as selected by which_sha

from aforementioned values, is applied to some given data bytes (dat) of length
(datlen).

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the claim, the digest is calculated by applying
the selected SHA engine to the user’s data, and then the claim it is issued over
this digest as specified in the next functions:
digest = SHAw(dat︸︷︷︸

datlen

)

• bool_t ftmgs_vrfy_claim_dat(unsigned which_sha,

const ftmgs_claim_t* clm,

const ftmgs_sign_t* sg,

const void* dat,

unsigned datlen,

const ftmgs_pbkey_t* gpk);

It returns TRUE (1) if a FTMGS claim (clm) can be verified for signature (sg)
and group public key (gpk), and returns FALSE (0) otherwise. The SHA engine,
as selected by which_sha from aforementioned values, is applied to some given
data bytes (dat) of length (datlen).

Compatibility note: when verifying a claim, the digest is calculated by applying
the selected SHA engine to the user’s data, and then the verification it is applied
over this digest as specified in the next functions:
digest = SHAw(dat︸︷︷︸

datlen

)

• bool_t ftmgs_claim_dgst(ftmgs_claim_t* clm,

const ftmgs_sign_t* sg,

const void* dat_digest,

unsigned dat_digestlen,

const ftmgs_pbkey_t* gpk,

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It issues a FTMGS claim (clm) for group public key (gpk) with member’s pri-
vate key (msk) for a signature (sg). The claim is applied to some given data
digest (dat_digest) of length (dat_digestlen) that has been generated by some
hashing functions 8.11.

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the claim, the SHA hash (truncated to security
parameter k bits) is applied to the following data in the same order as specified
(numbers are represented as a big-endian byte sequence):
c = SHAk(dgst ||B1||n||T7||T6)
where dgst = SHAk(digest ||T1|| · · · ||T7||c||sx||sx′ ||se||sr||sh′)

• bool_t ftmgs_vrfy_claim_dgst(const ftmgs_claim_t* clm,

const ftmgs_sign_t* sg,

const void* dat_digest,

unsigned dat_digestlen,

const ftmgs_pbkey_t* gpk);

26

It returns TRUE (1) if a FTMGS claim (clm) can be verified for signature (sg)
and group public key (gpk), and returns FALSE (0) otherwise. The verification is
applied to some given data digest (dat_digest) of length (dat_digestlen) that
has been generated by some hashing functions 8.11.

Compatibility note: when verifying the claim, the SHA hash (truncated to se-
curity parameter k bits) is applied to the following data in the same order as
specified (numbers are represented as a big-endian byte sequence):
c = SHAk(dgst ||B1||n||T7||T6)
where dgst = SHAk(digest ||T1|| · · · ||T7||c||sx||sx′ ||se||sr||sh′)

8.10 Linking Signatures

Abstract Data Types

• ftmgs_link_t: it holds the proof 〈λ℘〉 of the linking of several FTMGS signa-
tures.

Construction, Copy and Destruction

The following functions declare the constructor, cloner and destructor for the
aforementioned abstract data type:

ftmgs_link_t* ftmgs_link_t_new();

ftmgs_link_t* ftmgs_link_t_clone(const ftmgs_link_t* o);

void ftmgs_link_t_delete(ftmgs_link_t* p);

API

• bool_t ftmgs_link_dat(unsigned which_sha,

ftmgs_link_t* lnk,

const void* dat, unsigned datlen,

const ftmgs_sign_t* sg0,

const ftmgs_pbkey_t* gpk0,

const ftmgs_sign_t* sg1,

const ftmgs_pbkey_t* gpk1,

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It issues a FTMGS link (lnk) with member’s private key (msk) for two signatures
(sg0, sg1) for group public keys (gpk0, gpk1). The SHA engine, as selected by
which_sha from aforementioned values, is applied to some given data bytes (dat)
of length (datlen).

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the link, the digest is calculated by applying
the selected SHA engine to the user’s data, and then the link it is issued over
this digest as specified in the next functions:
digest = SHAw(dat︸︷︷︸

datlen

)

• bool_t ftmgs_vrfy_link_dat(unsigned which_sha,

const ftmgs_link_t* lnk,

const void* dat, unsigned datlen,

const ftmgs_sign_t* sg0,

const ftmgs_pbkey_t* gpk0,

const ftmgs_sign_t* sg1,

const ftmgs_pbkey_t* gpk1);

It returns TRUE (1) if a FTMGS link (lnk) can be verified for signatures (sg0,
sg1) and group public keys (gpk0, gpk1), and returns FALSE (0) otherwise. The

27

SHA engine, as selected by which_sha from aforementioned values, is applied to
some given data bytes (dat) of length (datlen).

