
An Interval Constraint Branching Scheme for Lattice Domains

Antonio J. Fernández∗ Patricia M. Hill
Depto. de Lenguajes y Ciencias de la Computación School of Computing

E.T.S.I.I., 29071 Teatinos Leeds, LS2 9JT

University of Málaga University of Leeds

Málaga, Spain Leeds, England

afdez@lcc.uma.es hill@comp.leeds.ac.uk

Abstract

This paper presents a parameterized schema
for interval constraint branching that (with
suitable instantiations of the parameters) can
solve interval constraint satisfaction problems
(CSPs) that are defined on any set of compu-
tation domains (finite or infinite) that are lat-
tices. A formal specification of the schema and
a number of interesting properties, satisfied by
any instance of the schema, are presented. It
is also shown that the operational procedures
of many constraint systems (including cooper-
ative systems) are instances of this branching
schema.
Keywords: interval constraints, constraint

solving, propagation, branching.

1 Introduction

In [6] we described a generic interval constraint
propagation schema to solve CSPs (i.e., a set
of interval constraints defined on a set of lat-
tice structure computation domains). How-
ever, although our propagation schema guar-
anteed finding a most general solution to the
constraint store representing a CSP, it was not
complete in the sense that it may not deter-
mine which values in the domains (i.e., inter-
vals) of the constrained variables are the cor-
rect answers to the problem.

∗This author was partially supported by Spanish
MCyT under contracts TIC2002-04498-C05-02 and
TIN2004-7943-C04-01.

This paper proposes a branching schema
that is complementary to the constraint prop-
agation schema described in [6]. The combi-
nation of these two schemas forms a complete1

interval constraint solving framework that can
be used on any set of domains which have lat-
tice structure, independently of their nature
and, in particular, their cardinality. As a con-
sequence it can be used for most existing con-
straint domains (finite or continuous) and, as
for the framework described in [6], is also ap-
plicable to multiple domains and cooperative
systems.

We also describe here some interesting prop-
erties that are satisfied by any instance of the
branching schema.

2 Preliminaries and Notation

In the following we introduce some concepts
and notations already described in [6]. If C
is a set, then #C denotes its cardinality, ℘(C)
its power set and ℘f (C) the set of all the finite
subsets of C.

The domain on which the values are ac-
tually computed, is called a computation do-
main. Throughout the paper, we let L de-
note a (possibly infinite) set of computation
domains, with lattice structure, containing at
least one element L. If it exists, ⊥L (resp. >L)
denotes the bottom element (resp. the top el-
ement) of L. With each computation domain

1‘Complete’ in the sense that the correctness and
completeness of the branching schema can be guaran-
teed.

L ∈ L, we associate a set of variable symbols
VL that is disjoint from VL′ for any L′ ∈ L
distinct of L. We define VL = ∪{VL|L ∈ L}.
It is assumed (without loss of generality) that
all L ∈ L are lifted lattices2. X ∈ ℘f (VL)
denotes the set of constrained variables.

To allow for continuous and infinite do-
mains, any underlying computation domain
L is first replaced by two extended forms of
the domain, a left and a right bounded com-
putation domain. For it, we defined open and
closed bounds of the intervals; we first defined
the bracket domain B as a lattice containing
just ‘)’ and ‘]’ with ordering ‘)’ ≺B ‘]’. We
let ‘}’ denote any element of B. Then we
constructed the (right) simple bounded com-
putation domain (for L) to be the lattice re-
sulting from the lexicographic product (L, B)
and is denoted Ls. Throughout the paper,
an element t=(a,‘}’) ∈ Ls will be denoted in-
distinctly as ‘a}’ or a}. The mirror (of Ls)
(also called the left simple bounded compu-
tation domain) is the lexicographic product
(L̂, B) (where L̂ is the dual lattice of L) and
is denoted by Ls. The mirror of an element
t=(a,‘}’) ∈ Ls is the element (â, ‘}’) ∈ Ls and
is denoted indistinctly as t, ‘{a’, â} or simply
a} as it is evident that if t = â} then t = a}.

To enable user defined propagation and con-
straint cooperation we also extended the sim-
ple bounded computation domain (i.e., Ls) to
include an additional construct called an in-
dexical (i.e., functions that allowed to propa-
gate the bounds of the interval associated to
constrained variables) to form a new domain
called the bounded computation domain Lb.
Then, the interval domain Rb

L over L is the
direct product 〈Lb, Lb〉 whereas the simple in-
terval domain Rs

L over L is the direct product
〈Ls, Ls〉.

