
Model Driven Architecture

A Technical Perspective

Architecture Board MDA Drafting Team

Review Draft Version 00-17(frame)

January 29, 2001

Document Number ab/2001-01-01

Table of Contents
1 Preface - 1
2 Introduction - 2
3 Basic Terminology - 3
3.1 What is a Model - -3
3.2 Abstractions and Viewpoints - -3
3.3 Platform and Implementation Language Environment - - - - - - - - - - - - - - - - - -4
4 Life Cycle of IT Systems and OMG Standards - - - - - - - - - - - - - - - - - - 4
5 IDL Models and Formal Syntax - 6
5.1 Platform and Language Environment Independence of IDL Specified Models- - - - - - -7
5.2 Extensions to IDL to Capture Richer Semantics - -8
6 CORBA, CORBA Services and GIOP - 8
6.1 Standard CORBA Platform and Bridging to Other Platforms - - - - - - - - - - - - - - -8
6.2 The General Problem of Portability and Bridging -9
7 UML Models and Formal Semantics - 9
7.1 An Example - 11
7.2 CORBA-Specific UML Models - 11
7.3 Platform-Independent UML Models - 13
7.4 Relationship Between Platform-Independent and Platform-Specific UML Models- - - - 13
7.4.1 Transforming a Platform-Independent Model to a Platform-Specific Model - - - - - - - - - -13
7.5 Tracability - 16
7.6 Relevent Standards Activities - 17
8 Roadmaps- 18
8.1 Languages- - 18
8.1.1 IDL Roadmap -18
8.1.1.1 Support Round-trip - -18
8.1.2 UML Roadmap - -19
8.1.2.1 Action Semantics - -19
8.1.2.2 UML 2.0 - -19
8.1.2.3 UML 2.0 Infrastructure -19
8.1.2.4 UML 2.0 Superstructure -19
8.1.2.5 UML 2.0 Object Constraint Language (OCL) -19
8.1.2.6 UML 2.0 Diagram Interchange -19
8.2 Platform- - 20
8.2.1 CORBA + Interoperability Roadmap- -20
8.2.1.1 UML Models for Existing Standards - -20
8.2.1.2 The Round Trip Problem -20
8.3 Facilities - 20
8.3.1 MOF/XMI Roadmap -20
8.3.1.1 MOF 2.0 - -20
8.3.2 Domain Standards Roadmap- -20
8.3.2.1 UML Models for Existing Standards - -20
9 What Kind of Specifications does OMG Adopt?- - - - - - - - - - - - - - - - - 20
9.1 Models of Services, Facilities and Repositories - 21
9.1.1 Platform-Independent Model (PIM) -21
9.1.2 Platform-Specific Model (PSM) - -21
9.2 Languages- - 21
Model Driven Architecture - A Technical Perspective v00-18(frame) 29 January 2001 i

9.3 Mappings - 21
9.4 Interoperability Infrastructure - 22
9.5 New Submissions Requirements - 22
10 What Process Changes will be Necessary to Support this Expanded Agenda - - - 23
ii Model Driven Architecture - A Technical Perspective v00-18(frame)

Model Driven Architecture

A Technical Perspective

Architecture Board MDA Drafting Team

Review Draft Version 00-17(frame)

ese
A
face,

al
at
puter
solete

s who

 hot
 we

"
a
1 Preface

OMG's mission is to help computer users solve integration problems by supplying
open, vendor-neutral interoperability specifications. Vendors have implemented th
specifications widely over the past ten years, most notably OMG's flagship CORB
specification. When every system component supports an OMG-standardized inter
the task of creating a multi-vendor solution (as most are) is greatly eased.
Organizations polled in a recent analyst survey confirmed this by ranking CORBA-
compliance as the most important consideration in choosing middleware for
application integration1. We believe that other, more recent OMG interoperability
specifications like Common Warehouse Metamodel will in the long term have equ
impact. However, we must recognize that there are limits to the interoperability th
can be achieved by creating a single set of standard programming interfaces. Com
systems have lives measured in decades, and not all ancient systems written in ob
programming languages can be modified to support standards. Furthermore, the
increasing need to incorporate Web-based front ends and link to business partner
may be using proprietary interface sets can force integrators back to the low-
productivity activities of writing glue code to hold multiple components together.
When these systems in their turn need modifying and integrating with next year's
new technology (and they all will) the result is the kind of maintenance nightmare
all fear.

This paper is a technical description of the Model Driven Architecture (MDA), a
proposal to ensure that OMG specifications will address integration with non-OMG
standards and technologies that emerge in the future.

1. "A surprising 70 percent of respondents cited CORBA compliance as 'important' or 'very
important' to integration, outpacing every other factor in the survey, including core functions
such as integration of legacy applications with distributed systems and corporate intranets.
-- Summary of responses from 547 organizations asked to rate middleware selection criteri
in the context of application integration in "Middleware: what end users are buying and
why", Gartner Group, February 1999
ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame) 1

and
ibed
idly

rds,

se

d

ent

G

en
 the
veral
g

h its
he

inated
we
. It
n of

MDA
on
o

ance

 and
ws the
ing
OMG has already specified integration with external specifications (such as XML)
proprietary interface sets (such as Microsoft's DCOM). The MDA approach descr
in this paper incorporates all this existing work, and promises more support for rap
and effectively creating new specifications that integrate multiple interface standa
from both inside and outside the organization. It is an evolutionary step from how
OMG works at the moment, but one that we believe will offer great benefits to tho
working within the OMG framework to create interoperability specifications, and
therefore indirectly help all system integrators faced with this hardest of real-worl
programming tasks.

2 Introduction

The work of the OMG has been driven since 1990 by a clear architectural statem
that has not changed much since it was first designed. The Object Management
Architecture (OMA) provided the vision and roadmap for the problem that the OM
has always addressed, the problem of integration. Having created the CORBA
interoperability standards, OMG has in the past used them almost exclusively wh
creating standards for use in particular application domains. However, since 1997
scope of the organization has broadened significantly. In 1997 the OMG issued se
important specifications that are not CORBA based, including the Unified Modelin
LanguageTM (UMLTM) and the Meta Object FacilityTM (MOFTM), and later XML
Metadata InterchangeTM (XMI TM) and the Common Warehouse MetamodelTM
(CWMTM).

