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Abstract

In this paper we present a novel extension to the constraint logic program-
ming on Finite Domains (clp(FD)) which combines the usual clp(FD) primi-
tive constraint X in range with a new primitive constraint X notin range. We
show that, together, they are more expressive and provide better constraint
propagation than having X in range on its own.

It is shown how the standard clp(FD) framework can be adapted to sup-
port this extension by defining conditions for the checking of the consistency
of constraints and new methods for their propagation.

Keywords: Constraint Solving, Constraint Propagation, Labeling, Finite
Domain.

1 Introduction

The finite domain constraint solver clp(FD) has a simple framework based on a
unique primitive of the form X in r where X is a variable and r a subset of the
integer domain. In [1], it is shown that this framework allows a highly efficient
constraint solver with good expressivity.

The clp(FD) framework is closed under negation. This means that that the
constraint ¬(X in r) is just the complement X in −r where−r = {i ∈ Integer | i /∈
r}. This negative constraint highlights two problems: from a computational point
of view, a negative constraint is expensive since it will introduce choice points in the
solution search tree and, from a programming point of view, it does not provide much
flexibility since it must be defined in terms of the range r and not the complement.
For example, to say that X does not belong to the subset {i ∈ Natural | 3 ≤ i ≤ 5}
we must write X in {i ∈ Natural | (0 ≤ i < 3) or (5 < i ≤ ∞}.

Typically the constraint satisfaction problems on finite domains (FD) involve
several processes: constraint propagation, consistency checks, and labeling (also
called enumeration). Constraint propagation entails updating the constraint store
with new constraints. The revised constraint store may be checked for consistency.
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Labeling assigns domain values to some of the finite domain variables in order to
solve the constraints.

In this paper, we propose an extension to the clp(FD) framework based on index-
icals. This extension provides a new primitive constraint X notin r which captures
the meaning of the negated constraint ¬(X in r) in the standard clp(FD) frame-
work. However, we also provide a means for these new constraints to actively interact
with other constraints of the form X in r and, as a consequence, allowing for im-
proved constraint propagation and thereby reducing the labeling needed for finding
a solution (by reducing the solution search tree).

Since, as shown here, high level constraints can be defined directly in terms of
this primitive, by supporting this new primitive constraint, the expressivity of the
clp(FD) framework is also improved.

The paper is structured as follows. Section 2 describes the usual clp(FD) frame-
work based on the constraint X in r . In Section 3 we describe the new primitive
X notin r and explain how it affects to the standard clp(FD). Section 4 shows
how constraint propagation is improved and in Section 5 some examples of solvers,
which demonstrate the flexibility of the combination of the constraints X in r and
X notin r , are shown. In section 6 a comparison of the current clp(FD) framework
with our extension in the solving of several well known problems is done. The paper
ends with some conclusions and further work.

2 Basic concepts

2.1 Syntax of X in r

The following definitions are from [1].
A domain in FD is a (non empty) set of natural numbers (i.e. a range). A range

is a subset of {0, 1, . . . , infinite} where infinite is a particular integer denoting the
greatest value that a variable can take. A range is consistent if it is not the empty set
and inconsistent otherwise. The notation a..b represents the range {i ∈ Natural |a ≤
i ≤ b}. Given a range r, min(r) (resp. max (r)) is defined to be the lower (resp.
upper) bound of r. Pointwise operations (+,-,*,/) between a range r and an integer
i are defined as the set obtained by applying the corresponding operation on each
element of r. The set of FD variables to have values in a given domain is denoted
by V0.

If X is a variable, then a constraint c is defined as follows:
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c ::= X in r (primitive constraint)
r ::= t1..t2 (interval)

−r (complementation)
r1\/r2 (union)
r1/\r2 (intersection)

r • i (pointwise operations; i ∈ Integer; • ∈ {+, ∗,−, /}
t ::= min(Y ) (indexical term min)

max (Y ) (indexical term max)
val(Y ) (indexical term val)

ct (constant term)
t1 • t2 (integer operations; • ∈ {+, ∗,−, /}

ct ::= infinite (greatest value in the domain)
n (n ∈ 0..infinity)

ct1 • ct2 (integer operations; • ∈ {+, ∗,−, /}
This syntax can vary depending on the different languages that employ this ap-

proach (usually called indexical approach). Here we have presented only the stan-
dard syntax. Intuitively, a constraint X in r enforces to X to belong to the range r
that can be not only a constant range but also an indexical range using:

• min(X ) representing the minimum value of the current domain X

• max (X ) representing the maximum value of the current domain X

• val(X ) representing the delayed value of the current domain X (this value is
only returned when X is instantiated).