An element r ∈ Rb
L is called a range. If

r ∈ Rs
L, then we say it is simple. A simple

range r = 〈s, t〉 (also denoted indistinctly as

2The lifted lattice of L is L ∪ {⊥L,>L} where, if
the greatest lower bound of L does not exist, ⊥L is
a new element not in L such that ∀a ∈ L,⊥L ≺ a
and similarly, if the least upper bound of L does not
exist, >L is a new element not in L such that ∀a ∈
L, a ≺ >L.

s, t) is consistent if3 s ¹Ls t and, if s = a)

and, for some b ∈ B, t = a′b, then a 6= a′.
Let x ∈ VL. Then x v r is called an inter-

val constraint for L with constrained variable
x if r ∈ Rb

L. Also, x v r is simple (consistent)
is r is simple (consistent), and non-simple (in-
consistent) otherwise. If t ∈ L, then x = t
is a shorthand for x v [t, t]. The interval
constraints domain over X for L is the set of
all interval constraints for L with constrained
variables in X and is denoted by CX

L . The
union

CX def
=

⋃
{CX

L | L ∈ L}
is called the interval constraint domain over X
for L. The ordering for CX is inherited from
the ordering in Rs

L. We define c1 ¹CX c2 if
and only if, for some L ∈ L, c1 = x v r1, c2 =
x v r2 ∈ CX

L and r1 ¹Rs
L

r2.
If S ∈ ℘f (CX), then S is a constraint store

for X. If S contains only simple constraints,
then it is simple. If S is simple, then it is
consistent if all its constraints are consistent.
The set of all simple constraint stores for X is
denoted by SX . A constraint store S is sta-
ble if there is exactly one simple constraint for
each x ∈ X in S. The set of all simple stable
constraint stores for X is denoted by SSX .

Let S, S′ ∈ SSX where cx, c′x denote the
(simple) constraints for x ∈ X in S and S′,
respectively. Then S ¹ S′ if and only if, for
each x ∈ X, cx ¹ c′x. Let >SSX be the set
{x v ⊥Rs

L
| x ∈ X ∩ VL, L ∈ L}. Then, with

these definitions, SSX forms a lattice.
We defined a generic concept of constraint

precision. Let CCX
L be the set of all consis-

tent (and thus simple) interval constraints for
L with constrained variables in X, x ∈ X ∩VL

for any L ∈ L and <I denote the lexicographic
product (<+, Integer) where <+ is the (lifted)
domain of non-negative reals. Then we define

precisionL ::CCX
L → <I

precisionL

(
x v 〈ab, cd〉

)
=

(
â ¦L c, b ¦B d

)

where ¦L ::
{

(â, c)
∣∣ a, c ∈ L, a ¹ c

} → <+

is a (system or user defined) strict monotonic
3Despite that s and t belong to different domains,

s and t can be compared as, by applying the duality
principle of lattices [5], both s and t belong to Ls.

function and ¦B :: B × B → {0, 1, 2} is the
strict monotonic function

‘]’ ¦B ‘]’ def
= 2 ‘]’ ¦B ‘)’ def

= 1

‘)’ ¦B ‘]’ def
= 1 ‘)’ ¦B ‘)’ def

= 0.

Observe that precisionL is defined only on con-
sistent constraints and thus the function ¦L

only needs to be defined when its first argu-
ment is less than or equal to the second. This
function must be defined for each computation
domain including any fictitious top or bottom
elements.

Example 1 Let Integer , < and IntegerSet
and let also <2 = 〈<,<〉. Suppose that
i1, i2 ∈ Integer , r1, r2, w1, w2 ∈ < and s1, s2 ∈
IntegerSet where i1 ¹ i2, r1 ¹ r2, w1 ¹ w2

and s1 ¹ s2. Then, by using infix notation,

î1 ¦Integer i2 = i2 − i1,

r̂1 ¦< r2 = r2 − r1,

̂〈r1, w1〉¦<2 〈r2, w2〉 =+
√

(r2 − r1)2+(w2 − w1)2,

ŝ1 ¦IntegerSet s2 = #s2 −#s1.

Assume that i ∈ VInteger , r ∈ V<, y ∈ V<2

and s ∈ VIntegerSet . Then

precisionInteger (i v 〈1], 4]〉) = (3.0, 2),

precision<(r v 〈3.5), 5.7)〉) = (2.2, 0),

precision<2 (y v 〈(2.0, 3.0)], (3.4, 5.6)]〉)=(2.95,2),

precisionIntegerSet (s v 〈{}], {3, 4, 5})〉) = (3.0, 1).

We define the precision of the precision of a
consistent simple stable constraint store S ∈
SSX as the sum of the precisions of each of
its elements (i.e., constraints) and where the
sum in <I is defined as (a1, a2) + (b1, b2) =
(a1 + b1, a2 + b2).