Compatibility note: when verifying a link, the digest is calculated by applying
the selected SHA engine to the user’s data, and then the verification it is applied
over this digest as specified in the next functions:
digest = SHAw(dat︸︷︷︸

datlen

)

• bool_t ftmgs_link_m_dat(unsigned which_sha,

ftmgs_link_t* lnk,

const void* dat,

unsigned datlen,

unsigned nsg,

const ftmgs_sign_t* sg[],

const ftmgs_pbkey_t* gpk[],

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It is the same as previous ftmgs_link_dat(), but applied to an array of signa-
tures.

• bool_t ftmgs_vrfy_link_m_dat(unsigned which_sha,

const ftmgs_link_t* lnk,

const void* dat,

unsigned datlen,

unsigned nsg,

const ftmgs_sign_t* sg[],

const ftmgs_pbkey_t* gpk[]);

It is the same as previous ftmgs_vrfy_link_dat(), but applied to an array of
signatures.

• bool_t ftmgs_link_dgst(ftmgs_link_t* lnk,

const void* dat_digest,

unsigned dat_digestlen,

const ftmgs_sign_t* sg0,

const ftmgs_pbkey_t* gpk0,

const ftmgs_sign_t* sg1,

const ftmgs_pbkey_t* gpk1,

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It issues a FTMGS link (lnk) with member’s private key (msk) for two signatures
(sg0, sg1) for group public keys (gpk0, gpk1). The link is applied to some given
data digest (dat_digest) of length (dat_digestlen) that has been generated by
some hashing functions 8.11.

It returns TRUE (1) if everything was fine, and returns FALSE (0) otherwise.

Compatibility note: when issuing the link, the SHA hash (truncated to security
parameter k bits) is applied to the following data in the same order as specified
(numbers are represented as a big-endian byte sequence):
c = SHAk(dgst ||B1||B2||n1||n2||T17||T16||T27||T26)
where dgst = SHAk(digest ||T11|| · · · ||T17||c1||s1x||s1x′ ||s1e||s1r||s1h′ ||T21|| · · · ||T27||c2||s2x||s2x′ ||s2e||s2r||s2h′)

• bool_t ftmgs_vrfy_link_dgst(const ftmgs_link_t* lnk,

const void* dat_digest,

unsigned dat_digestlen,

const ftmgs_sign_t* sg0,

const ftmgs_pbkey_t* gpk0,

const ftmgs_sign_t* sg1,

const ftmgs_pbkey_t* gpk1);

It returns TRUE (1) if a FTMGS link (lnk) can be verified for signatures (sg0,
sg1) and group public keys (gpk0, gpk1), and returns FALSE (0) otherwise.

28

The verification is applied to some given data digest (dat_digest) of length
(dat_digestlen) that has been generated by some hashing functions 8.11.

Compatibility note: when verifying the link, the SHA hash (truncated to se-
curity parameter k bits) is applied to the following data in the same order as
specified (numbers are represented as a big-endian byte sequence):
c = SHAk(dgst ||B1||B2||n1||n2||T17||T16||T27||T26)
where dgst = SHAk(digest ||T11|| · · · ||T17||c1||s1x||s1x′ ||s1e||s1r||s1h′ ||T21|| · · · ||T27||c2||s2x||s2x′ ||s2e||s2r||s2h′)

• bool_t ftmgs_link_m_dgst(ftmgs_link_t* lnk,

const void* dat_digest,

unsigned dat_digestlen,

unsigned nsg,

const ftmgs_sign_t* sg[],

const ftmgs_pbkey_t* gpk[],

const ftmgs_mbr_prkey_t* msk,

rndctx_t* rnd_ctx);

It is the same as previous ftmgs_link_m_dgst(), but applied to an array of
signatures.

• bool_t ftmgs_vrfy_link_m_dgst(const ftmgs_link_t* lnk,

const void* dat_digest,

unsigned dat_digestlen,

unsigned nsg,

const ftmgs_sign_t* sg[],

const ftmgs_pbkey_t* gpk[]);

It is the same as previous ftmgs_vrfy_link_m_dgst(), but applied to an array
of signatures.