2.2 Constraint consistency, interval narrowing and constraint
propagation

We say that a constraint X in r is simple if it does not use indexicals terms and
non-simple otherwise. For example, X in 1..3 is simple and X in min(Y )..max(Y )
is non-simple.

Definition 1 (Consistency of constraints) Let X in r be a simple constraint. We
say that X in r is inconsistent iff r is the empty set and consistent otherwise.

Definition 2 (Store) A store is a finite set of constraints. A store is in normal
form if it contains at most one simple constraint X in r for each variable belonging
to the original set of constrained variables. The normal form of a store S can be
obtained by replacing, for each variable X ∈ V0, the set of all simple constraints
for X, X in r1, . . . , X in rn, by the constraint X in r1/\ . . . /\rn. This process is
called interval narrowing.

We say that a store is inconsistent if it contains at least one inconsistent con-
straint.
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For example, consider the store S = {X in 2..10, Y in 4..20}. By adding the
constraint X in 5..15, an interval narrowing process is executed and the new store
is {X in 5..10, Y in 4..20}.

When a constraint X in r uses an indexical term on another variable Y (the
indexed variable), it must be checked each time the domain of Y is updated. This
process, called constraint propagation, projects the value returned by the indexical
term defined over Y on the constraint X in r and a new simple constraint on X is
sent to the store. This may cause further interval narrowing on X. The constraints
using indexicals remain in the store to propagate future modifications on the indexed
variables.

For example, consider the store S = {X in 2..10, Y in 4..20, Y in min(Z)..20}.
By adding the constraint X in min(Y )..max(Y ), constraint propagation enforces
the constraint X in 4..20. This constraint is sent again to the store S and, by
interval narrowing, the new store is {X in 4..10, Y in 4..20, Y in min(Z)..20,
X in min(Y )..max(Y )}.

During computation on a store, a constraint added to it can:

• succeed: if the store becomes consistent.

• fail: if the store becomes inconsistent.

• propagate: if the constraint is non-simple and leads to constraint propagation.
The resultant constraint is added to the store.

• suspend: if the constraint is non-simple and any of its indexical terms cannot
be evaluated so that constraint propagation is delayed until all its indexical
terms can be evaluated. For instance, in the example shown above constraint
propagation on the constraint Y in min(Z)..20 is delayed until min(Z) is
evaluated.

See [1] for more details.

2.3 Negation

The primitive X in r embeds the core propagation mechanism. High level con-
straints are built from this primitive. For example, the constraint X 6= Y /2 is
defined into the clp(fd) system [2] as follows:

X 6= Y :− X in − {val(Y )},
Y in − {val(X)}.

where the constraint X in − {val(Y )} (resp. Y in − {val(X)}) is delayed until Y
(resp. X) is bound.

The FD constraint system based on indexicals is closed under negation since the
constraint ¬X in r is just the complementation X in −r. Intuitively, this means
that a constraint ¬X in a..b, where a, b ∈ 0..infinity, is equivalent to the constraint
X in 0..a−1\/b + 1..infinity. As consequence of it, a constraint X in −{val(Y )}
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is equivalent to X in 0..{val(Y )} − 1\/{val(Y )}+ 1..infinity. Note that this kind
of constraint introduces a choice point (in form of union of ranges) to the solution
search tree.