When the OMG was issuing only CORBA-oriented standards, the manner in whic
various standards fit together was quite well understood, and clearly mapped by t
OMA. The emergence of these new kinds of standards, and their potential use in
defining other standards, necessitates that we expand our vision of the OMG’s
architecture.

This paper is a statement by the OMG Architecture Board (AB) of how it sees the
relationships among these standards and how they can be used today in a coord
fashion. It discusses new standards work that would fill in some significant gaps
have identified. It does not attempt to address all standardization activities of OMG
describes how the MDA approach helps in the creation, maintenance and evolutio
standards and dealing with associated problems. It is important to realize that the
is a proposal to expand and not replace the old OMA, to give us a roadmap and visi
that will include and integrate all of the work done to date, and to point the way t
future integration standards.

An important aspect of some of the latest OMG standards is that they greatly adv
the art and science of modeling. We believe that the combined power of these
standards can form the basis of a compelling approach to the architecture of
distributed, component-based systems that embraces CORBA, J2EE, XML, .NET
other technologies. The approach of creating standards based on models also allo
same model to be realized on multiple platforms through additional auxiliary mapp
standards, or through point mappings to specific platforms, thus broadening the
usability of the standards considerably. This reduces the risk of obsolescence of
adopted domain standardsas platforms come and platforms go.
2 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

ach
into

t the
rd.

any
 a
sing

and

.

ristic
 be
ns

 is a

could

uch

e
els.

f
action.

However, there are a number of challenges that we will have to face in order to re
this potential. This paper delineates these challenges now so that we can move
this new territory with proper grounding in firm principles.

Finally, it is important to note that many of the ideas expressed in this model reflec
cumulative wisdom of many people who are not members of the Architecture Boa

3 Basic Terminology

3.1 What is a Model

Some people define a model as a visual representation of a system. However, m
people refer to a set of IDL interfaces as a “CORBA object model.” Furthermore,
specification expressed in terms of UML can be rendered into an XML document u
the OMG’s XMI DTD for UML, which certainly is not a visual artifact. Thus, we
conclude that this definition is too limiting.

We offer the following definition: A model is a formal specification of the structure
and/or function of a system.

A specification that is not formal, i.e. that is not based on some rigorously-defined

language (like IDL or UML) is not a model. Thus a diagram with boxes and lines
arrows that does not have behind it a definition of the semantics of a box and the
semantics of a line and of an arrow is not a model—it is just an informal diagram

Note that under this definition, source code is a model that has the salient characte
that it can be executed by a machine. A set of IDL interfaces is a model that can
used with any CORBA implementation and that specifies the signature of operatio
and attributes of which the interfaces are composed. A UML-based specification
model whose properties can be expressed visually or via an XML document.

We could have taken the stance that a model is not necessarily formal, so that we
talk about formal and informal models, which in a way seems to be quite natural
discourse. However we then would end up with a very weak definition of model s
as "a representation of a system." We feel that the definition that encompasses
formality is more useful.

3.2 Abstractions and Viewpoints

ISO’s Open Distributed Processing (ODP) Part II defines abstraction as the
suppression of irrelevant detail2. We view this as an appropriate definition. Thus, all
models are abstractions and term like “abstract model” can be very confusing. W
must be careful about the terminology we use to categorize different kinds of mod

The phrase higher level of abstraction refers to an abstraction in which a larger part o
the details of the system is abstracted away as compared to a lower level of abstr

It is useful to identify models in terms of the abstraction criteria that were used to
determine what is included in the model. A model that is based on a specific
abstraction criterion is often referred to as a model from the viewpoint of that
abstraction, or in short as a viewpoint of the system.
2. ISO Standard 10746-2
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 3

ing

 a
tion

d
ust

AP

A,

red

t

a

ge of
tion.
 and

re
nd
.

re

 as
eds
ite
d for
ed
ISO’s ODP defines five standard viewpoints that are convenient to use to describe
systems. Many projects have used other sets of viewpoints to specify systems.

3.3 Platform and Implementation Language Environment

The term platform is used to refer to different things in different contexts. In this
document, we propose to use the term to encompass technological and engineer
details that are irrelevant to the fundamental semantics of a software component.
Consider, for example, a formal definition of an operation that transfers funds from
checking account to a savings account. The fundamental semantics of this opera
are that a specified amount is subtracted from a designated checking account an
added to a designated savings account, with a constraint that the two accounts m
belong to the same customer. These semantics hold regardless of whether the
operation is performed by a CORBA object, an Enterprise Java Bean, or a SOAP
operation.

Thus, a platform-independent model is a formal specification of the structure and
function of a system that abstracts away technical details. By this definition a SO
specification of the funds transfer operation would be platform-specific, where the
platform is SOAP. A specification that depends on interfaces to artifacts of CORB
like the ORB, Object Services or GIOP/IIOP would be an example of a platform-
specific model.

CORBA itself is implemented on an infrastructure, which in proper context is refer
to as a implementation language platform. However, to avoid confusion, for the
purposes of this document, we will use the term implementation language environmen
to refer to such infrastructures. Thus, analogous to the dichotomy established for
platforms, CORBA specifications are implementation language environment
independent, whereas artifacts like stubs, skeletons and the ORB implemented in
specific language are implementation language environment specific.

4 Life Cycle of IT Systems and OMG Standards

IT systems have historically been developed, managed and integrated using a ran
methodologies, tools and middleware and there appears to be no end to this innova
What we have seen in the last few years, especially as a result of efforts at OMG
W3C is a gradual move to more complete semantic models as well as data
representation interchange standards. OMG contributions include CORBA, UML,
XMI, MOF and CWM. W3C contributions include XML, XML Schema, and the
ongoing work of XML-PC working group. These technologies can be used to mo
completely integrate the value chain (or life cycle) when it comes to developing a
deploying component based applications for various target software architectures

The life cycle of an application can vary dramatically depending on whether we a
building a new application from scratch or just surgically adding a wrapper to an
existing application. The cost of enhancement and maintenance of an application
well as the cost of integrating new applications with existing applications far exce
the cost of initial development. In addition the application life cycle itself can be qu
complex, involving several vendors in each of the life cycle phases. Hence the nee
information interchange and interoperability between tools and middleware provid
by different vendors (a very common situation in enterprises today) is critical.
4 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

t
e
t

s

the
e the

ts,
as
n and
ts of
The MDA supports many of the commonly used steps in model driven componen
based development and deployment. A key aspect of MDA is that it addresses th
complete life cycle analysis and design, programming aspects (testing, componen
build or component assembly) as well as deployment and management aspects.

