
Toy(FD): Sketch of Operational Semantics

Antonio J. Fern�andez1, Teresa Hortal�a-Gonz�alez2, and Fernando S�aenz-P�erez2

1 Dept. de Lenguajes y Ciencias de la Computaci�on, Univ. de M�alaga, Spain?

2 Dept. Sistemas Inform�aticos y Programaci�on, Univ. Complutense de Madrid

afdez@lcc.uma.es, fteresa,fernang@sip.ucm.es

1 Introduction

In [2] we proposed the integration of �nite domain (FD) constraints into the func-
tional logic programming language TOYand, as result, presented the language
TOY(FD) . We showed that TOY(FD) integrates the best features of existing
functional and logic languages into FD constraint solving. This paper describes
a sketch (due to space limitations) of the TOY(FD) operational semantics that
consists of a novel combination of lazy evaluation and FD constraint solving.

2 Denotational Semantics

Types. We assume a countable set TVar of type variables �; �; : : : and a
countable ranked alphabet TC =

S
n2N

TCn of type constructors C 2 TCn.
Types � 2 Type have the syntax � ::= � j C �1 : : : �n j � ! � 0 j (�1; : : : ; �n),
C �n abbreviates C �1 : : : �n, \!" associates to the right, �n ! � abbreviates
�1 ! � � � ! �n ! � and (�1; : : : ; �n) denotes n-tuples. A type without any
occurrence of \!" is called a datatype. A polymorphic signature over TC is a
triple � = hTC; DC; FSi, where DC =

S
n2N

DCn and FS =
S
n2N

FSn

are ranked sets of data constructors resp. de�ned function symbols. Each n-
ary c 2 DCn comes with a principal type declaration c :: �n ! C �k, where
n; k � 0; �1; : : : ; �k are pairwise di�erent, �i are datatypes, and the set of type
variables occurring in �i is included in f�1, : : : , �kg for all 1 � i � n. Every
n-ary f 2 FSn comes with a principal type declaration f :: �n ! � , where �i, �
are arbitrary types. In practice, each TOY(FD) program P has a signature which
corresponds to the type declarations occurring in P . In the sequel, we always
assume a given signature�, often not made explicit in the notation and write�?

for the result of extending � with a new data constructor ? :: �, intended to
represent an unde�ned value belonging to every type. As notational conventions,
in the rest of the paper, we use c; d 2 DC, f; g 2 FS and h 2 DC [FS.

Patterns and Expressions.We assume a countable set Var of (data) vari-
ables X;Y; : : : disjoint from TVar and �. Partial expressions have the syntax
e ::= ? j X j h j e e0 j (e1; : : : ; en) where X 2 Var, h 2 DC [FS and

? This author has been partially supported by the projects TIC2001-2705-C03-02,

and TIC2002-04498-C05-02 funded by both the Spanish Ministry of Science and

Technology and FEDER.

e; e0 and ei (for 1 � i � n) are partial expressions (e 2 Exp
?

). Expressions
of the form e e0 stand for the application of expression e (acting as a function)
to expression e0 (acting as an argument), while expressions (e1; : : : ; en) repre-
sent tuples with n components. An expression e is non-primitive, and we write
non�primitive(e), i� it contains no function symbol. Partial patterns are built
as t ::=? j X j c t1 : : : tl j f t1 : : : tm where X 2 Var; c 2 DCk; 0 � l �
k; f 2 FSn; 0 � m < n and ti's are partial patterns (t 2 Pat? � Exp

?
). Ex-

pressions and patterns without any occurrence of ? are called total. The sets of
total expressions and patterns are denoted, respectively, by Exp and Pat .

Functions and FD constraints. Each function f 2 FS
n is de�ned by a set

of conditional rules of the form f t1 : : : tn = r (1; : : : ; k, where (t1 : : : tn)
form a tuple of linear (i.e., with no repeated variable) patterns, r is an expression

and j can be either a joinability statement of the form e == e0, or a disequality

statement of the form e == e0, with e; e0 2 Exp, or a Boolean function. Rules
have a conditional reading: f t1 : : : tn can be reduced to r if all the conditions
 i are satis�ed (1 � i � k). FD constraints are de�ned as functions and their
complete de�nitions were shown in [2] and are available in [3]. In this paper,
FSFD � FS

n denotes the set of FD constraints that return a Boolean value.
Substitutions. A substitution is a mapping � : Var ! Pat with a unique

extension �̂ : Exp ! Exp, which is also denoted as �. Let Subst denote the set of
all substitutions and let the set of all the partial substitutions � : Var ! Pat?

denote Subst?, and de�ned analogously. We de�ne the domain dom(�) as the
set of all variables X s.t. �(X) 6= X . By convention, we write e� instead of �(e),
and �� for the composition of � and �, such that e(��) = (e�)� for any e.

