
PROJECT TECHNOLOGYINC.

MDA Distilled

Stephen J. Mellor
Vice-President

Project Technology, Inc.
http://www.projtech.com

2

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

3

PROJECT TECHNOLOGY, INC.

What’s the problem?

Software is expensive, and productivity is
low for many reasons. Amongst them:

Code is at too low level of abstraction
Reuse occurs (to the extent it does at all) at
too low a granularity
Any code is glued together (at great expense)
to its infrastructure (also expressed as code)
Mapping information (design expertise) is
applied—then lost

Expensive and
hard-to-find!

No wonder!

4

PROJECT TECHNOLOGY, INC.

Language abstraction

Assembly
Code

Assembly
Code

Machine Code

1960’s

Assembler

None

Executable
Models

Executable
Models

Source Code

2000’s

Model
Compiler

Software
Platform

Assembly Code

1980’s

Source Code
Compiler

High Level
Language

Source Code

Hardware
Platform

High-level language source code is two-dimensional.

Sequential
1-D

Block-structured
2-D

Graphical
3-D

5

PROJECT TECHNOLOGY, INC.

Reuse granularity

1970’s

Domain
Models

Domain
Models

2000’s1990’s

Components
And

Framworks

1980’s

FunctionsFunctions

Objects

Domain
Models

Components and frameworks require common
infrastructure.

6

PROJECT TECHNOLOGY, INC.

Code binds

Code is glued to its infrastructure:
Binds device control to the database
Binds the copier to
(device control and the database)
Binds the image to the
(copier and
(device control and
the database))…

Database

Device Control

Copier

Image

7

PROJECT TECHNOLOGY, INC.

Mapping information is lost

Mapping between layers is all skilled manual labor.
And once a mappings is ‘found,’ it is applied by hand
When a change is made, the mappings are not
repeatable.

All manual work!

Imaging Copier Device Control Data Management

8

PROJECT TECHNOLOGY, INC.

Components of an MDA solution

Capture each layer in a
platform-independent manner
as intellectual property.

Capture the mappings to the
implementation as intellectual
property (IP).

Models and mappings become
assets.Layer by layer.

9

PROJECT TECHNOLOGY, INC.

Enter Model-Driven Architecture

MDA: an interoperability
standard for combining
models at design-time.

® OMG

This enables a market
for IP in software.

10

PROJECT TECHNOLOGY, INC.

Enter Model-Driven Architecture

MDA:
Captures IP as models
and enables protection
of them
Allows IP to be
mapped automatically
Allows multiple
implementations
Makes IP portable

® OMG
This enables a market

for IP in software.

11

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

12

PROJECT TECHNOLOGY, INC.

Modeling language for software

“The Unified Modeling Language is a language for
specifying, constructing, visualizing, and
documenting the artifacts of a software-intensive
system.”

The UML Summary

® Object Management Group

13

PROJECT TECHNOLOGY, INC.

Pet
+ name
+ weight

Dog
+ slobberFactor

Cat
+ standOffIndex

Abstract

Types

ModelProblem domain

feral

slug

stray

name,
weight,
standOffIndex

name,
weight,
standOffIndex

name,
weight,
slobberfactor

Classify

LapKitty

Munchkin
Abstraction and classification

Fido

14

PROJECT TECHNOLOGY, INC.

Why model?

A good model:
Abstracts away not-currently-
relevant stuff
Accurately reflects the relevant
stuff, so it…
Helps us reason about our
problem
Is cheaper to build than code
Communicates with people
Communicates with machines

15

PROJECT TECHNOLOGY, INC.

What is a model?

A model is coherent set of elements that:
Covers some subject matters

Doesn’t have to cover all subject matters

At some level of abstraction
Doesn’t have to define realizations

That need not expose everything
Doesn’t have to show everything at once

That need not be complete in itself
Doesn’t have to include “code”

Seating plan?
Materials?
Interior?
No engine yet!

16

PROJECT TECHNOLOGY, INC.

Subject matters

Good models come from
separating layers by subject
matter, so that each one is
platform independent.

A change to models in one
subject matter should not
necessitate reconstruction of
models in another subject
matter.

Cabin

Door

Shaft

Bank

Load

Axis

Acceleration
Profile

Motor Step

Button

Panel

Field

Digital Input Signal

Analog Input Signal

Sensor Calibration

Command Bitmap

Elevator

User Interface Transport

Device I/O

A “PIM”

17

PROJECT TECHNOLOGY, INC.

Language Abstraction

Language

S
u
b
j
e
c
t
M
a
tt
e
r

Abstract

Concrete

Abstract Concrete

Start with an abstract problem (e.g. a Bank),
with an abstract modeling language (e.g. UML).

End with a concrete
statement of the solution in a
low-level concrete language
(eg Java)

18

PROJECT TECHNOLOGY, INC.