Figure 1 below which is excerpted from the companion document
(http://doc.omg.org/mda) shows a high level representation of how the various piece
fit together in MDA.

Figure 1 MDA Overview

One of the things it attempts to do is to provide an overall framework within which
role of various OMG and other standards can be uniquely identified. As an exampl
various OMG standards affect the interchange of information between tools and
applications that are seen in this figure are described below:

Unified Modeling Language : UML addresses the modeling of architecture, objec
interactions between objects, data modeling aspects of the application life cycle,
well as the design aspects of component based development including constructio
assembly. Note that UML is powerful enough that we can use it to represent artifac
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 5

s,

d

en

 the

s
al

A,
ion

 the
 key
d

ses.

e
n

nt

her
can be
s
ent,
ct

rt
legacy systems. Artifacts captured in UML models (Classes, Interfaces, UseCase
Activity Diagrams etc.) can be easily exported to other tools in the life cycle chain
using XMI

XML Metadata Interchange (XMI): XMI is a standard interchange mechanism use
between various tools, repositories and middleware. XMI can also be used to
automatically produce XML DTDs (and soon XML Schemas) from UML and MOF
models, providing an XML serialization mechanism for these artifacts. XMI has be
used to render UML artifacts (using the UML XMI DTD), data warehouse and
database artifacts (using the CWM XMI DTD), CORBA interface definitions (using
the IDL DTD), and Java interfaces and Classes (using a Java DTD).

Meta Object Facility (MOF): MOF is the metadata interchange and interoperability
standard from OMG. MOF uses a subset of UML for modeling information about
applications as well as providing programmatic interfaces (in IDL) to manipulate
artifacts across the application life cycle.

Common Warehouse Metamodel (CWM): CWM is the OMG data warehouse
standard. It covers the full life cycle of designing, building and managing the data
warehouse applications and supports management of the life cycle. It is probably
best example to date of applying the MDA paradigm to an application area..

UML profiles for CORBA, EJB, EDOC etc. A number of UML profiles are at variou
stages of standardization (UML profile for CORBA is adopted) and these are critic
links that bridge the UML community (model based design and analysis) to the
developer community (Java, VB, C++ developers), middleware community (CORB
EJB, SOAP developers) etc. Additional profiles focused on systems and applicat
management are needed

Historically the integration between the development tools and the deployment into
middleware framework has been week. This is now beginning to change by using
elements of the MDA – specific models and XML DTDs that span the life cycle an
profiles that provide mappings between the models used in various life cycle pha
XMI which marries the world of modeling (UML), metadata (MOF and XML) and
middleware (UML profiles for Java, EJB, IDL, EDOC etc.) plays a pivotal role in th
OMG’s use of XML at the core of the MDA. It also provides developers focused o
implementation in Java, VB, HTML etc, a natural way of taking advantage of the
software architecture and engineering discipline when a more rigorous developme
process is desirable.

5 IDL Models and Formal Syntax

A set of IDL modules containing specification of IDL interfaces, valuetypes and ot
associated datatypes is a declarative syntactic model of a system. Such a model
used to reason about the validity or lack thereof of relationships among the entitie
specified using the rules of relationship among IDL declared entities like containm
inheritance etc. A formal IDL specification is often referred to as the “CORBA obje
model” recognizing the fact that such a model can be implemented on a CORBA
platform that will implicitly verify the syntactic validity of any attempt to use any pa
of the system.
6 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

e

 in

ess
f the
s

xtent

t
 has

 is

 to
g

er, it
dent,
ns,

ge

s of
e

at
rm

ven
tion
ate
ans
However, such a specification does not contain much formal information about th
semantics of the operations of the interfaces or of the elements of the datatypes
declared. In traditional CORBA specifications such information has been included
normative but informal description in English.

In this approach, an IDL compiler can be used to statically verify syntactic correctn
of the model. An ORB can verify syntactic correctness of attempts to use parts o
system dynamically. However, there is no automatic way of verifying the semantic
that appears in the specifications in informal descriptions

IDL was not designed to express a rich set of relationships among entities. The
description of relationships between different parts of a system is also to a large e
informal, and hence prone to multiple interpretations. Traditionally descriptions of
relationships among CORBA Services, and indeed among different artifacts that
constitute a CORBA service, appeared in the form of informal text. In more recen
specifications (e.g. POA), the use of UML to more completely describe the model
brought additional rigor to the specifications.

5.1 Platform and Language Environment Independence of IDL Specified Models

IDL itself per-se is not tied to any specific language environment or platform. This
what made it possible to have ISO adopt IDL as a standard without any specific
reference to CORBA. Indeed there are many systems in this world which use IDL
specify the syntactic model of the system but do not use CORBA as the underlyin
platform. While OMG has not standardized any such usage of IDL with alternative
platforms, there are broadly deployed instances in the industry of such use. Howev
should be noted that in spite of being platform and language environment indepen
IDL specified models are restricted to expressing only the syntax of the interactio
i.e. operation signatures.

OMG has chosen to use IDL together with the CORBA platform (ORB and langua
mappings) as a reasonable package of facilities to standardize thus allowing for
language independent specifications from which skeletons of portable component
the system thus specified can be constructed algorithmically, for specific languag
environments, using an appropriate IDL compiler. The big win from this is portability
of specifications from one language environment to another, as well as portability of
implementations among different instances of the same language environment..

Additionally, given specifications of exact syntax of interaction between objects th
constitute the system, it is also possible to automatically generate the syntactic fo
that is carried on a wire that connects the two communicating objects. OMG has
standardized on GIOP/IIOP as the standard means of conveying communication
between IDL declared objects deployed on a CORBA platform. Again, IDL, and e
the CORBA platform per-se, does not preclude use of other means of communica
between objects. Indeed, it is quite possible for two CORBA objects to communic
with each other using DCOM or SOAP on the wire. But the adoption of a single me
of interoperation ensures interoperability of implementations.
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 7

a
. A

erms

tion,

nt
tion
The

t
 to

l in
UML

te

s

der
bility

ith
ins.