3 Branching concepts

In the following we introduce some concepts
that will be used in the rest of the pa-
per. Also L< denotes any totally ordered
lattice in L, and if {c1, . . . , cn} ∈ SSX and
i ∈ {1 . . . , n}, then {c1, . . . , cn}[ci/c′] denotes
{c1, . . . , ci−1, c

′, ci+1, . . . , cn}.

Definition 1 (Divisibility) Let c = x v s, t be
a consistent interval constraint in CX

L . Then, c
is divisible if s 6=Ls t and non-divisible other-
wise. Let S ∈ SSX be a consistent constraint
store. Then S is divisible if there exists c ∈ S
such that c is divisible and non-divisible oth-
erwise.

Basically a non-divisible constraint has the
form x v [a,a] that, as already said is a short-
hand for x = a where x ∈ VL and a ∈ L for
some L ∈ L (i.e., a non-divisible constraint
may be viewed as an assignment of a con-
strained variable in a domain to a value be-
longing to that domain).

Proposition 1 Let X ∈ ℘f (VL).

(1) Let also c, c′ ∈ CX
L such that c ≺CX

L
c′.

Then, if c is consistent, c′ is divisible.

(2) Let also S, S′ ∈ SSX such that S ≺s S′.
Then, if S is consistent, S′ is divisible.

In [6][Definition 13] we defined the concept
of solution for a constraint store as a consis-
tent stable store that produces no more con-
straint narrowing by constraint propagation.
Now we redefine this solution concept to cap-
ture the usual meaning of a solution as an as-
signment of values to variables that satisfies all
the constraints. So as to distinguish the previ-
ous concept defined in [6][Definition 13] from
the concept defined in this paper, we use the
term solution to refer the concept already de-
fined and the term authentic solution to refer
the new concept defined in this paper.

Definition 2 (Authentic solution) Let C ∈
℘f (CX) be a constraint store for X and R ∈
SSX . Then, R is an authentic solution for
C if R is both non-divisible and a solution for
C, and R′ ∈ SSX is a partial solution for C
if there exists an authentic solution R′′ for C
such that R′′ ≺s R′. In this case we say that
R′ covers R′′.

The set of all authentic solutions for C is
denoted as Sola(C).

Definition 3 (Constraint store stack) Let
P = (S1, . . . , S`) be any (possibly empty) se-
quence where Si ∈ SSX for 1 ≤ i ≤ ` and
` ≥ 0. Then P is a constraint store stack for
X if the operation push/2 over P is defined
for any S ∈ SSX as follows

Precondition : { P = (S1, . . . , S`) }
push(P, S)

Postcondition : { P = (S1, . . . , S`, S`+1),

S`+1 = S and P ∈ Stack(X) }.

where Stack(X) is the set of all constraint
store stacks for X, and the operation top/1
over P is defined as:

Precondition : {P = (S1, . . . , S`) and ` > 0}
top(P) = S

Postcondition : {S = S`}.

Let P ′ = (S′1, . . . , S
′
`′} be another constraint

store stack for X. Then P ¹p P ′ if and only if
for all Si ∈ P (1 ≤ i ≤ `), there exists S′j ∈ P ′

(1 ≤ j ≤ `′) such that Si ¹s S′j. In this case
we say that P ′ covers P .

4 The Branching Process

Branching [1] often involves two steps of choice
usually called variable ordering and value or-
dering. The first step selects a constrained
variable and the second one splits the domain
associated to the selected variable in order to
introduce a choice point. In this section we ex-
plain these choice steps by describing the main
functions that define them.

4.1 Involved Functions

The selecting function provides a schematic
heuristic for variable ordering.

Definition 4 (Selecting function) Let S =
{c1, . . . , cn} ∈ SSX . Then

choose :: {S ∈ SSX | S is divisible} → CX

is called a selecting function for X if
choose(S) = cj where 1 ≤ j ≤ n and cj is
divisible.

When branching, some interval constraints
need to be partitioned, into two or more parts,
so as to introduce a choice point. We define
a splitting function which provides a heuristic
for value ordering.

Definition 5 (Splitting function) Let L ∈ L
and k > 1. Then

splitL :: CX
L → CX

L × . . .× CX
L︸ ︷︷ ︸

k times

is called a k-ary splitting function for L if, for
all c ∈ CX

L , with c divisible, this function is
defined splitL(c) = (c1, . . . , ck) such that the
following properties hold:

Completeness : ∀c′ ≺CX
L

c with c′ non-divisible,

∃i ∈ {1, . . . , k} . c′ ¹CX
L

ci.

Contractance : ci ≺CX
L

c, ∀i ∈ {1, . . . , k}.

