
MDA-based Development
in Practice

Uniting Model and Code So That They Can‘t Drift Apart

Ruud Grotens, Product Manager, Compuware

“The entire history of software
engineering is that of the rise in

levels of abstraction.”

Grady Booch
The limits of Software, September 2002

Coding Language Evolution
P
ro
du
ct
iv
it
y

Time70’s

J2EE
Complexity

• Object-oriented
• Multi-tier
• Web-based
• Scalability

80’s 90’s 00’s

4GL

COBOL
C/C++

Assembler

Java

move ax,word ptr_io_evnt

Print “Hello World”

Raise the level of Abstraction
Modeling

• Many practice modeling in some form
– ‘Bubble and arrow’ diagrams
– Flow charts, dataflow diagrams, state transition diagrams

• UML: The Standard modeling language

• Models are not necessarily on a higher level of abstraction than code
– Diagrammatical presentation of the code structure

• e.g. UML class diagram of Java classes
• No increased productivity because of equal complexity

• Modeling is only half the answer
– The UML model is tied to a hardware/operating architecture
– UML model is implementation-specific

Model Driven Architecture
Raising the Level of Abstraction

• Invest in models as the long-lived
intellectual assets, not code
– Raise abstraction level above

deployment platform
• Model Driven Architecture

– Modelling instead of programming
– Merging modelling and coding
– Based on standards

• UML, MOF, CWM, XMI ...

Object Management Group (OMG)
www.omg.org

MDA Development
Generation of working applications

Platform
Independent

Model

Transform

Platform
Specific
Model

Transform
Code
Model

Business changes

Architecture changes

Code changes

Platform Independent Model
Step One

• High level of abstraction
– Business centric
– Independent of any implementation

technology or technology details
• Expressed in UML

– Business functionality
– Structural aspects

• Enrich with business rules
– Constraints
– Expressions

• Automated reuse of model definitions and
business rules in lower level models

Platform Specific Model
Step Two

Functional
Patterns

PIM

PSM

• Automatic transformation from PIM to PSM
– One or more target platforms
– PIM and PSM always in sync

• Focus on specific implementation technology
– Presentation Model (Web)

• Data schemas, web components, etc.
– Business Logic Model (EJB)

• Data schemas, key classes, entity components,
session components, etc.

– Data Model (DBMS)
• Relational data schema, Tables, columns,

keys, etc.

• Hiding complexity in abstract specification
– Incremental Refinement

Code

Code Model
Step Three

Transformation
Patterns

PIM

Code

PSM

Technology
PatternsTechnology
Patterns

• Automatic transformation from PSM to Code
– PSM and Code always in sync

• Complete executable results
– Presentation Tier

• JSP, Servlets
– EJB Tier

• Bean class, home/remote and primary key
classes etc.

– DBMS Tier
• SQL scripts for target database

– Application deployment descriptors
• For target application server

• Code customization in ‘Free Blocks’

Transformation of Models
Bridging the Quality Gap

• Delivering solutions through a combination
of formal Models and solution Patterns

• Models and Patterns are complementary
– Models provide abstraction

• Focus on building future proof
applications

• Reducing business complexity
– Patterns provide best practices

• Hides the implementation through
abstraction

• Reducing technology complexity

PIM

Transform

PSM

Transform

Code

The Emergence of Patterns
• Recurring solutions to similar problems

– Patterns come from good designs
• Patterns can cover a wide range of abstractions

– Code-level
– Architecture-level
– Business-level

• The “Gang of Four”
– Non-platform patterns

• SUN J2EE Design Patterns
– Multi level patterns

How to use Models and Patterns to build
an application?

• Transformations are essential in the MDA development process
– Transformations between models and between models and code

Transformation
Patterns

Transformation Definition

Transformation Tool

Transformation Definition

Transformation Tool

• Transformations are always executed by tools
– Transformation Definitions

• MDA in Practice
– Standards based
– Repository based (MOF)
– Transformation Patterns

Platform
Independent

Model

Platform
Specific
Model

Code
Model

Productivity & Control
• The Reality is …

– MDA is not just another CASE tool
• MDA is based on standards only!
• Non proprietary solution!

– MDA is not just another Black-box code generator
• Customizable and Maintainable Transformations!

• Full control over generated code!

• Enterprises usually have clear ideas on how to
implement a given model, based on:

– Architectural and Coding Standards, Best Practices
– Past experience - Patterns come from good designs

• Enforcement of standards and best practices
– e.g. Automated implementation of J2EE Design

Patterns

MDA in Practice
Demonstration

Raising the Level of Abstraction is MDA

• Platform Independent Models as the long-lived
intellectual assets, not code

• Raise abstraction level above deployment platform
• Increased productivity because of automated

transformations
• Quality improvement because of enforcement of

standards and best practices
• Always in control of the generated application

Find Out More …

• OMG’s MDA web site: www.omg.org/mda
– Compuware’s MOF 2.0 Query/View/

Transformations (QVT) RfP
• www.omg.org/cgi-bin/doc?ad/03-03-24

• www.omg.org/cgi-bin/doc?ad/02-09-12

• OptimalJ web site
– www.compuware.com/optimalj
– http://javacentral.compuware.com

• Technical Forums
• Technical white papers

• MDA Explained
– Addison-Wesley ISBN: 0-321-19442-X

Contact Details

• Compuware Nordic AS
– Pål Christoffersen
– Email: Paal.Christoffersen@compuware.com

• Compuware Europe B.V.
– Ruud.Grotens@compuware.com

	Coding Language Evolution
	Raise the level of Abstraction Modeling
	Model Driven Architecture Raising the Level of Abstraction
	MDA DevelopmentGeneration of working applications
	Platform Independent ModelStep One
	Platform Specific ModelStep Two
	Code ModelStep Three
	Transformation of ModelsBridging the Quality Gap
	The Emergence of Patterns
	How to use Models and Patterns to build an application?
	Productivity & Control
	MDA in Practice Demonstration
	Raising the Level of Abstraction is MDA
	Find Out More …
	Contact Details