Finite Domains. A �nite domain (FD) is a mapping � : Var ! }(Integer),
where }(Integer) denotes the powerset of integers. The set of all FDs is denoted
as FD. Also � is inconsistent (resp.consistent), and write inconsistent(�) (resp.
consistent(�)), if there exists (resp. does not exist) X such that �(X) = ;.

Programs. A program de�nes a set of functions where each f 2 FS
n has

an associated principal type �1 ! : : : ! �m ! � (with � not containing !).
As usual in functional programming, types are inferred and, optionally, can be
declared in the program.

3 Operational Semantics

This section presents part (due to space limitations) of the operational semantics
of TOY(FD) that deals with higher order (HO) programming by translating HO
expressions into �rst order, and consists of a novel combination of lazy narrowing
and constraint solving. 1; : : : ; n is a goal whose variables have an existential
reading. Solving a goal means obtaining conditions (a mixture of substitutions
and �nite domains) over their variables to ensure the satis�ability of the initial
goal.

Notational conventions. Let e; e0 2 Exp; by [e]�, e[� e0] and e[8� 2 I:�
X�], we respectively mean the sub-expression of e at position �, the expression
resulting from replacing [e]� in e by e0, and the expression resulting from re-

placing, for each � 2 I with I 2 }(Integer), [e]� in e by a fresh variable X�. If
e � f e1 : : : en and f 2 FSn, NonPrie � fj j non�primitive(ej) ^ 1 � j � ng is
the set identifying the positions of all the non-primitive arguments in e.

Let P be a TOY(FD) program with a signature � = hTC;DC; FSi. There is
a natural notion of model of rules and programs, for which it can be proved that
every semantically non-ambiguous TOY(FD) program P has a least model IP
[4]. Then, a solution wrt. P for a goal is a substitution � such that � satis�es
 in IP (� j=IP

). We also say that � satis�es 9U if there is �0 which satis�es
 and coincides with � over dom(�) � U .

In the following, by j j, the shell of , we denote the result of replacing in
 all the outermost sub-expressions of the form f e1 : : : en by ?. Following the
schema in [1], we say a goal is semantically �nished wrt. � if � is a solution of
j j wrt. P and by simplicity we also write � j=IP

 . The words semantically

�nished are used to express may still contain non-primitive sub-expressions
but their values are irrelevant to the fact that � is a solution of the goal.

We consider con�gurations he; �; �iCa where e 2 Exp, � 2 Subst, � 2 FD
and Ca is a set of primitive FD constraints (i.e., with no function symbol in the
arguments). The initial state to solve a goal is h ; �; �i; where � denotes the
empty substitution and �(X) = Integer for any integer variable X in Var. Next
table shows some important rules of the TOY(FD) operational semantics.

NON-SATISFACTION inconsistent(�) _ � 6j=IP
e

e; �; �
�
Ca
7! termination with failure

SOLUTION consistent(�) ^ � j=IP
e

e; �; �
�
Ca
7! termination with solution �

ONE-STEP NARROWING

[e]� � f e1 : : : en; f 2 FS
n � FSn

FD
; �0 � fX1 7! e1; : : : ; Xn 7! eng;

f X1 : : :Xn = r (is a variant rule for f in FS with fresh variables X [Y

e; �; �

�
Ca
7!

e[� r�0] ^ �0; �; �

�
Ca

FD CONSTRAINT SOLVING

[e]� = (g e1 : : : en); g 2 FSFD ; CFD � [e]�[8j 2 NonPri [e]� :j Xj]

Ca

0 = Ca [CFD ; CFD ;
Ca

0

�
�0

e; �; �
�
Ca
7!

e[� true]

V
fXj == ej j j 2 NonPri [e]�g; �; �

0
�
Ca

0

The non-satisfaction and solution rules check for termination returning a
failure or a solution, respectively. The lazy computation mechanism is based
mainly in the rule one-step narrowing that basically rewrites a goal by taking
into account the demanded positions [4].

We note that, due to space limitations, we do not provide correctness proof
and also that the semantics described here is a simpli�cation of the operational
semantics of TOY(FD) (observe for example that it generates reductions that
are actually not performed, because of variable sharing, and also that we do not
show the rule that considers pattern matching in the function arguments).

TOY(FD) also integrates a solving mechanism for FD constraints that is
mainly based in the rule FD constraint solving in which it is assumed the exis-
tence of a mechanism CFD ;

Ca

�
�0 to de�ne the resolution of a FD constraint

CFD under the initial conditions imposed by both the �nite domain � and the
constraints in Ca. The resolution gives place to a new (possibly inconsistent)
�nite domain �0 that replaces the original � in the transition process among
con�gurations. Observe that only primitive constraints are sent to the FD con-
straint solver. This is because non-primitive constraints are �rst translated to
primitive ones by replacing the non-primitive arguments by new fresh variables
before executing constraint solving and by registering new bindings in forms of
equality constraints between the non-primitive arguments and the new variables.
This last step is reected in the addition of the sub-goal Xj == ej , with Xj as
fresh variable, corresponding to each non-primitive argument ej in the original
constraint [e]�. Note also that this allows for HO computations possibly to be
done on the arguments e1; : : : ; en.