Lemma 1 Let choose/1 be a selecting func-
tion for X, C ∈ ℘f (CX), S = (c1, . . . , cn) ∈
SSX a divisible constraint store, cj =
choose(S), cj ∈ CX

L for some L ∈ L,
splitL/1 a k-ary splitting function for L and
(cj1, . . . , cjk) = splitL(cj). Then

(a) ∀i ∈ {1, . . . , k} : S[cj/cji] ≺s S;

(b) if S′ ∈ Sola(C) and S′ ≺s S, then

∃i ∈ {1, . . . , k} : S′ ¹s S[cj/cji].

4.2 Precision Map: a Normalization Rule

The precision map described in Section 2 also
provides a way to normalize the selecting func-
tions (i.e., the variable ordering) when the con-
straint system supports multiple domains.

Example 2 The well known first fail princi-
ple chooses the variable constrained with the
smallest domain. However, in systems sup-
porting multiple domains it is not always clear
which is the smallest domain (particularly if
there are several infinite domains). In our
framework, one way to “measure” the size of
the domains is to use the precision map de-
fined on each computation domain.

For instance, suppose that X = {x1, . . . , xn}
is a set of variables constrained, respectively,
in L1, . . . , Ln ∈ L and that S = {c1, . . . , cn} ∈
SSX is any divisible constraint store for X
where for each i ∈ {1, . . . , n}, ci is the sim-
ple interval constraint in S with constrained
variable xi. Here the first fail principle can be
emulated by defining choose/1 to select the in-
terval constraint with the smallest precision4.
We denote this procedure by chooseff .

Precondition :

{S = {c1, . . . , cn} ∈ SSX is divisible}
chooseff (S) = cj

Postcondition : {j ∈ {1, . . . , n}, cj is divisible
and ∀i ∈ {1, . . . , n}\{j} : ci divisible =⇒

precisionLj
(cj) ≤<I precisionLi

(ci)}.

4.3 The Branching Operational Schema

In [6][Section 5], for some C ∈ ℘f (CX) and
S ∈ SSX , we defined solve(C, S), a generic
operational schema for computing a solution
(if it exists) for C ∪ S (this solution is re-
turned in S). We then proved the correct-
ness of this schema. To guarantee termina-
tion, we extended the schema, and called this
extended schema solveε/2, with a parameter
ε ∈ <+ (i.e., a non-negative real number) that
guaranteed termination. Now Figure 1 shows
a generic schema that secures completeness of
the interval constraint solving. This schema is
complementary to that described in [6].

The schema requires the following param-
eters: a finite set C ∈ ℘f (CX) of interval
constraints to be solved, a constraint store
S ∈ SSX , a bound p ∈ <I and a non-negative
real bound α. In addition to those properties
of solveε/2 already declared and proved in [6],
we state here some new properties:

Lemma 2 Let C ∈ ℘f (CX), S, Sf ∈ SSX

and ε ∈ <+. Suppose that Sf is the value
of the constraint store S after a terminating
execution of solveε(C, S). Then,

4It is straightforward to include more conditions
e.g., if ci, ck, cj have the same (minimum) pre-
cision, the “left-most” domain can be chosen i.e.,
cminimum(i,k,j).

(a) Sf ¹s S;

(b) ∀R ∈ Sola(C ∪ S) : R ¹s Sf ;

(c) If Sola(C∪S) is not empty and Sf is non-
divisible then Sf ∈ Sola(C ∪ S);

(d) If ε = 0.0 and Sf is non-divisible then
Sf ∈ Sola(C ∪ S).

Property (a) ensures that the propagation
procedure never gains values, property (b)
guarantees that no solution covered by a con-
straint store is lost in the propagation process
and properties (c) and (d) guarantee the com-
puted answers are correct. There are a number
of values and subsidiary procedures that are
assumed to be defined externally to the main
branch procedure shown in Figure 1:

• a selecting function choose/1 for X;

• a k-ary splitting function splitL for each
domain L ∈ L (for some integer k > 1);

• a precision map for each L ∈ L;
• a constraint store stack P for X.

It is assumed that the external procedures
have an implementation that terminates for all
possible values.

Theorem 1 (Properties of the branchα/3
schema) Let C ∈ ℘f (CX), S ∈ SSX , ε, α ∈
<+ and p = ><I . Then, the following proper-
ties are guaranteed:

1. Termination: if α > 0.0 and the procedure
solveε/2 terminates for all values5 then
branchα(C, S, p) terminates;

2. Completeness: if α = 0.0 and the execu-
tion of branchα(C, S, p) terminates, then
the final state for the stack P contains all
the authentic solutions for C ∪ S;

3. Approximate completeness: if the execu-
tion of branchα(C, S, p) terminates and
R ∈ Sola(C ∪ S), then the final state for
the stack P contains either R or a partial
solution R′ that covers R.