BA

ain
as
RBA

er if
n. It
n to
aking
5.2 Extensions to IDL to Capture Richer Semantics

Various attempts have been made to extend IDL to capture richer structural and
behavioral information and to automatically generate implementation artifacts for
given platform that enforces the constraints as specified in the richer specification
recent example of this is the Components extension of IDL together with the XML
based deployment descriptors, which facilitates specification of entire systems in t
of its constituent components, their interactions and deployment characteristics.
However, it should be noted, that all such extensions so far have been point solu
without paying much attention to a general model for specifying such extensions.

A model defined in the UML profile for CORBA (see 7.2 CORBA-Specific UML
section) provides an alternative representation of an IDL model. They are differe
representations of the same model. In fact, there is precisely one IDL representa
that can be derived from a model represented using the UML profile for CORBA.
UML model may, however, provide additional semantics (such as cardinality) that
cannot be represented in an IDL model today. Appropriate extensions to IDL, tha
allow representation of these additional relevant concepts, would make it possible
map a model expressed in the CORBA profile of UML to an equivalent IDL mode
a reversible fashion. That is, one would be able to reconstruct the corresponding
from the equivalent IDL, without loss of information. This ability to “round-trip” the
transformation in this way would allow designers and architects to work in the
technology that they are comfortable with (UML or IDL) and algorithmically genera
the alternative representation for the specification..

6 CORBA, CORBA Services and GIOP

The OMG standard platform consists of the specifications commonly referred to a
CORBA, CORBA services, and GIOP/IIOP.

6.1 Standard CORBA Platform and Bridging to Other Platforms

The general philosophy has been to adopt a single set of standards within a broa
framework that allows alternatives if there is such a need. The standard interopera
framework recognizes such possibilities and explicitly defines domains and how
bridges can be specified to enable objects in different domains to communicate w
each other, thus making it possible to construct systems that span multiple doma

This framework has been successfully used to specify bridges between the COR
platform with GIOP/IIOP based communication and the COM/DCOM platform and
communication domain in an existing OMG standard. More recently an inter-dom
bridge between the CORBA Component Model and the EJB Component Model h
also been adopted as a standard. This shows the tremendous versatility of the CO
and associated interoperability framework..

The problem of bridging from one platform to another becomes considerably simpl
the two platforms in question share a common model at a higher level of abstractio
is fortunate that most broadly deployed distributed computing environments happe
share such a common model, although never formally expressed as such, thus m
construction of bridges among them feasible.
8 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

ame
sing
een
ed

eful

tions

ning

hus

d of
ed
m

aces,
 of

ined
 is
r

uages

pts

ML

e.
e
6.2 The General Problem of Portability and Bridging

As the basic CORBA platform and associated CORBA services specifications bec
rich enough to support the building of domain specific facilities the need for expres
the underlying model in a formal way, at an appropriate level of abstraction, has b
felt more acutely. This is somewhat analogous to the need that motivated IDL bas
specifications, but at a higher level of abstraction. A formally specified model is us
because:

• It facilitates creation of compatible platform specific models/specification
corresponding to the same platform-independent model and hence implementa
that are easier to bridge together.

• It provides a common reference model and vocabulary with unambiguous mea
thus reducing the chances of miscommunication among system designers and
builder.

• It facilitates standardization of more precisely specified designs and patterns, t
allowing for portability of design, and makes it easier to support interoperability
among different realizations of the same design on different platforms.

Thus, given the experience gained working on CORBA systems specifications an
bridges to other similar platforms, it is a natural step for OMG to adopt standardiz
means of expressing richer formal models at appropriate levels of abstraction, for
multiple viewpoints.

7 UML Models and Formal Semantics

UML models are declarative models, as are IDL-based object models, Java interf
and Microsoft IDL interfaces. However, UML models differ from these other kinds
declarative models in some important ways.

One difference is that UML models can be expressed visually, although, as expla
above, they can also be represented non-visually. The more important difference
that UML models can be semantically much richer than models expressed in othe
declarative model languages mentioned above. The other declarative model lang
mentioned express syntax (i.e. signature) but very little semantics. Another key
difference is that UML has been formally defined using core UML modeling conce
and this enhances the power of MDA.

The following is a partial list of semantic information that can be expressed in a U
model that the other declarative languages mentioned above, cannot express:

• Invariant rules

• Pre and post conditions for operations

• Whether a single-valued attribute or parameter is allowed to be null

• Whether an operation has side effects

• Whether a set of subtypes of a common supertype is disjoint or overlapping, i.
whether it is permissible to define a type that inherits from more than one of th
subtypes.
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 9

 the

ML

oes

d

cts:

xtent
n the

e

 this
• Whether a type is abstract, i.e. whether it is permissible to create instances of
type that are not instances of some subtype.

Invariant rules and pre/post conditions are particularly important features of an
approach to rigorous software engineering called contract based design. UML did not
invent the concept of contract based design, but it has very good support for it. U
defines a formal assertion language called Object Constraint Language (OCL) that
facilitates formalization of semantic specifications. While contract based design d
not eliminate the need for informal textual explanations of semantics, it can
significantly reduce dependence on them.

The use of UML opens up the possibility that OMG standards will formalize a goo
deal of the semantics that are currently specified mostly in English. In fact some
current OMG specifications including UML, MOF and CWM specifications already
use UML and OCL for defining the semantics formally.

Specifying semantics formally rather than in free form text reduces ambiguity in
specifications and thus makes life easier for implementers in two important respe

1. It provides the programmer with more precise instructions, thus lessening the e
to which the programmer has to guess at the designer’s intention or track dow
designer to find out what to do.

2. It decreases the amount of work required to get different implementations of th
same specification working together. Reduce

A model that formalizes the semantics to this extent is profoundly different in
character from one that does not. We would like to see OMG specifications rise to
level of rigor.
10 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

 this
ain
7.1 An Example

Figure 2 and Figure 3 show fragments of a platform independent UML model
containing invariant rules and pre and post conditions (in the shaded boxes).

