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Abstract. We consider the problem of finding small Golomb rulers, a
hard combinatorial optimization task. This problem is here tackled by
means of a hybrid evolutionary algorithm (EA). This EA incorporates
ideas from greedy randomized adaptive search procedures (GRASP) in
order to perform the genotype-to-phenotype mapping. As it will be shown,
this hybrid approach can provide high quality results, better than those
of reactive GRASP and other EAs.

1 Introduction

The concept of Golomb rulers was first introduced by W.C. Babcock in 1953
[1], and further described by S.W. Golomb [2]. Golomb Rulers are a class of
undirected graphs that, unlike usual rulers, measure more discrete lengths than
the number of marks they carry. The particularity of Golomb Rulers is that on
any given ruler, all differences between pairs of marks are unique. This feature
makes Golomb Rulers really interesting in many practical applications (e.g., [3,
4] explain the connection of Golomb Rulers to real world problems in diverse
fields such as radio communications, X-ray crystallography, coding theory, radio
astronomy, and pulse phase modulation communications).

Traditionally, researchers are usually interested in discovering rulers with
minimum length and Golomb rulers are not an exception. An Optimal Golomb
Ruler (OGR) is defined as the shortest Golomb ruler for a number of marks.
There may be multiple OGRs for a specific number of marks.

The search for OGRs is an extremely difficult task as it is a combinatorial
problem whose bounds grow geometrically with respect to the solution size [5].
This has been a major limitation as each new ruler to be discovered is by neces-
sity larger than its predecessor. Fortunately, the search space is bounded and,
therefore, solvable [6]. To date, the highest Golomb ruler whose shortest length is
known is the ruler with 23 marks [7, 8]. Best solutions for OGRs with a number
of marks between 20 and 23 were obtained by massive parallelism projects, and
it took several months to find optimum for each of those instances [9, 4]. In July
2000, distributed.net started the web search for the 24 and 25 OGR’s, although
no news exists about the success in finding these optimums.

To our knowledge, there have been three attempts to apply evolutionary
algorithms (EAs) to the search for OGRs (see section 2.2). In this paper, we
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present a hybrid evolutionary approach designed to speed-up the process of
searching good solutions. This approach is based on using ideas taken from the
GRASP metaheuristic [10]. To be precise, we propose the use of a GRASP-like
mechanism to perform the genotype-to-phenotype mapping.

2 Background

The OGR problem can be classified as a fixed-size subset selection problem, such
as e.g., the p-median problem [11]. It exhibits some very distinctive features
though. A brief overview of the problem, and how it has been tackled in the
literature is provided below.

2.1 Golomb Rulers

A n-mark Golomb ruler is an ordered set of n distinct non-negative integers,
called marks, a1 < ... < an, such that all the differences ai − aj (i > j) are
distinct. Clearly we may assume a1 = 0. By convention, an is the length of the
Golomb ruler. A Golomb ruler with n marks is an optimal Golomb ruler if, and
only if,

– there exists no other n-mark Golomb rulers having smaller length, and
– the ruler is canonically “smaller” with respect to the the equivalent rulers.

This means that the first differing entry is less than the corresponding entry
in the other ruler.

Fig. 1 shows an OGR with 4-marks. Observe that all distances between any
two marks are different.

Typically, Golomb Rulers are represented by the values of the marks on the
ruler, i.e., in a n-mark Golomb ruler, ai = x (1 � i � n) means that x is the
mark value in position i. The sequence (0, 1, 4, 6) would then represent the ruler
in Fig. 1. However, this representation turns out to be inappropriate for EAs (for
example, it is problematic with respect to developing good crossover operators
[12]). An alternative representation consists of representing the Golomb ruler via
the lengths of its segments, where the length of a segment of a ruler is defined
as the distance between two consecutive marks. Therefore, a Golomb Ruler can
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Fig. 1. A Golomb Ruler with 4 marks.
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be represented with n − 1 marks specifying the lengths of the n − 1 segments
that compose it. In the previous example, the sequence (1, 3, 2) would encode
the ruler depicted in Fig. 1.

2.2 Evolutionary Approaches to the OGR

Golomb rulers have been solved by using very different techniques. We will re-
strict here just to the evolutionary approaches considered so far. The interested
reader on other techniques is referred to [7, 8].