Model Views

A diagram is a coherent view on a model.

Model

Diagrams

19

PROJECT TECHNOLOGY, INC.

Incompleteness

Code can be added to a model later.

20

PROJECT TECHNOLOGY, INC.

Executable UML models

UML can be used as a semantic modeling language, if we:
Define actions
Define the context
Define execution rules

for an underlying semantic model.

The underlying semantic
model is an:
executable
translatable

UML.

X
T

21

PROJECT TECHNOLOGY, INC.

Defining behavior using UML

UML can now be used
to define behavior

UML 1.5/2.0 now has
Action Semantics

Use an executable
translatable profile of
UML (X

TUML)
X
TUML defines

behavior without
making premature
design decisions

Behavior

User
Interfaces

Network
Interfaces

API

API API

API

A
PI

A
PI

A
PI

A
PI

API
API

API
API

Other
Systems

22

PROJECT TECHNOLOGY, INC.

Three primary diagrams

Class
diagram
Statechart
diagram
Action
language

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Temperature Ramp

Ramp ID {I}
Batch ID {R4}
Start Temperature
Start Time
End Temperature
End Time
Status

R4

Lifecycle for
Temperature Ramp

Action for Creating

Do Temp. Ramp(Batch ID,
End Time, End Temp)

Creating

Controlling

Complete

Start Controlling (Ramp ID)

Temp. Ramp Complete(Ramp ID)

Ended(Ramp ID)

Creating

Entry/
Create TempertaureRamp with

BatchID, EndTime, EndTemp
Assign CurrentTime to Self.StartTime;
Assign Self -> [R4] CookingTank.

ActualTemp to Self.StartTemp;
Generate StartControlling (Ramp ID);

23

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

24

PROJECT TECHNOLOGY, INC.

What is a metamodel?

A metamodel captures
developer models in a
model repository.

Filling
Cooking

Emptying

What is the structure
of the repository?

25

PROJECT TECHNOLOGY, INC.

UML metamodel

ownerScope : ScopeKind
visibility : VisibilityKind

Feature

isActive : Boolean

Class

Classifier

*

0..1

+feature

+owner

{ordered}

multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind

StructuralFeature

+type

1

*
+typedFeature

initialValue : Expression

Attribute

isQuery : Boolean

BehavioralFeature

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
specification : String

Operation

+type

1

0..1 +

+specification

+specification

1

26

PROJECT TECHNOLOGY, INC.

Pet
+ name
+ weight

Dog
+ slobberFactor

Cat
+ standOffIndex

Abstract Instance of

Instances

Types

ModelProblem domain

feral

slug

stray

name,
weight,
standOffIndex

name,
weight,
standOffIndex

name,
weight,
slobberfactor

Classify

Fido(20Kg, Awful):Dog

LapKitty(12Kg, LapLover):Cat

Munchin(16Kg, FeedingOnly):Cat

Reflects

Instance-of

27

PROJECT TECHNOLOGY, INC.

The relationship to the metamodel

Pet
+ name
+ weight

Dog
+ slobberFactor

Cat
+ standOffIndex

Types

A pet modelProblem domain: Pets

name,
weight,
standOffIndex

name,
weight,
standOffIndex

name,
weight,
slobberfactor

Classify

Problem domain: A modeling language
(I.e. a Metamodel)

Class

Attribute

Pet
+ name
+ weight

Dog
+ slobberFactor

Cat
+ standOffIndex

Problem domain: A model

Instance of

28

PROJECT TECHNOLOGY, INC.

Metamodel instances

Just like an application model,
the meta-model has instances. Class

Class ID Name Descr'n
100 Recipe
101 Batch
102 Temp

Ramp
.....

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying
102 1
102 2
102

Filling

Cooking

Emptying

Create Batch(Amount of Batch,
Recipe Name)

Filled(Batch ID)

Temperature Ramp Complete(Batch ID)

Emptied(Batch ID)

Recipe

Batch
Temp.
Ramp

Recipe

Recipe Name {I}
Cooking Time
Cooking Temperature
Heating Rate

Batch

Batch ID {I}
Amount of Batch
Recipe Name {R2}
Status

Model
Schema
(M1)

Recipe
Recipe
Name

Cooking
Time

Cooking
Temp

Heating
Rate

Nylon 23 200 2.23
Kevlar 45 250 4.69
Stuff 67 280 1.82Batch

Batch ID Amount of
Batch

Recipe
Name

Status

1 100 Nylon Filling
2 127 Kevlar Emptying
3 93 Nylon Filling
4 123 Stuff Cooking

Model Instances (M0)

State
Class ID State # Name

101 1 Filling
101 2 Cooking
101 3 Emptying
102 1
102 2
102

Class
Class ID Name Descr'n

100 Recipe
101 Batch
102 Temp

Ramp
.....