Figure 2 Invariant Rules

Figure 3 Pre and Post Conditions

7.2 CORBA-Specific UML Models

However, since UML is CORBA-independent and, in fact, is independent of all
middleware technologies, it is not obvious to the casual observer how to harness
power. In order to transform this model into a CORBA specific platform model cert
decisions need to be made. For example do the UML classes represent CORBA

--English
--number must be between 1000
--and 9999

--OCL
inv:

number >= 1000 and
number <= 9999

Account

number : integer
balance : float

Customer

SocialSecurityNumber : String
name : String
Address : String

Checking Account

Sum in Balance : Float

1..n

+account

1
+customer

FundsXfer

XFerFromChecking(in fromAcct : CheckingAccount, in toAcct : SavingsAccount, in amount : Float, out fromAcctBal : Float, out toAcctBal : Float)

- OCL (XFerFromChecking)
pre:

fromAcct.balance >= amount
fromAccount.customer = toAccount.customer

post:
fromAcct.balance = fromAcct.balance@pre - amount
toAcct.balance = toAcct.balance@pre + amount
fromAcctBal = fromAcct.balance
toAcctBal = toAcct.balance
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 11

t a
he

of

r

it

ed to
kets.

antic
y

interfaces, valuetypes, structs, and unions? If so how does one make it clear tha
particular UML class is an interface as opposed to a valuetype? If not, what do t
classes represent and how would they be useful?

A UML profile is a set of extensions to UML using the built-in extension facilities
UML. The primary UML extension facilities are stereotypes and tagged values.
Stereotypes label a model element to denote that the element has some particula
semantics.

The UML Profile for CORBA, adopted in 2000, specifies how to use UML in a
standard way to define CORBA IDL interfaces, structs, unions, etc. For example,
defines stereotypes named CORBAInterface, CORBAValue, CORBAStruct,
CORBAUnion, etc. that are applied to classes to indicate what the class is suppos
represent. In the graphical UML notation, a stereotype is delimited by angle brac

Figure 4 A Stereotype Indicating that the Class Represents a CORBA Interface

Figure 5 is a fragment of the specification of a CORBA interface that uses the sem
power of UML to formalize an invariant rule. The invariant rule cannot be formall
specified in IDL, and thus we consider this model to be a semantically enhanced
CORBA specification.

Figure 5 A fragment of a Semantically Enhanced CORBA Specification

This model fragment corresponds to the following IDL:

<<CORBAInterface>>
AccountManager

create_account(in number : unsigned long) ;
find_account(in number : unsigned long) ;

--English
--number must be between 1000
--and 9999

--OCL
inv:

number >= 1000 and
number <= 9999

<<CORBAInterface>>
Account

number : short
balance : float
12 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

e
at

BA
need
y

ere
sal

c

ness

hile
us

 a

interface Account
{
 attribute short number;
 attribute float balance;
};

Figure 6 IDL--By Nature Semantically Thin

Thus, with the UML Profile for CORBA, CORBA-based specifications can be mad
much more rigorous than is possible with IDL only. The normative English text th
specifies rules such as the allowable range of the Account number today, will be
replaced by formal invariant rules expressed in terms of the UML Profile for COR
in the near future. The ORBs of today need only understand the IDL; they do not
to understand the formal semantics in the semantically enhanced specification an
more than they need to understand informal semantics specified in English text.

The technology is in place to proceed in this direction. The main barrier is that th
is a gap in knowledge of how to use the technology, and there is a lack of univer
availability of appropriate tools.

7.3 Platform-Independent UML Models

UML can be used to state fundamental semantics without committing to a specifi
platform. The models shown by Figure 2 and Figure 3 are platform-independent.

Such platform-independent models are useful for two basic reasons. Firstly, by
distilling the fundamental semantics, they make it is easier to validate the correct
of those semantics. Platform-specific semantics cloud the picture in this respect.
Secondly, they make it easier to produce implementations on different platforms w
holding the essential semantics of the system invariant, by making an unambiguo
description of the semantics available.

7.4 Relationship Between Platform-Independent and Platform-Specific UML
Models

7.4.1 Transforming a Platform-Independent Model to a Platform-
Specific Model

In real-life projects platform-independent models are useful but insufficient. The
people in the trenches also have to design platform-specific implementations.

There are three basic ways to construct a platform-specific UML model from a
platform-independent UML model:

1. A human could study the platform-independent model and manually constructs
platform-specific model.

2. An algorithm could be applied to the platform-independent model resulting in a
skeletal platform-specific model that is manually enhanced by a human.

3. An algorithm could be applied to the platform-independent model resulting in a
complete platform-specific model.
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 13

n of

ly
ces,

 The
n the

ertain

le.

orms

o a
this
count
ent-
cial

dicate
ese
UML models are declarative. Hence the above list does not address the productio
executable code from a platform-independent model that entails similar choices.

There also are variations in which the platform-specific model is not a semantical
rich UML model but, rather, is expressed via a language such as IDL, Java interfa
XML, etc.

Fully automated transformations are feasible in certain constrained environments.
degree to which transformations can be automated is considerably enhanced whe
following conditions are obtained:

• There is no legacy to take into account

• The model that serves as input to the transformation is semantically rich

• The transformation algorithms are of high quality

It is much easier to generate executable code for structural features (attributes, c
associations and similar properties) of a model rather than behavioral features
(operations) because the semantics of property getters and setters are quite simp

Automation of transformations is more tractable when the transformation is
parameterized, i.e. a human has a pre-defined set of options to select from, to
determine how the transformation is performed. For example, a system that transf
a UML model to an XML DTD could allow some control over how a UML class’s
attributes are transformed, giving a human a chance to choose to put them in an
ATTLIST or to put each attribute in a separate ELEMENT.

Some of these points are illustrated by a CORBA-specific model, corresponding t
fragment of the platform-independent model shown earlier. Note (Figure 7) that
fragment of the model has been enhanced by using a stereotype to denote that Ac
is an entity as opposed to a process. (In the field of distributed business compon
based software it is now widely understood that the entity-process distinction is cru
to building scalable systems.) The model fragment has also been enhanced to in
that the Account number constitutes a unique identifier for Account instances. Th
enhancements are platform-independent.