5Observe that termination of this procedure is al-
ways guaranteed if ε > 0.0 -see Theorem 2 in [6].

procedure branchα(C, S, p)

begin
solveε(C, S); (1)
if S is consistent then (2)
if (S is non-divisible or (3)
p < ><I and p − precision(S) ≤ (α, 0)) then

push(P, S); (4)
else (5)

cj ← choose(S); (6)
(cj1, . . . , cjk) ← splitLj

(cj), (7)

%% where cj ∈ CX
Lj

and Lj ∈ L;

branchα(C, S[cj/cj1], precision(S)) ∨
. ∨

branchα(C, S[cj/cjk], precision(S));

(8)

endif
endif
endprocedure

Figure 1: Schema for interval constraint solving

4. Correctness: if α = 0.0 and ε = 0.0,
the stack P is initially empty and the
execution of branchα(C, S, p) terminates
with R in the final state of P , then R ∈
Sola(C ∪ S).

5. Approximate correctness or control on the
result precision: If Pα1 and Pα2 are non-
empty constraint store stacks for X re-
sulting from any terminating execution
of branchα(C, S, p) (where initially P is
empty) when α has the values α1 and α2,
respectively, and α1 < α2 then

Pα1 ¹p Pα2 .

(In other words, the set of (possibly par-
tial) solutions in the final state of the
stack is dependent on the value of α in
the sense that lower α, better the set of
solutions.)

Observe that, just as for the bound ε in the
solveε/2 procedure, the bound α also guaran-
tees termination and allows the precision of
the results to be controlled. Note also that
this schema can be used for any set of compu-
tation domains for which a splitting function
and precision map are defined.

5 Examples

To illustrate the branchα/3 schema presented
in the preceding section, several instances of
it are given for some well-known domains of
computation. In the following, branchL de-
notes an instance of the schema branchα/3 for
solving interval CSPs defined on L ⊆ L.

For simplicity, in all the examples we
assume as selecting function the function
chooseff as defined in Example 2. For each
instance branchL, we assume the definitions
for ¦L/2 shown in Example 1 so that the
precision map for L is then implicitly defined,
and indicate possible definitions for the
splitting function.

(1) branchInteger : the finite domain.

splitInteger (x v {1a1, ak}2)

= (x v {1a1, a1], x v [a1 + 1, ak}2).

Observe that split Integer is defined as a
naive enumeration strategy in which values
are chosen from left to right.

(2) branch<: a continuous domain.

split<(x v {1a, b}2) = (x v {1a, c], x v (c, b}2)

where a ¹< c ≺< b e.g., if c = b−a
2.0

we have a
usual real interval division at the mid point.

(2) branchIntegerSet : finite Sets of integers.

splitInteger Set (x v [a, b]) =

(x v [a, b\{c}], x v [a ∪ {c}, b]), where c ∈ b\a.

The schema also supports cooperative in-
stances that solve CSP’s defined on multiple
domains. This is done by mixing together sev-
eral instances of the schema.

6 Solving Optimization Problems

The schema in Figure 1 can be adapted for
alternative objectives, e.g., solving constraint
optimization problem (COPs). This can be
done by means of three new subsidiary func-
tions.

Definition 6 (Subsidiary functions and val-
ues) Let L< ∈ L be a totally ordered domain6.
Then we define

• a cost function, fcost :: SSX → L<;

• an ordering relation,

¦ :: L< × L< ∈ {>, <, =};

• a cost bound, δ ∈ L<.

The extended branching schema,
branchα+/3, is obtained by replacing Line 4
in Figure 1 (i.e., push(P, S)) with:

if fcost(S) ¦ δ then (4*)

δ ← fcost(S);

push(P, S);

endif

Theorem 2 (Properties of the branchα+/3
schema) Let C ∈ ℘f (CX), S ∈ SSX , ε, α ∈
<+ and p = ><I . Suppose that the procedure
solveε/2 terminates for all values7. Then, the
following properties are guaranteed:

1. Termination: if α > 0.0 then the execu-
tion of branchα+(C, S, p) terminates;

2. If fcost is a constant function with value
δ and ¦ is =, then all properties shown
in Theorem 1 hold for the execution of
branchα+(C, S, p).

3. Soundness on optimization: If at least
one authentic solution with a cost higher
than ⊥L< (resp. lower than >L<) ex-
ists for C ∪ S , α = 0.0, ¦ is > (resp.
<), δ = ⊥L< (resp. >L<), the stack
P is initially empty and the execution
of branchα+(C, S, p) terminates with P
non-empty, then the element on the top
of P is the first authentic solution found
that maximizes (resp. minimizes) the cost
function.

Unfortunately, if α > 0.0, we cannot guar-
antee that the top of the stack contains an

6Normally L< would be <.
7Again note that termination of this procedure is

always guaranteed if ε > 0.0 -see Theorem 2 in [6].

authentic solution or even a partial solution
for the optimization problem. However, if the
cost function fcost/1 is monotonic, solutions
can be compared.