8.11 Hashing

The hash API may be used to create the digest of some data that is not directly
available as an array of contiguous data bytes.

The following values allow to choose the operation mode for the SHA hash
engine, as well as the length (in bytes) of the hash digest:

enum sha_mode_t {
Sha1, Sha224, Sha256, Sha384, Sha512

};
enum sha_size_t {

Sha1Size = 20, Sha224Size = 28, Sha256Size = 32,

Sha384Size = 48, Sha512Size = 64, ShaMaxSize = Sha512Size

};

Abstract Data Types

• shactx_t: it is used to hold the internal context of the SHA engine.

Construction, Copy and Destruction

The following functions declare the constructor, cloner and destructor for the
aforementioned abstract data type:

shactx_t* shactx_t_new();

shactx_t* shactx_t_clone(const shactx_t* o);

void shactx_t_delete(shactx_t* p);

29

API

• bool_t sha_reset(shactx_t* sha_ctx, unsigned sha_mode);

It resets the context for the SHA engine, as selected by sha_mode from the
aforementioned values.

• bool_t sha_input(shactx_t* sha_ctx, const void* dat, unsigned datlen);

It incrementally incorporates a sequence of datlen bytes stored in dat to the
SHA context.

• bool_t sha_result(shactx_t* sha_ctx, void* dat_digest, unsigned* digestlen);

It generates a digest of the data previously incorporated into the SHA con-
text. This digest is stored into dat_digest, which should have enough allocated
memory to hold the result, which is specified by digestlen (a maximum value
requests the length specified for the previously selected SHA engine, see afore-
mentioned values for sha sizes). As result, digestlen also holds the length of
the generated digest.

8.12 Data Buffer

The data buffer is used to hold a buffer of bytes representing the ASN.1 DER
encoding of some abstract data type.

Abstract Data Types

• buffer_t: it holds a buffer of bytes dynamically allocated in the heap. It holds
the data in memory, as well as the size of the data currently stored in the buffer.

Construction, Copy and Destruction

The following functions declare the constructor, cloner and destructor for the
aforementioned abstract data type:

buffer_t* buffer_t_new();

buffer_t* buffer_t_clone(const buffer_t* o);

void buffer_t_delete(buffer_t* p);

API

• char* buffer_data(const buffer_t* buff);

It returns a pointer to the data bytes stored in the buffer.

• unsigned buffer_size(const buffer_t* buff);

It returns the size of the data bytes stored in the buffer.

8.13 ASN.1 Conversion of Data Structures

The following values define the return codes from the ASN.1 conversion func-
tions:

30

typedef enum asn1_retcode_t {
ASN1_Success,

ASN1_File_Not_Found,

ASN1_Element_Not_Found,

ASN1_Identifier_Not_Found,

ASN1_Der_Error,

ASN1_Value_Not_Found,

ASN1_Generic_Error,

ASN1_Value_Not_Valid,

ASN1_Tag_Error,

ASN1_Tag_Implicit,

ASN1_Error_Type_Any,

ASN1_Syntax_Error,

ASN1_Mem_Error,

ASN1_Mem_Alloc_Error,

ASN1_Der_Overflow,

ASN1_Name_Too_Long,

ASN1_Array_Error,

ASN1_Element_Not_Empty

} asn1_retcode_t;

API

The following functions allow to encode in ASN.1 DER each of the aforemen-
tioned abstract data types, storing the result in the aforementioned buffer_t

buffer of bytes. They also allow to decode from a buffer of bytes in ASN.1 DER
to any of the aforementioned abstract data types:

asn1_retcode_t asn1_enc_dssparms(buffer_t* buff, const dss_parms_t* p);

asn1_retcode_t asn1_dec_dssparms(dss_parms_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_dsapbkey(buffer_t* buff, const dsa_pbkey_t* p);

asn1_retcode_t asn1_dec_dsapbkey(dsa_pbkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_dsaprkey(buffer_t* buff, const dsa_prkey_t* p);

asn1_retcode_t asn1_dec_dsaprkey(dsa_prkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_fapbkey(buffer_t* buff, const ftmgs_fa_pbkey_t* p);

asn1_retcode_t asn1_dec_fapbkey(ftmgs_fa_pbkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_grpbkey(buffer_t* buff, const ftmgs_pbkey_t* p);

asn1_retcode_t asn1_dec_grpbkey(ftmgs_pbkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_grprkey(buffer_t* buff, const ftmgs_prkey_t* p);