Figure 7 Platform-Independent Model, Enhanced with Stereotypes

--English
--number must be between 1000
--and 9999

--OCL
inv:

number >= 1000 and
number <= 9999

<<BusinessEntity>>
Account

<<UniqueId>> number : Integer
balance : Float
14 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

e

ction
unt is
ntity.

actory

ess
t and
e a

es it
t

ut
Figure 8 A CORBA-Specific UML Model Derived from the Platform-Independent UML
Model

Figure 8 shows a CORBA-specific UML model constructed from this fragment. W
are not taking a stand that this is the proper way to construct a CORBA solution from
the platform-independent UML fragment. It is simply an example of how one might
do so either manually or algorithmically. Note that Session:BaseBusinessObject is an
element defined in the OMG Task and Session Service. The logic of the constru
uses the enhancements to the platform-independent model that indicate that Acco
a business entity and that the Account number constitutes an Account’s unique ide
It reflects a commonly used pattern of specifying one interface exposed by entity
instances and the other exposed by a manager of the entity instances, including f
finder operations that use the unique identifier as a selector. The entity instance
interface has an attribute that provides a reference to the instance manager.

Figure 9 contains the IDL that expresses the same CORBA-specific solution. Of
course the IDL is semantically thin. Its formal constructs do not and cannot expr
the invariant rule about the account number range. Furthermore, the IDL does no
cannot formally indicate whether a well-formed Account instance is allowed to hav
null manager reference. On the other hand, the CORBA-specific UML model mak
clear, via the multiplicity of 1 on the manager end of the association between Accoun
and AccountInstanceManager, that a well-formed account must have a non-null
manager reference. If the solution designer intended to allow a null manager
reference, then the multiplicity would be 0..1 in the CORBA-specific UML model, b
the IDL would be the same as in Figure 9.

--English
--number must be between 1000
--and 9999

--OCL
inv:

number >= 1000 and
number <= 9999

<<CORBAInterface>>
Account

number : short
balance : float

<<CORBAInterface>>
Session::BaseBusinessObject

<<CORBAInterface>>
AccountInstanceManager

create_account(in number : unsigned long : Account
find_account(in number : unsigned long) :) Account

<<CORBAInterface>>
CosLifeCycle::GenericFactory

1 1

+manager
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 15

cific

utes
ncy.
ents.

at
tics

 2.0
interface AccountInstanceManager : CosLifeCycle::GenericFactory
{

Account create_account (in unsigned short number);
Account find_account (in unsigned short number);

};

interface Account : Session::BaseBusinessObject
{

attribute AccountInstanceManager manager;
attribute short number;
attribute float balance;

};

Figure 9 IDL Corresponding to the CORBA-Specific UML Model

7.5 Tracability

The relationships between elements of the platform-independent and CORBA-spe
UML models can be specified in UML. Figure 9 illustrates that the
AccountInstanceManager CORBA interface is a refinement, at a different level of
abstraction, of the number attribute in the platform-independent model that constit
Account’s unique identifier. <<refine>> is a standard UML stereotype of depende
Note that UML namespaces are used to distinguish between the two Account elem
The platform-independent Account class is contained in a namespace called Analysis.
The desired namespace separation can be achieved by putting the two models in
separate UML Packages.

It is generally recognized by UML experts that UML’s facilities for relating models
different levels of abstraction are rudimentary and need expansion. UML’s seman
do not adequately support powerful zoom-in and zoom-out capabilities. The UML
RFPs call for facilities that address this gap.

Figure 10 Tracing Between Elements of the Models

<<CORBAInterface>>
CORBASpecific::Account

number : short
balance : float

<<CORBAInterface>>
AccountInstanceManager

create_account(in number : unsigned long : Account
find_account(in number : unsigned long) :) Account

1 1

+manager

<<BusinessEntity>>
PlatformIndependent::Account

<<UniqueId>> number : Integer
balance :: Float

<<refine>>
16 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

ler
f the

ation
L
plete

ay to
on. It
B.

-

file
s.
rts

e
 in

y.

ML

BA

The
irstly,

N

-
m-
The above set of examples highlights the value of the MDA – The architect/mode
focuses on creating the platform independent architectural and business model o
application. The middleware/e-services designer uses UML profile for CORBA to
model the platform specific aspects of the system so that CORBA interface gener
can be automated. The programmer then uses the UML model as well as the ID
interfaces to augment whatever generated code exists with additional code to com
the value added business logic for the service. All these artifacts are traced and
versioned. This allows MDA to be used by systems administrators , architects,
designers as well as developers

7.6 Relevent Standards Activities

The OMG’s UML Profile for EDOC RFP process currently underway will define
standard stereotypes for platform-independent models that will provide standard w
use UML to express the semantics of components in a platform-independent fashi
will contain proof of concept mappings to the CORBA Component Model and to EJ
A follow-on RFP is expected that will call for standardization of these mappings3.

The EDOC profile will not necessarily be entirely applicable to all domains. For
example, real time applications are likely to require a different profile for platform
independent modeling with their own mappings to platforms.

The Sun Microsystems Java Community Process is currently defining a UML Pro
for EJB (JSR #26) to support the declarative specification of EJB-specific solution
This profile can be considered a peer of the UML Profile for CORBA in that suppo
platform-specific modeling.. Several members of the OMG Architecture Board ar
members of the expert group defining the profile as are other UML experts active
the OMG.

The MOF-IDL mapping defines an algorithm for transforming any arbitrary MOF-
compliant metamodel to a set of IDL interfaces. The generated IDL defines the
interfaces for CORBA objects that can represent models in a distributed repositor

The IDL generated from the CWM defines the interfaces for CORBA objects
representing specific data models in a repository. The IDL generated from the U
defines the interfaces for CORBA objects representing specific UML models in a
repository.

Similarly, the IDL generated from the IR metamodel defines the interfaces for COR
objects representing specific CORBA object models in a repository.

MOF experts generally agree that the MOF-IDL mapping is in need of upgrading.
problem is that the generated interfaces are not efficient in distributed systems. F
the mapping predates CORBA valuetypes and thus does not make use of them.
Secondly, a class with N attributes is always mapped to a CORBA interface with

3. The EDOC profile also addresses business process component modeling and is likely to be
integrated sooner or later with another standard in progress, the UML Profile for Event
Driven Architectures in EAI. When these standards are finalized we may end up with more
than one level of platform-independent model so that a platform-independent buinsess pro
cess model could be mapped either to an event-based EAI model or to a more standard co
ponent model, where the EAI and component models are still platform-independent.
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 17

p

e,
-
ll be
ay.

tible
t

ays
.

 taken
G,

d
izes.