2.4 Propagation plus labeling

Most of the problems cannot be solved by just constraint propagation and interval
narrowing but they need an additional process called labeling (or enumeration).
Labeling is the process of assigning to the FD variables, values from the domain
by following a given criteria. For example, a naive labeling chooses values from the
minimum to the maximum in the domain of a FD variable and assigns these values
to the FD variables sequentially. Labeling a FD variable X with a value n introduces
in the solution search tree a choice point and two alternatives: X = n and X 6= n.
Labeling is thus an expensive process which is executed when no more constraint
propagation, over the FD variables constrained in the problem, is possible.

Note that any improvement on the constraint propagation leads to a reduction in
the solution search tree since less quantity of labeling (measured in the number of
assignments to the FD variables that it is necessary to do in order to find a solution
or an inconsistency) will be required.

3 An alternative to the complementation of ranges

We propose an extension to the clp(FD) framework which consists in an alternative
approach for the negation of the primitive constraint X in r . In next sections, this
approach is described as well as its advantages and differences wrt the constraint
X in −r.

3.1 The primitive X notin r

We extend the clp(FD) framework by defining a new primitive constraint X notin r .
The syntax shown in section 2.1 is extended as follows:

c ::= X in r (primitive positive constraint)
X notin r (primitive negative constraint)

The rest of the syntax remains unchanged. Intuitively, the constraint X notin r
constrains X to have values that do not belong to r. Before explaining how this
new primitive affects the clp(FD) framework, we introduce some concepts.

The constraint X in r is called a positive constraint and is denoted as constraint+.
The constraint X notin r is called a negative constraint and is denoted as constraint−.
Simple (resp. non-simple) and consistent (resp. inconsistent) negative interval

constraints are defined analogously as for positive constraints.
We denote by cs

¬X (resp. cns
¬X) a simple (resp. non-simple) negative constraint,

defined on a variable X, when necessary. Analogously, we denote by cs
X (resp. cns

X )
a simple (resp. non-simple) positive constraint, defined on a variable X.

A store containing only negative (resp. positive) constraints is called a negative
(resp. positive) constraint store. We write ¬S (resp. +S) to express S is a negative
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(resp. positive) store. The set of all variables constrained at least with a constraint
in ¬S (resp. +S) is denoted by V¬S (resp. V+S).

3.2 Considerations on the negative stores

3.2.1 Constraint propagation

Constraint propagation is executed analogously as for positive stores. This means
that the constraints− using indexicals terms on other variables remain in the nega-
tive store for propagating future changes on the indexed variables.

Consider for example the following stores:

+S = {X in 10..20} and ¬S = {X notin 40..60, X notin 1..max(Y ) ∗ 3}

By adding the constraint Y in 1..4 to the store +S, the constraint X notin 1..max(Y )∗
3 is propagated to the constraint X notin 1..12.

3.2.2 Constraint Normalisation

The interval narrowing process is never executed on negative stores and is replaced
by a process called constraint normalisation. This process is consequence of the
interaction of both a positive and a negative store.

Definition 3 (Normalised store) Let +S be a positive store in normal form and let
¬S be a negative store. And let V = {X | X ∈ (V+S ∩ V¬S)∧∃cs

¬X ∈ ¬S} be the set
of all variables constrained with precisely one simple constraint+ in +S and at least
one simple constraint− in ¬S. The normalised store of ¬S wrt +S is a negative
store defined as follows:

norm(¬S, +S) = ¬S−
⋃

X∈V

{cs
¬X | cs

¬X ∈ ¬S} ∪
⋃

X∈V,X notin r2∈¬S

{X notin r1/\r2) | X in r1 ∈ +S ∧ {r1/\r2} 6= ∅}

This means that norm(¬S, +S) is the negative store obtained by
(1) removing in ¬S all the simple constraints− defined on variables which are

constrained by a simple constraint+ in +S, and of
(2) adding certain consistent simple constraints− which are the result of
the intersection of the ranges of the simple constraint+ in +S for a variable X

and a simple constraint− in ¬S for the same variable X.
Consider for example the following stores:

+S = {X in 10..20} and ¬S = {X notin 40..60, X notin 15..30}

Then norm(¬S, +S) = {X notin 15..20}. The constraints X notin 40..60 and
X notin 15..30 were removed from ¬S whereas the constraint X notin 15..20 (which
is the result of X notin (10..20)/\(15..30)) was added.
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3.3 Consistency checking wrt negative constraints

The consistency of a positive store can be directly checked wrt a negative store.