Theorem 3 (Approximate soundness) Sup-
pose that, for i ∈ {1, 2}, Pαi is the con-
straint store stack resulting from the execution
of branchαi+(C, S, p) where αi ∈ <+ ∪ {0.0}.
Then, if α1 < α2 the following property hold.
If Pα1 and Pα2 are not empty, and top(Pα2)

is an authentic solution or covers a solution
for C ∪ S, then, if fcost/1 is monotonic and ¦
is < (i.e., a minimization problem),

fcost(top(Pα1)) ¹L< fcost(top(Pα2)),

and, if fcost/1 is anti-monotone and ¦ is > (i.e.,a
maximization problem),

fcost(top(Pα1)) ºL< fcost(top(Pα2)).

A direct consequence of this theorem is that
by using a(n) (anti-)monotone cost function,
lower α is, better the (probable) solution is.
Moreover, decreasing α is a means to discard
approximate solutions. For instance, in a min-
imization problem, if

fcost(top(Pα1)) ÂL< fcost(top(Pα2))

with fcost/1 monotonic, then, by the approx-
imate soundness property it is deduced that
top(Pα2) cannot be an authentic solution or
cover an authentic solution.

6.1 Different Ways to Solve the Instances

In this section, we explain how the choice
of the instantiation of the additional global
functions and parameters in the definition of
branchα+/3 determines the method of solving
for a set of interval constraints i.e., the schema
branchα+/3 allows a set of interval constraints
to be solved in many different ways, depending
on the values for fcost , δ and ¦.

Theorem 2(2) has shown that to solve clas-
sical CSPs, fcost should be defined as the con-
stant function8 δ and the parameter ¦ should
have the value =. Moreover, Theorem 2(3)
has shown that a CSP is solved as a COP by

8Usually δ ∈ <.

instantiating ¦ as either > (for maximization
problems) or < (for minimization problems).
In all cases, the value δ should be instantiated
to the initial cost value from which an opti-
mal solution must be found. Some possible in-
stantiations are summarized in Table 1 where
Column 1 indicates the type of CSP, Column
2 gives any conditions on the cost function,
Column 3 gives the range of the cost function
(usually, this is <), Columns 4 gives the ini-
tial definition of the ¦ operator, and Columns
5 gives the initial value for δ.

CSP Type fcost L< ¦ δ

Classical CSP constant < = fcost(S)
Minimization COP any < < ><
Maximization COP any < > ⊥<

Max-Min COP any < × < < ><×<

Table 1: CSP solving dependency on parameter in-
stantiation

In contrast to typical COPs that usually
maintain a fixed criteria (i.e., either maximiza-
tion or minimization of the cost function) and
a single lower or upper bound, our schema also
permits a mix of the maximization and min-
imization criteria (or even to give priority to
some criteria over others). This is the case (see
Row 4 of Table 1) when L< is a compound do-
main and the ordering in L< determines how
the COP will be solved.

Example 3 Let C ∈ ℘f (CX) be a set of in-
terval constraints to be solved as a COP, L<

the domain <2 = <× < with ordering

(a, b) < (c, d) ⇐⇒ (a < c ∧ b ≥ d)∨
(a ≤ c ∧ b > d),

and fcost :: SSX → L< a cost function on <2

defined for any S ∈ SSX as

fcost(S) = (fcost1(S), fcost2(S))

where fcost1, fcost2 :: SSX → < are cost func-
tions defined on <. Then, if δ and ¦ are ini-
tialized respectively to < and ><2 (as shown in
Row 4 of Table 1), C is solved by minimizing
fcost1 and maximizing fcost2.
On the other hand, if < is defined lexico-

graphically on <2, i.e.,

(a, b) < (c, d) ⇐⇒ a < c ∨ a = c ∧ b < d,

C is solved by giving priority to the minimiza-
tion of fcost1 over the minimization of fcost2.
For example, suppose Sola(C) =

{S1, S2, S3} and fcost(S1) = (1.0, 5.0),
fcost(S2) = (3.0, 1.0) and fcost(S3) =
(1.0, 8.0). Suppose also that these solutions
have been found by a terminating execution
of the branchα+/3 schema where ¦ ≡< and
initially δ ≡ ><2 and that the sequence in
which the solutions are found in the search
tree is (S1, S2, S3).
Consider the first ordering defined above for