MetaModel
Instances (M1)

State

Class ID {I, R13}
State Number
Name

Class

Class ID {I}
Name
Description

R13

MetaModel
Schema (M2)

30

PROJECT TECHNOLOGY, INC.

Four-layer architecture

The “four-layer
architecture” is a
simple way to
refer to each
layer.

(In reality,
meta-levels are
relative.)

M3: MetaMetaModel

M2: MetaModel

M1: Developer

M0: Objects

Pet
+ name
+ weight

Class

31

PROJECT TECHNOLOGY, INC.

Fourth Layer

The fourth layer is a model of the metamodel,
which yields a “meta-meta-model.” It is the
simplest model that can model the metamodel.

A metamodel of the “meta-meta-model” (i.e. the
“meta-meta-meta-model”) would have the same
structure as the meta-meta-model. This layer is:

Reflective
Normally associated with the MOF

Meta? Did
you say
“meta?!”

32

PROJECT TECHNOLOGY, INC.

MOF

The Meta-Object Facility is an OMG standard
that defines the structures for M3.

Any metamodel can be captured in MOF
(not just UML), which makes it the basis

for defining standards that …
…map between metamodels.

33

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

34

PROJECT TECHNOLOGY, INC.

Mapping functions

A mapping function transforms one model into
another.

Language

S
u
b
j
e
c
t
M
a
t
t
e
r

Abstract

Concrete

Abstract Concrete

From here?

To here?

35

PROJECT TECHNOLOGY, INC.

Types of mappings

In general, a mapping can be:

Language

S
u
b
j
e
c
t
M
a
t
t
e
r

Abstract

Concrete

Abstract Concrete

Refining

Abstracting

Migrating

Representing

Merging

36

PROJECT TECHNOLOGY, INC.

Example of merging mapping

Floor selection

Cabin dispatching

Door open/close timing

Door

Bank Cabin

Shaft

Safe acceleration

Precise transport

Motor

Axis of
Motion

Acceleration
Profile

gotoFloor (Cabin 3, Floor 6)

cabinArrived ()

Load

moveCompleted ()

move (Load 14, Position 334.25, Ramp 3B)

Elevator uses Transport
Bridge between domains

Elevator Transport

37

PROJECT TECHNOLOGY, INC.

Underlying repository (MOF)

Elevator

User Interface Infrastructure

Transport Infrastructure

Device I/O Infrastructure

Metamodel-metamodel mappings

All models are
manipulated
through the MOF
(Meta-Object
Facility)

QVT

QVT QVT

38

PROJECT TECHNOLOGY, INC.

Why MOF?

A metamodel (as stored in MOF) allows us to state
mapping rules.

For each Class….
For each Structural Feature…
For each Attribute…
For each Action

rather than manipulate specific classes in the
developer model.

This means a standard “mapping tool” can be
defined: QVT.

39

PROJECT TECHNOLOGY, INC.

Metamodel-metamodel mappings

.function Transform

.param inst_ref class

.open OOA, Arch;

.select many PDMs related by

class->attribute[R105] in OOA

.for each PDM in PDMs

Insert PDM in PDMTable in Arch;

.endfor

.end function

QVT is a standard
approach for defining
mapping functions
that map between
metamodels

Inserts element
(“attribute”) in target
metamodel.

Query
View
Transform

40

PROJECT TECHNOLOGY, INC.

QVT

There is presently no standard, but three
approaches present themselves:

Imperative,
Template,
Declarative.

The RFP explicitly demands declarative, but
alternatives have been proposed.

41

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

42

PROJECT TECHNOLOGY, INC.

Why marks?

A mark distinguishes multiple possible targets.

PIM
PSM

Invocation

Remote
Invocation

Local
Invocation

isRemote

isLocal

43

PROJECT TECHNOLOGY, INC.

Kinds of marks

Discriminators and enumerators
[isRemote | is Boolean]

Quantities
(if numInstances < Q and

frequencyOfAccess < F ?
LinkedList |

HashTable)

Inputs
(Append “db_” to all database operation names)

Other marks

44

PROJECT TECHNOLOGY, INC.

Marking models

A marking model is a way to declare:
Names of marks
Where they belong in the metamodel
Their types.

Invocation: Accessibility ::=
[isRemote | is Boolean] = isRemote

ClassExtent: StorageType ::=
(if numInstances < Q && frequencyOfAccess < F

? LinkedList
| HashTable) : int

45

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

46

PROJECT TECHNOLOGY, INC.

Profiles

A profile is a UML mechanism used to define and
extend metamodels.