Definition 4 (Consistency of a variable wrt a negative store) Let +S be a positive
store in normal form and let X in r1 the simple interval constraint in +S for any
variable X ∈ V+S. Let ¬S be a negative store. Then X is inconsistent in +S wrt
¬S if

∃(X notin r2) ∈ norm(¬S, +S) : r1 ⊆ r2

and consistent otherwise.
For example, consider the following stores:

+S = {X in 3..6, Y in 10..20} and ¬S = {X notin 5..10, Y notin 8..22}
Then X is consistent in +S wrt ¬S and Y is inconsistent in +S wrt ¬S.

Definition 5 (Consistency of a positive store wrt a negative store) Let +S and ¬S
be a positive and a negative store respectively where +S is in normal form. Then
+S is consistent wrt ¬S iff for all X ∈ V+S, X is consistent in +S wrt ¬S, and
inconsistent otherwise.

4 Improving constraint propagation

In this section we show how the interaction of negative and positive constraints leads
to the improvement of the constraint propagation.

4.1 The disjoint element

Definition 6 (The disjoint range) Let r1 = t1..t2 and r2 = t3..t4 be two consistent
simple ranges. We call the disjoint range of r1 and r2 and denoted by Dr1,r2, to the
range defined as follows:

if (r1/\r2 = ∅) then Dr1,r2 = r1

elsif (t1 ≤ t3) and (t2 < t4) Dr1,r2 = t1..t3 − 1
elsif (t3 ≤ t1) and (t4 < t2) Dr1,r2 = t4 + 1..t2

otherwise it does not exist

Examples. Table 1 shows some examples of the disjoint range for two ranges.

Table 1: Disjoint ranges. Examples
r1 r2 Dr1,r2

1..15 10..20 1..9
10..20 1..15 16..20
4..7 9..11 4..7
1..10 5..7 it does not exist
1..10 0..20 it does not exist

Definition 7 (The Disjoint constraint) Let c1 = X in r1 and c2 = X notin r2 be
respectively a positive and a negative simple constraint defined on the same variable
X. The disjoint constraint of c1 and c2 is defined as the constraint X in Dr1,r2 and
is denoted as Dc1,c2.
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4.2 Further propagation by extending the positive store

On FDs, when no more constraint propagation is possible an enumeration (labeling)
process is activated. As explained in section 2.4, the assignment of domain values
to the FD variables introduces backtracking in the form of choice points with the
corresponding penalty in efficiency.

The importance of the disjoint element is that it can be used to get more propaga-
tion before labeling is activated. In the following, we define the concept of extended
store and show, by means of a simple example, how more constraint propagation
can be got by extending the positive store.

Definition 8 (Extended store) Let +S and ¬S be a positive and a negative store
respectively where +S is in normal form. Consider the positive store S ′ defined as
follows

S′ = {cns
X | cns

X ∈ +S}
∪ {cs

X | cs
X ∈ +S ∧ ¬∃cs

¬X ∈ norm(¬S, +S)}⋃
cs
¬X∈¬S {Dcs

X ,cs
¬X

| cs
X ∈ +S ∧ Dcs

X ,cs
¬X

exists}
⋃

cs
¬X∈¬S {cs

X | cs
X ∈ +S ∧ Dcs

X ,cs
¬X

does not exist}

The normal form of S ′ is called the extended store of +S wrt ¬S and is denoted by
ext(+S,¬S).

For instance, consider the following stores:

+S = {X in 10..20, Y in 1..3} and ¬S = {X notin 3..11, X notin 15..30}

As

1. norm(¬S, +S) = {X notin 10..11, X notin 15..20};
2. DX in 10..20,X notin 3..11 = X in 12..20;

3. DX in 10..20,X notin 15..30 = X in 10..14;

4. S ′ = {X in 12..20, X in 10..14, Y in 1.., 3}.
By the definition shown above, ext(+S,¬S) is the normal form of S ′, that is,

{X in 12..14, Y in 1..3}.
Note that the constraint X in 10..20 belonging to +S has been narrowed, by

extending the positive store, to the constraint X in 12..14. Note also that no addi-
tional choice point (backtracking) has been added in order to get such a reduction
in the range.