To our knowledge, there have been three attempts to apply Evolutionary
Computation (EC) techniques to the search for OGRs. In 1995, Soliday, Homai-
far and Lebby [12] used a genetic algorithm on different instances of the Golomb
Ruler problem. In their representation, each chromosome is composed by a per-
mutation of n − 1 integers that represents the sequence of the n − 1 lengths
of its segments. In order to assure the uniqueness of each segment length in
all the individuals of the population, certain precautions were taken: initially,
an array with numbers 1 to m (i.e. the maximum segment length) was loaded;
then a repetitive sequence of random swaps between two positions i, j (i �= j
and i, j > 1) in the array was executed; finally the first n − 1 are selected and
position 1 (initially containing the value 1) was randomly swapped with some
of those selected positions. Soliday et al. also prevented mirror image represen-
tations by aligning the ruler. Two evaluation criteria were followed: the overall
length of the ruler, and the number of repeated measurements. The mutation
operator consisted of two types: a permutation in the segment order, or a change
in the segment lengths. As with the population generation, special precautions
were taken to assure that segment of length 1 is retained in the ruler as it was
proved that all good Golomb rulers should have a segment of length one [2]. A
special crossover operator was designed to guarantee that descendants are valid
permutations and that length 1 is also retained.

Later, Feeney studied the effect of hybridizing genetic algorithms with lo-
cal improvement techniques to solve Golomb rulers [3]. Namely, Feeney exam-
ined three methods of searching for Golomb Rulers, using genetic algorithms
on its own, with local search and Baldwinian learning, and with local search
and Lamarckian learning (see e.g. [13–15] for more information on Lamarckian
and Baldwinian learning). It is known that, combined with EAs, local search
techniques often reduces drastically the number of generations to find a near-
optimum solution (see e.g., [16]). However, this can be also a weakness since
it can result in premature convergence to suboptimal solutions in certain prob-
lems. Moreover, distinct learning techniques may behave differently in solving
the same problem; therefore, these techniques tend to depend greatly on the
problem itself. The representation used consisted of an array of integers corre-
sponding to the marks of the ruler. The crossover operator was similar to that
used in Soliday et al.’s approach although a sort procedure was added at the
end. Mutation process was applied on each segment of the ruler with a mutation
probability, and consisted basically in the addition to the segment mark selected
for mutation of a random amount in the range [−x, x] where x is the maximum
difference between any pair of marks in any ruler of the initial population.



484 Carlos Cotta and Antonio J. Fernández

Table 1. Results obtained by Soliday et al.’s and Feeney’s approaches. The columns
denoted by Len, Pob, Gen and Err, respectively indicate the length of the best solution
calculated, the initial population size, the number of generations required to produce
the reported length, and the relative error with respect to the shortest known length
(shown in column opt).

Solidayet al. Feeney
Instances opt. Len Pob Gen Err Len Pob Gen Err

OGR-5 11 11 512 10 0% 11 100 6 0%
OGR-6 17 17 512 22 0% 17 100 6 0%
OGR-7 25 25 512 22 0% 25 100 23 0%
OGR-8 34 35 1024 84 2.94% 34 100 18 0%
OGR-9 44 44 1024 433 0% 47 100 166 6.81%
OGR-10 55 62 1024 458 12.73% 62 100 229 12.72%
OGR-11 72 79 1024 152 9.72% 80 100 166 11.11%
OGR-12 85 103 1024 59 21.18% 101 100 138 18.82%
OGR-13 106 124 1024 664 16.98% 122 100 128 15.09%
OGR-14 127 168 2048 1506 32.28% 146 100 135 14.96%
OGR-15 151 206 2048 858 36.42% 281 100 79 18.86%
OGR-16 177 238 2048 708 36.46% 213 100 48 20.33%

Table 1 shows the results produced by Soliday et al.’s and Feeney’s ap-
proaches. The best known OGR for every instance size have been taken from [7,
8]. With respect to the different approaches studied by Feeney, we have selected
the best result obtained in [3], that corresponds to the execution of a genetic
algorithm (with high mutation and no crossover) without local search. The max-
imum number of generations allowed was 250; the program was executed three
times and the most typical result1 found is shown. These results indicate that
Soliday et al.’s approach is not very good compared to further EA approaches
to solve the Golomb problem. Observe that, for rulers with 10 to 16 marks, the
relative error is far from the known OGRs as it is between 9.72% and 36.46%. On
its turn, Feeney’s approach behaves better and maintains, for the same rulers,
this error between 6.81% and 20.33%, that means a significant improvement.

The hybrid approach of Feeney was found to be successful in generating
near optimum rulers and in generating optimal Golomb rulers of a short length.
Observe also that the error remains in the short range [14.96%,20.33%] for rulers
with marks from 12 to 16. This clearly indicates a stabilization of the error.
However, as it is reported in [3], performance was really poor, as it was expected,
mainly due to the local search.

