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“The entire history of software 
engineering is that of the rise in 

levels of abstraction.”

Grady Booch
The limits of Software, September 2002
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Raise the level of Abstraction
Modeling

• Many practice modeling in some form
– ‘Bubble and arrow’ diagrams
– Flow charts, dataflow diagrams, state transition diagrams

• UML: The Standard modeling language

• Models are not necessarily on a higher level of abstraction than code
– Diagrammatical presentation of the code structure 

• e.g. UML class diagram of Java classes
• No increased productivity because of equal complexity

• Modeling is only half the answer
– The UML model is tied to a hardware/operating architecture
– UML model is implementation-specific



Model Driven Architecture
Raising the Level of Abstraction

• Invest in models as the long-lived 
intellectual assets, not code
– Raise abstraction level above 

deployment platform
• Model Driven Architecture

– Modelling instead of programming
– Merging modelling and coding
– Based on standards

• UML, MOF, CWM, XMI ...

Object Management Group (OMG)
www.omg.org



MDA Development
Generation of working applications
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Platform Independent Model
Step One

• High level of abstraction
– Business centric 
– Independent of any implementation 

technology or technology details
• Expressed in UML

– Business functionality
– Structural aspects

• Enrich with business rules
– Constraints
– Expressions

• Automated reuse of model definitions and 
business rules in lower level models



Platform Specific Model
Step Two

Functional
Patterns

PIM

PSM

• Automatic transformation from PIM to PSM
– One or more target platforms
– PIM and PSM always in sync

• Focus on specific implementation technology
– Presentation Model (Web)

• Data schemas, web components, etc.
– Business Logic Model (EJB)

• Data schemas, key classes, entity components,  
session components, etc.

– Data Model (DBMS)
• Relational data schema, Tables, columns, 

keys, etc.

• Hiding complexity in abstract specification
– Incremental Refinement

Code



Code Model
Step Three

Transformation
Patterns

PIM

Code

PSM

Technology
PatternsTechnology
Patterns

• Automatic transformation from PSM to Code
– PSM and Code always in sync

• Complete executable results
– Presentation Tier

• JSP, Servlets
– EJB Tier

• Bean class, home/remote and primary key 
classes etc.

– DBMS Tier
• SQL scripts for target database

– Application deployment descriptors
• For target application server

• Code customization in ‘Free Blocks’



Transformation of Models
Bridging the Quality Gap

• Delivering solutions through a combination 
of formal Models and solution Patterns

• Models and Patterns are complementary
– Models provide abstraction

• Focus on building future proof 
applications

• Reducing business complexity
– Patterns provide best practices

• Hides the implementation through 
abstraction

• Reducing technology complexity

PIM

Transform

PSM

Transform

Code



The Emergence of Patterns
• Recurring solutions to similar problems

– Patterns come from good designs
• Patterns can cover a wide range of abstractions

– Code-level
– Architecture-level
– Business-level

• The “Gang of Four”
– Non-platform patterns

• SUN J2EE Design Patterns
– Multi level patterns



How to use Models and Patterns to build 
an application?

• Transformations are essential in the MDA development process
– Transformations between models and between models and code

Transformation 
Patterns

Transformation Definition

Transformation Tool

Transformation Definition

Transformation Tool

• Transformations are always executed by tools
– Transformation Definitions

• MDA in Practice
– Standards based
– Repository based (MOF)
– Transformation Patterns

Platform
Independent

Model

Platform
Specific
Model

Code
Model



Productivity & Control 
• The Reality is …

– MDA is not just another CASE tool
• MDA is based on standards only!
• Non proprietary solution!

– MDA is not just another Black-box code generator
• Customizable and Maintainable Transformations!

• Full control over generated code!

• Enterprises usually have clear ideas on how to 
implement a given model, based on:

– Architectural and Coding Standards, Best Practices
– Past experience - Patterns come from good designs

• Enforcement of standards and best practices
– e.g. Automated implementation of J2EE Design 

Patterns



MDA in Practice
Demonstration



Raising the Level of Abstraction is MDA

• Platform Independent Models as the long-lived 
intellectual assets, not code

• Raise abstraction level above deployment platform
• Increased productivity because of automated 

transformations
• Quality improvement because of enforcement of 

standards and best practices
• Always in control of the generated application



Find Out More …

• OMG’s MDA web site: www.omg.org/mda
– Compuware’s MOF 2.0 Query/View/ 

Transformations (QVT) RfP
• www.omg.org/cgi-bin/doc?ad/03-03-24

• www.omg.org/cgi-bin/doc?ad/02-09-12

• OptimalJ web site
– www.compuware.com/optimalj
– http://javacentral.compuware.com

• Technical Forums
• Technical white papers

• MDA Explained
– Addison-Wesley ISBN: 0-321-19442-X



Contact Details

• Compuware Nordic AS
– Pål Christoffersen
– Email: Paal.Christoffersen@compuware.com

• Compuware Europe B.V.
– Ruud.Grotens@compuware.com
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