4.3 Negative Constraints vs. Complemented Constraints

Although in their meanings, a constraint X notin r is equivalent to the constraint
X in −r, these constraints are solved in different ways. For instance, consider the
example shown above where each negative constraint in ¬S is now replaced in +S
by their equivalent complemented constraint. +S becomes:

+S = {X in 10..20, X in − (3..11), X in − (15..30), Y in 1..3}
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This means that (see Section 2.3)

+S = {X in 10..20, X in (0..2)\/(12..infinity), X in (0..14)\/(31..infinity), Y in 1..3}
By interval narrowing, +S is expressed:

+S = { X in ((10..20)/\(0..2)/\(0..14)) \/
((10..20)/\(0..2)/\(31..infinity)) \/
((10..20)/\(12..infinity)/\(0..14)) \/
((10..20)/\(12..infinity)/\(31..infinity)),

Y in 1..3}

The resulting store is +S = {X in 12..14, Y in 1..3} which is exactly the same
solution got by extending the positive store in previous section.

However, note that the use of negative constraints did not introduce choice points
whereas the use of complemented constraints introduces additional choice points (in
the way of union of ranges) to the solution search tree. This example shows how the
use of negative constraints instead of complemented constraints can avoid unneces-
sary choice points and thus reduce the cost of finding a solution or an inconsistency.

5 Defining constraints by means of negative ones

In usual clp(FD), high level constraints (i.e the constraint X 6= Y ) are built from
the constraint X in r at a user level so that the user controls the propagation mech-
anism. One of the main advantages of the interaction of the constraint X in r and
X notin r is that the user can also control the propagation with notin constraints.

In the following we present some examples which demonstrate the flexibility and
expressivity of the integration of the primitive X notin r in the usual clp(FD).

5.1 Symbolic constraints: The all different constraint

In most clp(FD) systems, many symbolic constraints are hard-coded in C to obtain
the best performance so that the user has no control over the propagation mecha-
nism.

As an example, we consider the all different/1 constraint which is applied to a list
L of FD variables and enforces the constraint X 6= Y for each pair X, Y of variables
in the list L.

This symbolic constraint has a number of alternative implementations. For ex-
ample, in the clp(FD) system [2], it depends exclusively on the high level constraint
X 6= Y which is defined there as:

X 6= Y : − X in − {val(Y )},
Y in − {val(X)}.

The constraint X in −{val(Y )} (resp. Y in −{val(X)}) is delayed until Y (resp.
X) is bound. This constraint is based on the complementation of ranges which, in
the clp(FD) system, is coded in C. We refer to the source code of clp(FD) which
is provided with the implementation1. Note also that by the complementation of

1File fd range.c.
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ranges, a constraint such as X in − {val(Y )} introduces one choice point in the
way of X in 0..{val(Y )} − 1\/X in {val(Y )}+ 1..infinity.

As the constraint all different/1 is based on the complementation of ranges, a
constraint all different(L) results in a solution search tree which grows with the
number of constraints X 6= Y imposed for each X,Y ∈ L.

In other systems, such as SICStus Prolog 3#7.1 [3], the implementation of the
all different/1 constraint is really hard to follow since it is directly coded in C and
very specialised for FDs. The aim is to get an extra efficiency. We remit to the
source code of SICStus which is provided with the implementation 2.

We propose a definition based exclusively in the constraint X 6= Y , similar to
that shown above for the clp(FD) system. The main difference is that this constraint
is now defined by the constraint X notin r instead of the constraint X in r .

X 6= Y : − X notin val(Y ),
Y notin val(X).

5.1.1 Compared definitions

The clp(FD) definition and our definition are straightforward and easier to read
than SICStus one which is coded directly in C.