Upon termination and �nding a solution, the �nal state is h�; �; �i with �

consistent and � satisfying � in IP .Termination and correctness of constraint
solving is responsibility of the constraint solving mechanism ;Ca

�
.

4 An Example: Imposing In�nite Lists of Constraints

TOY(FD) provides lazy evaluation (i.e., call-by-need) that means that the argu-
ments (to functions) are evaluated to the required extent in contrast to eager or

strict evaluation in which arguments are evaluated before the call (i.e., call-by-
value). This aspect of TOY(FD) increases the possibilities of constraint solving
by, for example, using in�nite list of constraints. Consider the (well-known) magic
series problem [6] and the following TOY(FD) functions3:

generateFD :: int -> [int]

generateFD N = [X | generateFD N] <== domain [X] 0 (N-1)

constrain :: [int] -> [int] -> int -> [int] -> bool

constrain [] A B [] = true

constrain [X|Xs] L I [I|S2] = true <== count I L (#=) X,

constrain Xs L I+1 S2

lazymagic :: int -> [int]

lazymagic N = L <== take N (generateFD N) == L, constrain L L 0 Cs,

sum L (#=) N, scalar_product Cs L (#=) N, labeling [ff] L

magicfrom :: int -> [[int]]

magicfrom N = [lazymagic N | magicfrom (N+1)]

The function lazymagic/1 uses the prede�ned FD constraints count/4 (via
constrain/4), sum/3, scalar product/4, #=/2 and labeling/2 and the prim-
itive function take:: int -> [A] -> [A] de�ned such that take N L returns

3 Lists follows the syntax of Prolog lists and Variables start with uppercase, whereas

the remaining symbols start with lowercase.

the list with the �rst N elements of L. generateFD/1 imposes an in�nite list of
membership constraints (i.e., domain/3) by generating an in�nite list of vari-
ables ranging in the interval [0,N-1] for some N. The N-magic serial is calculated
by lazy evaluation by solving the goal lazymagic N, for some natural N. How-
ever, observe that an eager evaluation would not terminate as it tries to evaluate
�rst the second argument in take N (generateFD N) == L yielding to an in�-
nite list. Also, magicfrom/1 generates an in�nite list of N-magic series from a
number N, and, again by lazy evaluation, it is possible to return answers; for
example, the goal take 3 (magicfrom 7) == L returns in L a 3-element list
containing, respectively, the solution to the problems of 7, 8, and 9-magic series.

5 Conclusions

We have presented a sketch of the operational semantics of TOY(FD), a func-
tional logic programming language with support for FD constraint solving. This
semantics consists of a novel combination of laziness and constraint solving in
such a way that both remain independent; the advantage is that termination and
correctness of lazy evaluation is left to the functional logic language that acts
as host language whereas the same properties for constraint solving are respon-
sability of a FD constraint solver connected to the host language. The system
TOY(FD) is available in [3].

Note that we focus on the integration of �nite domains into a functional-logic
language, a proposal quite di�erent from the language Oz [5], which combines
FD constraints and functions.

References

1. P. Arenas, A. Gil, and F. L�opez-Fraguas. Combining lazy narrowing with dise-

quality constraints. In 6th International Symposium on Programming Languages

Implementation and Logic Programming (PLILP'94), number 844 in LNCS, pages

385{399, Madrid, Spain, 1994. Springer-Verlag.

2. A. J. Fern�andez, M. T. Hortal�a-Gonz�alez, and F. S�aenz-P�erez. Solving combinatorial

problems with a constraint functional logic language. In P. Wadler and V. Dahl,

editors, Practical Aspects of Declarative Languages (PADL'2003), number 2562 in

LNCS, pages 320{338, New Orleans, Louisiana, USA, 2003. Springer-Verlag.

3. A. J. Fern�andez, T. Hortal�a-Gonz�alez, and F. S�aenz-P�erez. TOY(FD): User manual,

latest version. http://www.lcc.uma.es/�afdez/cflpfd/index.html, 2002.
4. F. L�opez-Fraguas. Programaci�on funcional y l�ogica con restricciones. PhD thesis,

Universidad Complutense de Madrid, Departamento de Inform�atica y Autom�atica,

Septiembre 1994.

5. G. Smolka. The Oz programming model. In J. Van Leeuwen, editor, Computer

Science Today, number 1000 in LNCS, pages 324{343, Berlin, 1995. Springer-Verlag.

6. P. Van Hentenryck. Constraint satisfaction in logic programming. The MIT Press,

Cambridge, MA, 1989.