asn1_retcode_t asn1_dec_grprkey(ftmgs_prkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_fapbkeysh(buffer_t* buff, const ftmgs_faj_pbkey_share_t* p);

asn1_retcode_t asn1_dec_fapbkeysh(ftmgs_faj_pbkey_share_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_faprkey(buffer_t* buff, const ftmgs_faj_prkey_t* p);

asn1_retcode_t asn1_dec_faprkey(ftmgs_faj_prkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_fagrpbkeysh(buffer_t* buff, const ftmgs_faj_gr_pbkey_share_t* p);

asn1_retcode_t asn1_dec_fagrpbkeysh(ftmgs_faj_gr_pbkey_share_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_fagrprkey(buffer_t* buff, const ftmgs_faj_gr_prkey_t* p);

asn1_retcode_t asn1_dec_fagrprkey(ftmgs_faj_gr_prkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_dlog(buffer_t* buff, const dlog_t* p);

asn1_retcode_t asn1_dec_dlog(dlog_t* p, const void* buff, int len);

31

asn1_retcode_t asn1_enc_dlogx(buffer_t* buff, const dlogx_t* p);

asn1_retcode_t asn1_dec_dlogx(dlogx_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_joinpbl(buffer_t* buff, const ftmgs_join_pbl_t* p);

asn1_retcode_t asn1_dec_joinpbl(ftmgs_join_pbl_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_joinprv(buffer_t* buff, const ftmgs_join_prv_t* p);

asn1_retcode_t asn1_dec_joinprv(ftmgs_join_prv_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_mbrref(buffer_t* buff, const ftmgs_mbr_ref_t* p);

asn1_retcode_t asn1_dec_mbrref(ftmgs_mbr_ref_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_mbrprkey(buffer_t* buff, const ftmgs_mbr_prkey_t* p);

asn1_retcode_t asn1_dec_mbrprkey(ftmgs_mbr_prkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_sign(buffer_t* buff, const ftmgs_sign_t* p);

asn1_retcode_t asn1_dec_sign(ftmgs_sign_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_openshare(buffer_t* buff, const ftmgs_opensharej_t* p);

asn1_retcode_t asn1_dec_openshare(ftmgs_opensharej_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_openacc(buffer_t* buff, const ftmgs_openacc_t* p);

asn1_retcode_t asn1_dec_openacc(ftmgs_openacc_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_open(buffer_t* buff, const ftmgs_open_t* p);

asn1_retcode_t asn1_dec_open(ftmgs_open_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_mtkeyshare(buffer_t* buff, const ftmgs_mtkey_sharej_t* p);

asn1_retcode_t asn1_dec_mtkeyshare(ftmgs_mtkey_sharej_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_mtkeyacc(buffer_t* buff, const ftmgs_mtkey_acc_t* p);

asn1_retcode_t asn1_dec_mtkeyacc(ftmgs_mtkey_acc_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_mtkey(buffer_t* buff, const ftmgs_mtkey_t* p);

asn1_retcode_t asn1_dec_mtkey(ftmgs_mtkey_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_claim(buffer_t* buff, const ftmgs_claim_t* p);

asn1_retcode_t asn1_dec_claim(ftmgs_claim_t* p, const void* buff, int len);

asn1_retcode_t asn1_enc_link(buffer_t* buff, const ftmgs_link_t* p);

asn1_retcode_t asn1_dec_link(ftmgs_link_t* p, const void* buff, int len);

9 ASN.1 Definition of FTMGS Data Structures

9.1 Size of ASN.1 DER Encoding of FTMGS Data Struc-
tures

Size (in bytes) of the ASN.1 DER encoding of FTMGS data structures for the
following security parameters [Nu: 1024, K: 128].