Although our definition is similar to the clp(FD) definition, several differences
are highlighted. First, as already mentioned, our definition uses directly the range
being negated and not its complement as done in the clp(FD) definition. Secondly,
as consequence of the complementation of ranges, the clp(FD) definition introduces
extra choice points (see Section 2.3) whereas our definition avoids them by the
intrinsic meaning of the notin constraint.

5.2 Boolean Solvers

Boolean solvers have been used from a long time in various research areas. The
idea of considering Boolean solvers as a particular case of FD was first introduced
in the language CHIP [5]. However, in CHIP the Boolean solvers were coded by
using low level routines. In clp(FD) [1] Boolean solvers were coded directly at the
user level by means of the constraint X in r . These Boolean solvers are obviously
more readable than the Boolean solvers of CHIP since the schema of propagation is
coded in a constraint language and not in C.

In this section we show an alternative definition for the Boolean solvers of the
clp(FD) system. These definitions are based on the combined use of the constraints
X in r and X notin r and highlight the expressive power of our extension. These
examples show how, in several cases, the formulation is even more natural than that
shown in the clp(FD) system and how the code of these constraints is even more
readable.

2File fd.c.
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5.2.1 Not/1

The clp(FD) system codes the Boolean constraint not(X,Y ), which means X ≡ ¬Y
as follows:

not(X, Y ) :− X in {1− val(Y )}, Y in {1− val(X)}.
Our alternative definition is as follows:

not(X, Y ) :− X notin val(Y ), Y notin val(X).

Note that our definition is more intuitive since it is expressed directly with the
negated range.

5.2.2 Or/3

The Boolean constraint or(X,Y, Z), which means Z ≡ X ∨ Y , is coded in the
clp(FD) system as follows:

or(X,Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

Z in min(X) + min(Y )−min(X) ∗min(Y )..max(X) + max(Y )−max(X) ∗max(Y ),
X in min(Z) ∗ (1−max(Y ))..max(Z),
Y in min(Z) ∗ (1−max(X))..max(Z).

Our alternative definition is the following:

or(X,Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

X in 0..val(Z), Y in 0..val(Z),
Z notin {val(X) ∗ val(Y )},
Z notin {1− val(X) + val(Y )},
X notin {1− val(Z) + val(Y )},
Y notin {1− val(X) + val(Z)}.

Note that it is based on the combined use of the constraints X in r and X notin r .

5.2.3 And/3

The clp(FD) system codes the Boolean constraint and(X,Y, Z) which means Z ≡
X ∧ Y as:

and(X, Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

Z in min(X) ∗min(Y )..max(X) ∗max(Y ),
X in min(Z)..max(Z) ∗max(Y ) + 1−min(Y ),
Y in min(Z)..max(Z) ∗max(X) + 1−min(X).

Our alternative definition is shown below:

and(X, Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

Z in min(X) ∗min(Y )..max(X) ∗max(Y ),
Y in min(Z)..1, X in min(Z)..1,

Y notin val(Z) + 1..val(X), X notin val(Z) + 1..val(Y ).

Again note the combined use of the primitive constraints.
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5.2.4 Other boolean constraints

The boolean constraint equiv(X,Y, Z), which is true if Z ≡ X ⇔ Y , is coded in the
clp(FD) system as follows:

equiv(X, Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

Z in {1− ((val(X) + val(Y )) mod 2)},
X in {1− ((val(Y ) + val(Z)) mod 2)},
Y in {1− ((val(X) + val(Z))mod2)}.

We code it as follows:

equiv(X, Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

Z notin val(X) + val(Y ), Z notin val(X)− val(Y ),
X notin val(Z) + val(Y ), X notin val(Z)− val(Y ),
Y notin val(Z) + val(X), Y notin val(Z)− val(X).

Other Boolean constraints are easily defined. For example, the Boolean constraint
xor(X, Y, Z) is directly defined as follows:

xor(X,Y, Z) : − X in 0..1, Y in 0..1, Z in 0..1,

equiv(X, Y,W ), Z notin val(W ),
equiv(X, Z, W1), Y notin val(W1),
equiv(Z, Y,W2), X notin val(W2).