Recently, Pereira et al. [17] have presented a new EA approach to find OGRs.
This new approach uses the concept of random keys [18] to codify the informa-
tion contained in each chromosome. As in the Soliday et al.’s approach, any
candidate solution for a n-mark OGR is represented with the length of each
of its n − 1 segments. In fact, a chromosome is composed by a permutation

1 The most typical result is the ruler whose length is closest to the average of the
three, unless two had the same length in which case it was their length.
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of λ distinct values (where λ is the maximum segment length), and encoding
of the permutation is done with random keys (RK). The basic idea consists of
generating n random numbers (i.e., the keys) sampled from the interval [0, 1]
and ordered by its position in the sequence 1, . . . , n ; then all positions of the
keys are sorted, in decreasing order, according to the value that they contain.
This guarantees to obtain always a permutation of n unique numbers between
1 and n. The codification uses a more advanced principle based on the concept
of NetKeys (an extension of RK to problems dealing with tree network design)
although the basic idea is that described above. Two evaluation criteria, similar
to those described in [12], were followed: ruler length and whether the solution
contains repeated measurements. They also presented an alternative algorithm
that adds a heuristic, favoring the insertion of small segments, to the RK ap-
proach already proposed. We will return later to this approach since it has been
included in our experimental comparison.

3 A GRASP-Based Hybrid Approach

As anticipated in Sect. 1, the EA approach proposed is based on incorporating
ideas from GRASP. It is thus necessary discussing firstly the deployment of this
latter metaheuristic on the OGR problem.

3.1 Basic GRASP for the OGR Problem

Greedy randomized adaptive search procedures can be viewed as repetitive sam-
pling techniques [19]. Each iteration of the algorithm produces a tentative so-
lution for the problem at hand by means of a greedy randomized construction
algorithm. This latter algorithm assumes that solutions are represented by a list
of attributes, and builds incrementally solutions by specifying values for these
attributes. More precisely, the values for each attribute are ranked according to
some local quality measure, and selected using a quality-biased mechanism. The
pseudocode of this process would be as follows:

1. sol ← ∅
2. while ¬completed(sol) do

(a) RCL← build a ranked candidate list.
(b) s← select attribute value from RCL.
(c) sol ← sol ∪ {s}

3. return sol

One of the key steps in this pseudocode is the selection of an attribute from
RCL. This can be typically done by using a qualitative criterion (i.e., a candidate
is selected among the best k elements in RCL, where k is a parameter), or a
quantitative criterion (i.e., a candidate is selected among the elements whose
quality is between q1 and q1 + α · (q|RCL| − q1), where qi is the quality of the
i-th element of RCL and α is a parameter). Notice that having k = 1 or α = 0
would thus result in a plain greedy heuristic. GRASP is based on iterating this
construction procedure (possibly applying some local improvement technique to
the so-obtained solutions), keeping the best solution generated along the run.
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In the OGR problem, the attributes of solutions are obviously the position of
the marks. The construction procedure would then iteratively place each of the
n− 1 marks (the first mark is assumed to be a1 = 0). The (i + 1)-th mark can
be obtained as ai+1 = ai + li, where li � 1 is the i-th segment length. We thus
have a potential list of candidates based on tentative values for li ∈ {1, 2, · · · }.
Actually, this potential list of candidates can be as long as desired, although
a bound λ ∈ O(n) is typically chosen. Of course, many candidates from this
potential list are infeasible since they would lead to repeated distances between
marks. A potential value li would then be feasible if, and only if, for all j, k, r
such that 1 � j � i and 1 � k < r � i, it holds that (ai + li − aj) �= (ar − ak).
After filtering infeasible segment lengths (only values li � max1�k<r�i(ar − ak)
have to be checked) we come up with the elements of the actual RCL. A quality
measure is now required. In this problem, the natural measure is the length of the
ruler. Since at each step the value of ai is known, it turns out that the ranked list
consists of the sequence of increasing feasible values for li. A qualitative selection
criterion can then be defined by picking a random candidate among the smallest
k feasible values for li.

3.2 Reactive GRASP vs. Hybrid EA

One of the potential problems of the basic GRASP procedure described before
relies on the selection of the parameter for selecting an attribute value from
the RCL. As shown in [20], using a single fixed value for this parameter may
hinder finding high-quality solutions. Several options are possible to solve this
problem. In particular, a learning-based strategy termed reactive GRASP has
been proposed [21]. In this case, the value of the parameter is chosen in each
iteration from a set of discrete values Π = {π1, · · · , πm}. The selection of the
precise value of the parameter at each iteration can be done on the basis of
the goodness γi of the best solution ever generated by using each parameter
πi. Any of the selection mechanisms typically used in EAs can be utilized for
this purpose. For example, in [21], a roulette-wheel procedure is proposed. Since
we are dealing here with a minimization problem, such a proportional approach
would not be possible unless goodness values were appropriately transformed.
We have opted for a simpler approach: using a non-proportionate approach. To
be precise, we have considered binary tournament for selecting parameter values.