Group Setup

ftmgs fa pbkey t

412
ftmgs pbkey t

1607
ftmgs prkey t

137
ftmgs faj pbkey share t

264
ftmgs faj prkey t

264

ftmgs faj gr pbkey share t

266
ftmgs faj gr prkey t

68

32

Join New Member (without User’s Authentication)

ftmgs join prv t:u1

352
ftmgs join pbl t:u1

751
ftmgs join pbl t:gm2

54
ftmgs join prv t:u3

207

ftmgs join pbl t:u3

1326
ftmgs join pbl t:gm4

240
ftmgs mbr ref t

1282
ftmgs mbr prkey t

336

Join New Member (with User’s DSA Authentication)

dss parms t

290
dsa pbkey t

132
dsa prkey t

22
dlogx t

24
dlog t

399

ftmgs join prv t:u1

340
ftmgs join pbl t:u1

750
ftmgs join pbl t:gm2

54
ftmgs join prv t:u3

207

ftmgs join pbl t:u3

1345
ftmgs join pbl t:gm4

240
ftmgs mbr ref t

1688
ftmgs mbr prkey t

324

Sign / Verify

ftmgs sign t

1308

ftmgs sign t

(with user’s auth)
1326

Open / Check

ftmgs opensharej t

218
ftmgs openacc t

137
ftmgs open t

134

Reveal / Trace

ftmgs mtkey sharej t

542
ftmgs mtkey acc t

267
ftmgs mtkey t

201

Claim

ftmgs claim t

55

ftmgs claim t

(with user’s auth)
73

Link

ftmgs link t

55

ftmgs link t

(with user’s auth)
73

9.2 ASN.1 Definition of FTMGS Data Structures

Ftmgs { 1 2 3 4 } -- DUMMY OID

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- DSA

id-dsa-base OBJECT IDENTIFIER ::= {

iso(1) member-body(2) us(840) x9-57(10040) x9cm(4)

}

id-dsa OBJECT IDENTIFIER ::= {

id-dsa-base 1

}

id-dsa-with-sha1 OBJECT IDENTIFIER ::= {

33

id-dsa-base 3

}

-- RFC-3279

Dss-Parms ::= SEQUENCE {

p INTEGER,

q INTEGER,

g INTEGER

}

-- RFC-3279

DSAPublicKey ::= INTEGER -- public key, Y

-- RFC-5958 pg.5

DSAPrivateKey ::= INTEGER -- private key, x

-- RFC-3279

Dss-Sig-Value ::= SEQUENCE {

r INTEGER,

s INTEGER

}

-- Object Identifiers

id-ftmgs-base OBJECT IDENTIFIER ::= {

1 2 3 4 -- some arcs to be registered DUMMY OID

}

id-ftmgs OBJECT IDENTIFIER ::= {

id-ftmgs-base 1

}

id-ftmgs-with-sha1 OBJECT IDENTIFIER ::= {

id-ftmgs-base 3

}

id-ftmgs-with-sha256 OBJECT IDENTIFIER ::= {

id-ftmgs-base 5

}

id-ftmgs-with-sha512 OBJECT IDENTIFIER ::= {

id-ftmgs-base 7

}

-- Unsigned Small Integer (16 bits)

UInt16 ::= INTEGER (0..65535)

-- Syspar Structure Definition

SysPar ::= SEQUENCE {

nu UInt16,

k UInt16

}

-- Fairness Authorities’ Public Key

FAPbKey ::= SEQUENCE {

sp SysPar,

nkeys UInt16,

n INTEGER,

g INTEGER,

y INTEGER

}

-- Fairness Authorities’ Group Public Key

34

FAGrPbKey ::= SEQUENCE {

sp SysPar,

nkeys UInt16,

n INTEGER,

g INTEGER,

y INTEGER

}

-- Group Public Key

GrPbKey ::= SEQUENCE {

gmpk FAGrPbKey,

a0 INTEGER,

a INTEGER,

b INTEGER,

h INTEGER,

fapk FAPbKey

}

-- Group Manager’s Private Key [JOIN]

GrPrKey ::= SEQUENCE {

p INTEGER,

q INTEGER

}

-- Fairness Authority’s Public Key

FAPbKeyShare ::= SEQUENCE {

yj INTEGER

}

-- Fairness Authority’s Private Key [REVEAL]

FAPrKey ::= SEQUENCE {

xj INTEGER

}

-- Fairness Authority’s Group Public Key

FAGrPbKeyShare ::= SEQUENCE {

yj INTEGER,

hj INTEGER

}

-- Fairness Authority’s Group Private Key [OPEN]

FAGrPrKey ::= SEQUENCE {

xj INTEGER

}

-- User’s Master Public Key (from DSA or FTMGS-Signature)

DLog ::= SEQUENCE {

n INTEGER,

g INTEGER,

y INTEGER

}

-- User’s Master Private Key (from DSA o FTMGS-Signature)