The examples defined above show that the combined use of the constraints
X in r and X notin r provides a way in which the expressivity of the clp(FD)
framework increases since the propagation of both positive and negative constraints
can be control at the user level.

6 A comparison on the constraint propagation

We have implemented a prototype to check the validity of the negative constraints
as described here. This prototype is written in SICStus 3#7.1 by using the library
chr which is based on constraint handling rules [4] and provided with the imple-
mentation of SICStus 3#7.1. Our prototype is available in the following address
http ://www.lcc.uma.es/∼afdez/negativeCons.

The different versions of the all different constraint as well as the Boolean solvers
shown in Section 5 were tested on a set of benchmarks. The comparison was focused
on the quantity of constraint propagation. All the benchmarks were solved by using
the minimum labeling possible: that is to say, by labeling the minimum number
of FD variables necessary to solve the problem. This provided a measure of the
quantity of constraint propagation. In each the case, we use a naive labeling strategy
in which the values were chosen from the minimum to the maximum in the domain.
The chosen problems were the following:
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• A Colouring problem which involves 6 FD variables ranging in the domain
1..3 with 9 constraints in the way of X 6= Y .

• The usual N queens problem which involves inequality constraints among the
FD variables.

• The Suudoku problem which requires a 9× 9 square to be partially filled in
such a way such that each row and column are permutations of [1, . . . , 9], and
each 3× 3 square, where the leftmost column modulo 3 is 0, is a permutation
of [1, . . . , 9]. This problem makes repetitive use of the all different constraint.

• A Pigeons-Holes problem. Put N pigeons in M pigeon-holes. This problem
is coded by using the constraints at most one and only one. These constraint
were defined from the Boolean operators and and or.

• A circuit diagnosis problem which uses the Boolean solvers or, and, xor and
equiv and the inequality constraint X 6= Y .

• The Schur’s Lemma problem. Color the integers 1, 2, . . . , N with 3 colors so
that there is no monochrome triplets (x, y, z) where x + y = z. This problem
uses the Boolean solver and/3 as well as the high level constraints only one/1
and at most one/1 (which were defined by using the Boolean operators and
and or).

Our prototype solved all the benchmarks by using the same minimum quantity
of labeling that SICStus and clp(FD) systems. This is surprising since we got the
same solutions without using any specific built-in constraints (as the all different
constraint) or by use of C code.

We also implemented a prototype which simulated the behaviour of the usual
clp(FD). The results showed that the solution search tree was much reduced by
using the constraint X notin r instead of the constraint X in −r. This reduction
in the number of choice nodes in the solution search tree depends on the number
of FD variables involved in the range r. This result was expected since, as already
explained, the complementation of ranges introduces in the solution search tree
additional choice points.

Unfortunately we could not compare running times since, to do this fairly, we
need to implement the primitive X notin r at lower level. We plan to do this in
future work.

7 Conclusions

In this paper we have described how the clp(FD) framework based on the primitive
X in r can be extended with a new primitive X notin r which captures the meaning
of the constraint ¬X in r. The resulting clp(FD) framework provides better con-
straint propagation as well as a way in which the expressivity of the usual clp(FD)
framework is increased.
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We have shown how the use of the primitive X notin r reduces the solution search
tree with respect to the use of the constraint ¬X in r by avoiding the addition of the
extra choice points which are the result of the disjunction of the ranges introduced
by the constraint X in −r.

The conditions for the consistency of the new primitive have been defined in this
paper and we have also described how the constraint propagation of the existing
clp(FD) framework is affected with the inclusion of this new primitive.

The use the primitive X notin r and its combination with the primitive X in r has
been illustrated by means of examples. By implementing a prototype, the results
shown that constraint propagation improves wrt the usual clp(FD) and that an im-
portant reduction in the solution search tree is got. However, we could not measure
running times so that we plan to extend the current implementation of the clp(FD)
system [2] to include the primitive X notin r . Then we will be able to compare
performances.

All the ideas shown in this paper have been tested on a prototype built by means
of the library chr [4] which is included in the distribution of SICStus Prolog 3#7.1.
This prototype is available in the following address http : //www.lcc.uma.es/ ∼
afdez/negativeCons.
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