<2. When S1 is found, line 4* of the schema
is executed with δ = (><,⊥<) (i.e., with
δ = ><2 as shown in Row 4 of Table 1) and
as consequence S1 is pushed on the stack P .
Afterwards, S2 is found and line 4* is exe-
cuted with δ = fcost(S1) = (1.0, 5.0). As
fcost(S2) 6< (1.0, 5.0), S2 is not pushed on the
stack. Next S3 is found and again line 4* is
executed with δ = fcost(S1) = (1.0, 5.0). As
fcost(S3) < (1.0, 5.0) then S3 is pushed on the
stack so that the top of the new stack contains
S3. Note S3 minimizes the first component of
the cost and maximizes the second component.
Consider next the lexicographic ordering for

the domain <2. When S1 is found, line 4*
is executed with δ = (><,><) (i.e., with δ =
><2 as shown in Row 4 of Table 1) and as
consequence S1 is pushed on the stack P . Af-
terwards, S2 is found and line 4* is executed
with δ = fcost(S1) = (1.0, 5.0). As fcost(S2) 6<
(1.0, 5.0) then S2 is not pushed on the stack.
Finally S3 is found and again line 4* is ex-
ecuted with δ = fcost(S1) = (1.0, 5.0). As
fcost(S3) 6< (1.0, 5.0), S3 is not pushed on the
stack and the top of the stack contains S1. In
this case, S1 minimizes the first component
and only if the values of the first components
are equal, minimizes the second component.

7 Related Work

Constraint solving algorithms have received
intense study from many researchers, although
the focus was on developing new and more ef-
ficient methods to solve classical CSPs [7, 23]
and partial CSPs [8, 14]. See [13, 19, 20, 22]
for more information on constraint solving al-
gorithms and [12, 17] for selected comparisons.

Most of the work existing in the literature
about the branching step is focused on the dis-
crete domain and, in this case, branching is
usually called labeling [21]. Labeling consists
of assigning values (i.e., the instantiation) to
the constrained variables and, by a backtrack-
ing search, to find a solution (if it exists) for
the CSP. The order in which variables and val-
ues are instantiated will have a significant in-
fluence on the shape of the search tree and
thus the performance of the solution [1].

On infinite domains, labeling is rarely ap-
plied as for FD. Of course there are exceptions
such as that shown in [16, 15] that applied la-
beling to process the solutions on infinite and
continuous domains. Before applying labeling,
the only values a variable can take are roots of
an univariate polynomial so that in fact only
discrete and finite domains are considered.

Traditionally, on the continuous domain
(i.e., the real domain) the branching process
consists of splitting (usually in two parts) the
domain of some variable(s) so as to continue
with the search for a solution in each of the de-
rived partitions. This is the process followed
in well known systems such as CLP(BNR) [18]
and CLIP [11]. These systems provide inter-
val constraint solving on which a real vari-
able has associated an interval (in the usual
meaning of set theory) and a classical strat-
egy of “divide and conquer” in the solving of
problems involving real numbers is usually em-
ployed. When no more propagation is possi-
ble, the interval solver uses a sort of domain
splitting to return each answer. This method
is called split-and-solve [2]. The split-and-solve
method repeatedly selects a variable, splits its
associated interval into two or more parts and
uses backtracking to look for solutions in each
partition. Of course, there is the necessity
of a termination test that avoids the infinite
splitting of ranges (at least theoretically be-
cause in practice the real domain is finite since
the precision of a machine is finite). Particu-
larly, CLP(BNR) extends this strategy to the
Boolean and integer domains.

8 Concluding Remarks

This paper it is an attempt to find general
principles for the branching process in inter-
val constraint solving. The branching schema
provided here is a generic schema for solving
sets of interval constraints on finite and con-
tinuous domains as well on multiple domains
and it is useful to prove and devise generic
properties of interval constraint solving.

Our branching schema generalizes the
well known split-and-solve method of the
CLP(BNR) system [2] to any domain with
lattice structure what means that it is valid
for both classical domains (i.e., real, integers,
Boolean and sets) and new (possibly com-
bined) domains. In this generalization, we
propose an interval branching schema that
extends the generic and cooperative interval
propagation schema described in [6]. This ex-
tension provides a generic schema for inter-
val constraint solving that allows problems de-
fined on any set of lattices to be solved in terms
of interval constraints.

To achieve this, we have first defined the
concept of authentic solution as an assignment
of values to variables that satisfies all the con-
straints. Then, by using a schematic formula-
tion for the branching process, we have indi-
cated which properties of the main procedures
involved in branching are responsible for the
key properties of interval constraint solving.
Then we have extended the schema for opti-
mization and have shown that, in some cases,
the methods for solving CSPs depend on the
ordering of the range of the cost functions.

We have also proved key properties such as
correctness and completeness and shown how
termination may be guaranteed by means of a
precision map similar to that defined for the
propagation schema described in [6]. More-
over, by means of an example, we have also
shown how the precision map is a means to
normalize the heuristic for variable ordering
on systems supporting multiple domains (e.g.,
cooperative systems).