L

e

res
to
ring

pecify
ize.
separate getter/setter operations. In a distributed system one would want to grou
attributes based upon use cases, cache attribute values, or implement other
optimizations to reduce the number of distributed calls.

Realistically we will probably have to accept the fact that for the foreseeable futur
the automatically generated transformation from platform-independent to platform
specific will have to be enhanced by humans. As we gain more experience we wi
able to define various standard patterns and allow them to be selected in some w

There are additional issues regarding evolution of interfaces in a backward compa
interoperable fashion. An interface that is evolved in a UML or MOF model withou
consideration for backwards compatibility will most likely not result in a newer
version of the interface that is backward compatible with the older version when
deployed in a given platform. There may need to be additional enhancements to
modeling standards that allow specification of platform specific restrictions to the w
in which interfaces can be evolved, so they continue to be usable by older clients

8 Roadmaps

This section enumerates specific actions that are being taken and that need to be
in order to make MDA happen. It is not a complete roadmap of all activities of OM
so things like roadmaps of individual task forces and such are not included here.

The section is organized into three major subsections – Languages, Platforms an
Facilities which basically covers the three major type of things that OMG standard

8.1 Languages

8.1.1 IDL Roadmap

8.1.1.1 Support Round-trip

Develop enhancements to support “round-trip” between IDL specifications and UM
for CORBA profile based specifications.

An obvious concern if IDL is expanded to include these semantics is the effect on
CORBA vendors who provide IDL compilers. One possible approach might be to
standardize “annotations” of IDL that would be ignored by the IDL compiler. Thes
standard annotations could be interpreted by UML modeling tools that import and
export IDL, but ignored by an IDL compiler. This is similar to the annotation featu
that JavaDocs added to the Java language. The JavaDoc annotations are used
generate HTML documentation but are not interpreted by the Java compiler. Ensu
that the annotations are correct and that the software does what the annotations s
is the job of an implementation - an area that MDA does not propose to standard
18 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

L
ive)
an

cond

 and
ain

 the

tant
g in
vels
hical

izing
I.

ued
 of

8.1.2 UML Roadmap

8.1.2.1 Action Semantics

There is an RFP in process called “Action Semantics for UML" which will move UM
beyond the realm of first order (declarative) semantics into second-order (imperat
semantics4. This will make it more feasible to produce executable UML models th
is the case today.

Once a UML action semantics standard is in place, it will be possible to make se
order UML models normative.

8.1.2.2 UML 2.0

There are four UML 2.0 RFPs. All of the RFPs emphasize that it is necessary to
enforce a clear separation of concerns between the underlying semantics of UML
the notation. Architecturally it is preferable that the formal semantics be the the m
driver, with notations flowing from the semantics. Of course gratuitous changes to
notation are discouraged.

8.1.2.3 UML 2.0 Infrastructure

This RFP calls for addressing the lack of full alignment of UML and MOF and for
making the UML extension mechanisms more powerful

8.1.2.4 UML 2.0 Superstructure

This RFP calls for enhancement of the semantics of UML. One of the most impor
requirements of this RFP addresses the lack of powerful mechanisms for zoomin
and out mentioned earlier in this paper. The underlying semantics of traversing le
of abstraction must be defined independently of notation and an appropriate grap
notation must be defined that conforms to the semantics.

8.1.2.5 UML 2.0 Object Constraint Language (OCL)

This RFP calls for enhancements to the expressive power of OCL and for standard
the representation (i.e. parse tree) of OCL expressions in the MOF and using XM

8.1.2.6 UML 2.0 Diagram Interchange

A fourth RFP focusing on interchanging diagram information is expected to be iss
in an upcoming OMG meeting. The current OMG specifications allow interchange
semantics and structural information in models but not presentation information.

4. See ad/98-08-03, an excellent paper written by Steve Mellor about the motivation for action
semantics.
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 19

 are

 an

on

L
nd

lude
,

 are

the
. The
n

s
ene
8.2 Platform

8.2.1 CORBA + Interoperability Roadmap

8.2.1.1 UML Models for Existing Standards

UML models will be constructed and included in the existing standards, where they
currently missing, in due course through the normal revision process

8.2.1.2 The Round Trip Problem

Enhancements necessary in the platform, in addition to extending IDL, to support
acceptable solution for round trip problem will be developed and standardized.

8.3 Facilities

8.3.1 MOF/XMI Roadmap

Usage of MOF and XMI have resulted in increased interest in extending these
specifications to address new features – some focused on better integration with
emerging XML standards like XML Schema, SOAP and UDDI and other focused
configuration management, version control and federation.

XMI for XML Schema RFP This RFP allows mapping of MOF based models to XM
Schemas. Another key feature of this RFP is reverse engineering of XML DTDs a
XML Schemas into the MOF. This allows the OMG MDA to accommodate legacy
XML DTDs and Schemas to take advantage of the rigor and formal modeling
supported by the MDA

8.3.1.1 MOF 2.0

Some of the features anticipated for MOF 2.0 (RFP to be issued in the future) inc
version control and configuration management, integration with directory services
UDDI and repository federation.

8.3.2 Domain Standards Roadmap

8.3.2.1 UML Models for Existing Standards

UML models will be constructed and included in the existing standards, where they
currently missing, in due course through the normal revision process

9 What Kind of Specifications does OMG Adopt?

The OMG adopts infrastructure specifications aimed at tools/system vendors, by
PTC, and specifications aimed at applications vendors and end-users, by the DTC
line between the two is obviously fuzzy, changes over time, and is dependent upo
where one sits in the “food chain”—one person’s infrastructure is another person’
application. To an operating system vendor the OTS is an “application”, but to a g
researcher it is a fundamental piece of “infrastructure”.
20 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

crete
of
 be

e.
ion

ay

 an
lves

L

ned.

r an

ay

ety
The crux of an OMG specification is the artifacts that it defines. These are the con
entities that are IT-realizable and to which conformance can be tested. A variety
techniques are used. The following outlines the various kinds of artifacts that can
found in OMG specifications:

9.1 Models of Services, Facilities and Repositories

Examples: PIDS, Interface Repository, MOF, OTS

9.1.1 Platform-Independent Model (PIM)

PIMs may be defined using UML (preferable) or other notations where appropriat
Semantics are defined using a formal notation (UML models) or an informal notat
(natural language) as appropriate

In the future, the UML Profile for EDOC (in progress) will become the a standard w
to describe PIMs.