Using a reactive approach allows the algorithm focusing on the more appro-
priate subset of parameter values. However, it can still face difficulties if optimal
(or near-optimal) solutions comprise an attribute value whose rank in the RCL
is high: a low value of the selection parameter would preclude picking this at-
tribute value; a high enough value of the selection parameter could select it, but
many other low-quality attributes as well. A finer-grain mechanism would be re-
quired here, an approach that allowed for using different values of the parameter
not just in each application of the construction phase, but in each internal step
of the construction algorithm. This is where EAs come into play.

EAs can be used to evolve the sequence of n − 1 selection parameters used
within an application of the construction algorithm. In principle, this implies
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that each individual would be a sequence 〈r1, · · · , rn−1〉, where ri would be
the parameter used in the i-th iteration of the construction algorithm. Two
practical consideration must be taken into account though. The first one refers to
the genotype-to-phenotype mapping: by making randomized choices of attribute
values this mapping would be stochastic. Since this would result in an increased
level of complexity of the algorithm, a deterministic choice is made. To be precise,
the value ri indicates that the ri-th best attribute value should be selected in
the i-th step. The second consideration refers to the last step of the construction
algorithm. In this last step it does not make sense to pick any other attribute
value than the smallest one. For this reason, rn−1 = 1, and individuals need only
contain the sequence 〈r1, · · · , rn−2〉. Notice that this representation of solutions
is orthogonal [22], i.e., any sequence represents a feasible solution, and hence,
standard operators for crossover and mutation can be used to manipulate them.

4 Experimental Results

The experiments have been performed using four different algorithms: plain
GRASP, reactive GRASP, a permutational EA following [17], and the hybrid
EA-GRASP approach described in previous section. The plain GRASP algo-
rithm used a qualitative selection mechanism using k = n as parameter. In the
case of reactive GRASP, five different equally-spaced values between 2 and n
were considered. As to the EAs, an elitist generational model (popsize = 100,
pX = .9, pM = 1/n) with binary tournament selection has been utilized. For
the hybrid EA, each gene can take values ri ∈ {1, · · · , n}, uniform crossover
is used, and mutation is done by randomly increasing or decreasing a gene by
1. The permutational EA uses the interpretation mechanism described in [17].
Random keys are here directly substituted by permutations, being PMX used
for crossover, and the swap operator for mutation. In all cases, the algorithms
have been run 30 times for 106 evaluations. No fine tuning of these parameters
has been attempted.

The results of plain GRASP and reactive GRASP are shown in Table 2. As it
can be seen, reactive GRASP quickly outperforms plain GRASP as the instance
size increases. Notice also that the results of this reactive GRASP are better
than those of the basic EA approaches reported in Sect. 2.2.

Focusing on the EAs, the results are shown in Table 3. Notice firstly that the
permutational EA provides comparable results to those of reactive GRASP. The
hybrid EA provides roughly the same performance that the permutational EA
for small instance sizes, but becomes clearly superior when the number of marks
increases. A non-parametrical statistical test – Wilcoxon ranksum – indicates
that the differences are significant for 10, 11, 14, 15, and 16 marks.

5 Conclusions

We have presented a hybrid EA that incorporates a GRASP-like procedure for
decoding the chromosome into a feasible solutions. The advantages of this ap-
proach are twofold: first of all, problem-knowledge is exploited by means of the
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Table 2. Results (averaged for 30 runs) of plain GRASP and reactive GRASP.

Plain GRASP
ruler length evaluations

instance best median mean ±σ mean ±σ

OGR-5 11 11 11.0 ± 0.0 44.0 ± 45.0
OGR-6 17 17 17.0 ± 0.0 128.7 ± 106.9
OGR-7 25 25 25.0 ± 0.0 1634.0 ± 1243.2
OGR-8 34 34 34.0 ± 0.0 202710.6 ± 230112.6
OGR-9 44 44 44.8 ± 0.9 377499.8 ± 204172.4
OGR-10 60 62 61.7 ± 0.8 546206.5 ± 226282.5
OGR-11 78 81 80.8 ± 1.6 443928.7 ± 204992.1
OGR-12 103 105 104.8 ± 1.3 478968.6 ± 304395.1
OGR-13 127 129 129.9 ± 2.2 641836.0 ± 180381.4
OGR-14 148 163 161.9 ± 5.1 645870.3 ± 226777.6
OGR-15 191 200 199.1 ± 4.3 380212.7 ± 313521.6
OGR-16 226 242 242.1 ± 6.1 463089.9 ± 237976.0