DLogX ::= SEQUENCE {

x INTEGER

}

-- Join Proof

JoinProof ::= SEQUENCE {

c INTEGER,

sx1 INTEGER,

sr INTEGER,

35

sx INTEGER

}

JoinU1Prv ::= SEQUENCE {

nadrp-xx INTEGER,

nadrp-rr INTEGER,

x1i INTEGER

}

JoinU1Pbl ::= SEQUENCE {

nadrp-C1 INTEGER,

nadrp-C2 INTEGER,

nadrp-c INTEGER,

nadrp-sx INTEGER,

nadrp-sr INTEGER,

ci INTEGER

}

JoinGM2Pbl ::= SEQUENCE {

nadrp-yy INTEGER

}

JoinU3Prv ::= SEQUENCE {

nadrp-x INTEGER,

xi INTEGER

}

JoinU3Pbl ::= SEQUENCE {

nadrp-C3 INTEGER,

nadrp-c INTEGER,

nadrp-sx INTEGER,

nadrp-sz INTEGER,

nadrp-sr INTEGER,

ui INTEGER,

vi INTEGER,

eiproof JoinProof

}

JoinGM4Pbl ::= SEQUENCE {

ai INTEGER,

ei INTEGER

}

JoinPbl ::= SEQUENCE {

status UInt16,

data CHOICE {

u1 [0] JoinU1Pbl,

gm2 [1] JoinGM2Pbl,

u3 [2] JoinU3Pbl,

gm4 [3] JoinGM4Pbl,

error [4] NULL

}

}

JoinPrv ::= SEQUENCE {

status UInt16,

data CHOICE {

u1 [0] JoinU1Prv,

u3 [1] JoinU3Prv,

error [2] NULL

}

}

36

-- Member’s Reference

MbrRef ::= SEQUENCE {

ai INTEGER,

ei INTEGER,

ci INTEGER,

xi INTEGER,

ui INTEGER,

vi INTEGER,

uauth [0] DLog OPTIONAL,

eiproof JoinProof

}

-- Member’s Private Key

MbrPrKey ::= SEQUENCE {

ai INTEGER,

ei INTEGER,

xi INTEGER,

x1i INTEGER

}

-- Sign

Sign ::= SEQUENCE {

t1 INTEGER,

t2 INTEGER,

t3 INTEGER,

t4 INTEGER,

t5 INTEGER,

t6 INTEGER,

t7 INTEGER,

c INTEGER,

sx INTEGER,

sx1 INTEGER,

se INTEGER,

sr INTEGER,

sh1 INTEGER

}

-- Open

Open ::= SEQUENCE {

a INTEGER

}

OpenShare ::= SEQUENCE {

alphax INTEGER,

c INTEGER,

sx INTEGER

}

OpenAcc ::= SEQUENCE {

nshares UInt16,

a INTEGER

}

-- Reveal&Trace

MTKey ::= SEQUENCE {

n INTEGER,

x INTEGER

}

MTKeyShare ::= SEQUENCE {

alphax INTEGER,

37

c INTEGER,

sx INTEGER

}

MTKeyAcc ::= SEQUENCE {

nshares UInt16,

a INTEGER

}

-- Claim

Claim ::= SEQUENCE {

c INTEGER,

sx INTEGER

}

-- Link

Link ::= SEQUENCE {

c INTEGER,

sx INTEGER

}

END

10 Usage Example

The attached file test.c, licensed under GNU GPLv2, is an example of using
the FTMGS library public API.

References

[1] V. Benjumea, S. G. Choi, J. Lopez, and M. Yung. Fair Traceable Multi-
Group Signatures. In G. Tsudik, editor, FC’08: 12th. Intl. Conf. on Fi-
nancial Cryptography and Data Security, volume 5143 of Lecture Notes in
Computer Science, pages 231–246. Springer-Verlag, Jan. 2008. Full Version:
http://eprint.iacr.org/2008/047.

[2] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In EUROCRYPT’99, vol. 1592 of LNCS,
pp. 107–122, Springer-Verlag, 1999

[3] R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA
Assumption. In 6th ACM Conf on Computer and Communication Security,
1999 ACM Transactions on Information and System Security, May 9, 2000.

[4] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable Signa-
tures. In EUROCRYPT’04, pages 571–589, 2004. Full Version:
http://eprint.iacr.org/2004/007.

[5] P. Fouque and J. Stern. Fully distributed threshold RSA under standard
assumptions. In ASIACRYPT, 2001.

38