9.1.2 Platform-Specific Model (PSM)

At some point we will have developed guidelines, and notations for adding
platform specific constraints to aid in transforming PIMs into PSMs. This is
area ripe for infrastructure technology adoptions as the state of the art evo.

PSMs are described in one of two ways:

1. UML diagrams (class, sequence, activity, etc.) found in one of the adopted UM
platform specific profiles. Currently only the UML Profile for CORBA has been
defined. In the future UML Profiles for EJB, SOAP, etc., are expected to be defi

2. Interface definitions in a concrete implementation technology (e.g. IDL, XML,
Java)

In both cases semantics are specified using a formal notation (UML diagrams) o
informal notation (natural language) as appropriate

9.2 Languages

OMG adopted language specifications are IDL, UML, and CORBAScript. There m
be more in the future. In the future UML Profile for CORBA annotations should be
added to IDL to support the equivalence of both representations.

UML Platform Specific Profiles are languages for defining platform specific
constructs.

9.3 Mappings

Mapping specifications define how to transform artifacts into other entities. A vari
of forms of OMG ing specifications exist:
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 21

ined
++,

ined

el

m

wide

rise
 has
ts.

ither

ch,

SM

y

re
e
The IDL/<programming language> mappings define how to realize constructs def
in IDL in various concrete programming languages. Examples are IDL/Java, IDL/C
etc.

UML Profile for <specific platform> define the generation concrete interface
definitions that correspond to the target platform along with their platform specific
semantics.

The XMI specification handles two transformations:

• the generation of XML DTDs from a UML models

• the generation of an XML document instance (which conforms to the above def
XML DTD) from a specific UML model

The MOF/IDL specification define how to generate IDL type definitions from a mod
found in a MOF repository.

Part of the XML/Value specification defines how to generate IDL type definitions fro
an XML DTD.

9.4 Interoperability Infrastructure

Examples: GIOP/IIOP, XML/Value, COM/CORBA, CORBA/SS7

Interoperability specifications cover a wide gamut of functionality. In general their
purpose to allow implementations of the above artifacts to inter-operate across a
range of platforms and environments.

9.5 New Submissions Requirements

Today there is broad consensus within the OMG community for the minimum
requirements that submissions which define all but the “model artifacts”. With the
of the modeling and specification techniques described in this paper, controversy
arisen as to what should be required for submissions that define modeling artifac

The key criterion that OMG submissions must meet is that there is a working
implementation of the proposed technology and that it is possible to determine (e
automatically or manually) whether a particular product actually implements the
technology.

In order to continue to meet the “implementation criterion” using the MDA approa
Model, Service and other specifications will have to include at least one PSM and
either define a PIM corresponding to the PSMl or reference an existing PIM. The P
can be stated in terms of a UML Profile for a <specific platform> and/or as an
interface definition in a concrete implementation technology.

Note that technically a model specified using the UML Profile for CORBA implicitl
and unambiguously specifies a set of IDL interfaces. (The profile specifications
describes how to generate the IDL) However until such time as generation tools a
commonly available, the OMG will continue to require that submissions supply th
IDL, as well as the UML model.
22 ab/2001-01-01 Model Driven Architecture - A Technical Perspective v00-17(frame)

.
ew
te

in

10 What Process Changes will be Necessary to Support this Expanded Agenda

It should be clear that very few formal changes to the OMG process are required
Basically the RFP template will need to be updated to capture the above stated n
requirement for PIMs and PSMs. In addition submissions will have to explicitly sta
which parts of the specification are normative and which parts are automatically
derivable via other mapping specifications.

The bigger changes are more informal. As more of the MDA infrastructure is put
place, the expected level of formality and rigor will increase. More normative UML
models will appear. There will be less informal English.
Model Driven Architecture - A Technical Perspective v00-17(frame) 29 January 2001 23

	1 Preface
	2 Introduction
	3 Basic Terminology
	3.1 What is a Model
	3.2 Abstractions and Viewpoints
	3.3 Platform and Implementation Language Environment

	4 Life Cycle of IT Systems and OMG Standards
	5 IDL Models and Formal Syntax
	5.1 Platform and Language Environment Independence of IDL Specified Models
	5.2 Extensions to IDL to Capture Richer Semantics

	6 CORBA, CORBA Services and GIOP
	6.1 Standard CORBA Platform and Bridging to Other Platforms
	6.2 The General Problem of Portability and Bridging

	7 UML Models and Formal Semantics
	7.1 An Example
	7.2 CORBA-Specific UML Models
	7.3 Platform-Independent UML Models
	7.4 Relationship Between Platform-Independent and Platform-Specific UML Models
	7.4.1 Transforming a Platform-Independent Model to a Platform- Specific Model

	7.5 Tracability
	7.6 Relevent Standards Activities

	8 Roadmaps
	8.1 Languages
	8.1.1 IDL Roadmap
	8.1.1.1 Support Round-trip

	8.1.2 UML Roadmap
	8.1.2.1 Action Semantics
	8.1.2.2 UML 2.0
	8.1.2.3 UML 2.0 Infrastructure
	8.1.2.4 UML 2.0 Superstructure
	8.1.2.5 UML 2.0 Object Constraint Language (OCL)
	8.1.2.6 UML 2.0 Diagram Interchange

	8.2 Platform
	8.2.1 CORBA + Interoperability Roadmap
	8.2.1.1 UML Models for Existing Standards
	8.2.1.2 The Round Trip Problem

	8.3 Facilities
	8.3.1 MOF/XMI Roadmap
	8.3.1.1 MOF 2.0

	8.3.2 Domain Standards Roadmap
	8.3.2.1 UML Models for Existing Standards

	9 What Kind of Specifications does OMG Adopt?
	9.1 Models of Services, Facilities and Repositories
	9.1.1 Platform-Independent Model (PIM)
	9.1.2 Platform-Specific Model (PSM)

	9.2 Languages
	9.3 Mappings
	9.4 Interoperability Infrastructure
	9.5 New Submissions Requirements

	10 What Process Changes will be Necessary to Support this Expanded Agenda