Reactive GRASP
ruler length evaluations

instance best median mean ±σ mean ±σ

OGR-5 11 11 11.0 ± 0.0 10.3 ± 9.7
OGR-6 17 17 17.0 ± 0.0 99.8 ± 65.7
OGR-7 25 25 25.0 ± 0.0 213.2 ± 135.2
OGR-8 34 34 34.0 ± 0.0 114.1 ± 113.0
OGR-9 44 44 44.5 ± 0.5 346344.0 ± 307876.9
OGR-10 59 59 59.6 ± 0.7 433369.0 ± 259147.5
OGR-11 74 74 74.1 ± 0.3 436378.1 ± 270748.4
OGR-12 95 96 96.1 ± 0.7 523898.1 ± 221195.5
OGR-13 117 119 119.1 ± 1.3 517139.2 ± 288309.9
OGR-14 141 147 146.9 ± 2.9 336471.1 ± 296678.9
OGR-15 161 179 176.7 ± 5.8 371481.4 ± 296244.4
OGR-16 209 212 211.6 ± 0.9 185518.7 ± 312827.9

pseudo-greedy mapping from genotype to phenotype; secondly, the representa-
tion turns out to be orthogonal, and hence standard string-oriented operators
for recombination and mutation can be used. Of course, this does not preclude
using those ad hoc operators that might be defined. In this sense, reinforcement
learning techniques are prime candidates for defining these informed operators.

The hybrid EA has been applied to the Golomb ruler problem, with en-
couraging results: reactive GRASP and plain EA approaches could be beaten.
A permutational EA based on the proposal of [17] was also outperformed. In
this sense, it must be noted that results similar to those of the hybrid EA have
been reported for this latter permutational EA when executed in long runs using
larger population sizes. In a forthcoming work [23], Tavares et al. also propose
the utilization of insertion and correction procedures for improving the perfor-
mance of the algorithm. We believe that these ideas can be fruitfully combined
with the hybrid model presented in this work. Another interesting line for fu-
ture developments lies in the combination of EAs and constraint-satisfaction
techniques (e.g., [24]). Work is in progress in this area.
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Table 3. Results (averaged for 30 runs) of the permutational EA and the hybrid
EA-GRASP.

Permutational EA
ruler length evaluations

instance best median mean ±σ mean ±σ

OGR-5 11 11 11.0 ± 0.0 217.8 ± 192.0
OGR-6 17 17 17.0 ± 0.0 514.8 ± 348.1
OGR-7 25 25 25.0 ± 0.0 1821.6 ± 1809.9
OGR-8 34 34 34.1 ± 0.3 157340.7 ± 141192.3
OGR-9 44 44 44.4 ± 0.5 342441.0 ± 254397.7
OGR-10 55 60 59.2 ± 2.3 348509.7 ± 285652.0
OGR-11 74 75 75.7 ± 1.9 468586.8 ± 257449.5
OGR-12 93 95 94.6 ± 1.5 464557.5 ± 257854.7
OGR-13 113 115 115.1 ± 1.0 296010.0 ± 267214.4
OGR-14 143 148 148.0 ± 3.1 548529.3 ± 328350.1
OGR-15 174 177 177.4 ± 2.7 537718.5 ± 259515.4
OGR-16 207 214 213.1 ± 4.1 283229.1 ± 259644.9

Hybrid GRASP-EA
ruler length evaluations

instance best median mean ±σ mean ±σ

OGR-5 11 11 11.0 ± 0.0 9.9 ± 29.7
OGR-6 17 17 17.0 ± 0.0 39.6 ± 65.7
OGR-7 25 25 25.0 ± 0.0 514.8 ± 444.5
OGR-8 34 34 34.0 ± 0.0 2465.1 ± 682.2
OGR-9 44 44 44.2 ± 0.4 202761.9 ± 213130.8
OGR-10 55 55 55.4 ± 1.2 245361.6 ± 206552.0
OGR-11 74 74 74.0 ± 0.0 13394.7 ± 10110.6
OGR-12 94 95 94.9 ± 0.3 123542.1 ± 93508.0
OGR-13 111 114 114.2 ± 1.5 341708.4 ± 232391.5
OGR-14 135 139 138.6 ± 2.2 461062.8 ± 271222.9
OGR-15 162 166 166.3 ± 2.2 523531.8 ± 273372.0
OGR-16 189 197 196.5 ± 3.4 429877.8 ± 260082.7
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