Our branching schema can be used for most
existing constraint domains (finite or contin-
uous) and, as for the propagation framework

described in [6], is also applicable to multiple
domains and cooperative systems. Moreover,
our branching schema can explain the behav-
ior of a number of existing interval constraint
systems such as such as clp(FD) [4], clp(B) and
clp(B/FD) [3], DecLic [10], CLIP [11], Con-
junto [9] or CLP(BNR) [2];

An extended version of the pa-
per with proofs of propositions, lem-
mas and theorems can be found in
http://www.lcc.uma.es/∼afdez/Papers/.

References

[1] K.R. Apt. Principles of constraint program-
ming. Cambridge University Press, 2003.

[2] F. Benhamou and W.J. Older. Applying in-
terval arithmetic to real, integer and Boolean
constraints. The Journal of Logic Program-
ming, 32(1):1–24, July 1997.

[3] P. Codognet and D. Diaz. clp(B): combin-
ing simplicity and efficiency in Boolean con-
straint solving. In PLILP’94, number 844 in
LNCS, pages 244–260, Madrid, Spain, 1994.
Springer-Verlag.

[4] P. Codognet and D. Diaz. Compiling con-
straints in clp(FD). The Journal of Logic
Programming, 27(3):185–226, 1996.

[5] B.A. Davey and H.A. Priestley. Introduction
to lattices and order. Cambridge University
Press, Cambridge, England, 1990.

[6] A. J. Fernández and P.M. Hill. An inter-
val constraint system for lattice domains.
ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 26(1):1–46,
2004.

[7] E.C. Freuder and P. Hubbe. Extracting
constraint satisfaction subproblems. In IJ-
CAI’95, pages 548–557, Québec, Canada, Au-
gust 1995. Morgan Kaufman.

[8] E.C. Freuder and R.J. Wallace. Partial con-
straint satisfaction. Artificial Intelligence,
58(21-70):21–70, 1992.

[9] C. Gervet. Interval propagation to reason
about sets: definition and implementation of
a practical language. Constraints, 1(3):191–
244, 1997.

[10] F. Goualard, F. Benhamou, and L. Granvil-
liers. An extension of the WAM for hybrid
interval solvers. The Journal of Functional
and Logic Programming, 1999(1):1–36, April
1999.

[11] T.J. Hickey. CLIP: a CLP(Intervals) dialect
for metalevel constraint solving. In E. Pontelli
and V.Santos Costa, editors, PADL’2000,
number 1753 in LNCS, pages 200–214,
Boston, USA, 2000. Springer-Verlag.

[12] G. Kondrak and P. Van Beek. A theoreti-
cal evaluation of selected backtracking algo-
rithms. Artificial Intelligence, 89(1-2):365–
387, January 1997.

[13] V. Kumar. Algorithms for constraint satis-
faction problems: a survey. AI Magazine,
13(1):32–44, Spring 1992.

[14] P. Meseguer and J. Larrosa. Constraint
satisfaction as global optimization. In IJ-
CAI’95, pages 579–585, Québec, Canada, Au-
gust 1995. Morgan Kaufman.

[15] E. Monfroy. Solver collaboration for con-
straint logic programming. PhD thesis, Cen-
tre de Recherche en Informatique de Nancy,
INRIA-Lorraine, November 1996.

[16] E. Monfroy, M. Rusinowitch, and R. Schott.
Implementing non-linear constraints with co-
operative solvers. Research Report 2747, Cen-
tre de Recherche en Informatique de Nancy,
INRIA-Lorraine, December 1995.

[17] B.A. Nadel. Constraint satisfaction algo-
rithms. Computational Intelligence, 5:188–
224, 1989.

[18] W. Older and F. Benhamou. Programming
in CLP(BNR). 1st International Workshop
on Principles and Practice of Constraint Pro-
gramming (PPCP’93), Informal Proceedings,
pages: 228-238, Brown University, Newport,
Rode Island, 1993.

[19] Z. Ruttkay. Constraint satisfaction-a survey.
CWI Quaterly, 11(2-3):163–214, 1998.

[20] B.M. Smith. A tutorial on constraint pro-
gramming. Research Report 95.14, University
of Leeds, School of Computer Studies, Eng-
land, April 1995.

[21] P. Van Hentenryck. Constraint satisfaction
in logic programming. The MIT Press, Cam-
bridge, MA, 1989.

[22] P. Van Hentenryck. Constraint solving for
combinatorial search problems: a tutorial. In
U. Montanari and F. Rossi, editors, CP’95,
number 976 in LNCS, pages 564–587, Cassis,
France, 1995. Springer-Verlag.

[23] R.J. Wallace. Why AC-3 is almost always
better than AC-4 for establishing arc consis-
tency in CSPs. In R. Bajcsy, editor, (IJ-
CAI’93), pages 239–247, Chambéry, France,
1993. Morgan Kaufmann.