Profiles may be used to define metamodels for
PIMs and PSMs
Profiles may be used to define marking models

A profile is defined in terms of:
Stereotypes that extend “meta-”classes, and
Constraints, defined using OCL

47

PROJECT TECHNOLOGY, INC.

Example

<<enumeration>>
StateKind

Stateless
Stateful

Component
<<stereotype>>

Bean

<<stereotype>>
Entity

<<stereotype>>
Session

State: StateKind

{required}

Figure 12-99: A simple EJB profile
Superstructure submission

48

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

49

PROJECT TECHNOLOGY, INC.

Elaborative development

50

PROJECT TECHNOLOGY, INC.

What’s wrong with that?

Each meta-model
demands its own profile.
Each transformation goes
through the MOF, but

the transformations must
be specific to the profile
even though the
transformation language is
standardized

Language

S
u
b
j
e
c
t
M
a
tt
e
r

Abstract

Concrete

Abstract Concrete

51

PROJECT TECHNOLOGY, INC.

What’s the solution?

Model each domain using a:
single neutral formalism that
(perforce) conforms to the same metamodel

A design-time interoperability bus

52

PROJECT TECHNOLOGY, INC.

What’s the solution?

Connect up the models according to:
a single set of mapping rules that
operate on to the same metamodel

Merging
mapping

53

PROJECT TECHNOLOGY, INC.

Metamodel-to-text mappings

MDA needs a way to map data from a metamodel
into text.

.function ClassDef

.param inst_ref class
class ${class.name} :

public ActiveInstance {
private:

.invoke PrivateDataMember(class)
}
…
.end function

.function PrivateDataMember

.param inst_ref class

.select many PDMs related by
class->attribute[R105]

.for each PDM in PDMs
${PDM.Type} ${PDM.Name};
.endfor
.end function

We call them
“archetypes”.

54

PROJECT TECHNOLOGY, INC.

Example

The archetype language produces text.
.select many stateS related to instances of

class->[R13]StateChart ->[R14]State
where (selected.isFinal == FALSE)

public:
enum states_e

{ NO_STATE = 0 ,
.for each state in stateS

.if (not last stateS)
${state.Name } ,

.else
NUM_STATES = ${state.Name}

.endif
.endfor
};

public:
enum states_e

{ NO_STATE = 0 ,
Filling ,
Cooking ,
NUM_STATES = Emptying

};

55

PROJECT TECHNOLOGY, INC.

Agile MDA

Each model we build covers a single subject matter.
We uses the same executable modeling language
for all subject matters.
The executable model does not imply an
implementation.
Compose the models automatically.

This last is design-time composability—a bus.

56

PROJECT TECHNOLOGY, INC.

Model compilers

A model compiler compiles each model according
to a single set of architectural rules so that the
various subject matters are known to fit together.

A model compiler
Normalizes models to the infrastructure
Combines models at design time.

A design-time
interoperabili
ty bus

57

PROJECT TECHNOLOGY, INC.

Model compilers

System dimensions
include:

Concurrency and
sequentialization
Multi-processing &
multi-tasking
Persistence
Data structure choices
Data organization
choices

= model compiler

58

PROJECT TECHNOLOGY, INC.

Examples

Financial system
Highly distributed
Concurrent
Transaction-safe with rollback
Persistence, with rollback
C++

Telecommunication system
Highly distributed
Asynchronous
Limited persistence capability
C++

Embedded system
Single task
No operating system
Optimized data
access and storage
C

Simulation system
Mostly synchronous
Few tasks
Special-purpose
language: “Import”

59

PROJECT TECHNOLOGY, INC.

All domains are translated

Platform Specific

Model Execution Environment

Design is specific to category
of platforms

Platform A

Platform B

SAME models on each
platform!

60

PROJECT TECHNOLOGY, INC.

Building the system

Generate deliverable production code.

Application Models

Model Compiler

Compile the
Application Models

Code for
the System

Libraries, Legacy or
Hand-written code

Run-Time Library
(Mechanisms)

Archetypes
(Weaving rules)

61

PROJECT TECHNOLOGY, INC.

Retargeting the environment

Realized in
Silicon

Realized in
General
Purpose

Computers

MDA models can have
multiple implementations
depending on the target
environment.

Realized in
thin

systems

62

PROJECT TECHNOLOGY, INC.

Table of contents

1. What’s the problem?

2. Models

3. Metamodels

4. Mappings

5. Marks

6. Representing models

7. Agile MDA

8. Conclusion

63

PROJECT TECHNOLOGY, INC.

Building a market

Design time composability:
protects IP
allows IP to be mapped to multiple implementations
enables a market in IP in software

64

PROJECT TECHNOLOGY, INC.

MDA enables a market for IP in software!

Code-driven
development
produces
expenses.

Model-driven
development
produces assets.

65

PROJECT TECHNOLOGY, INC.

OMG TLAs
MOF = Meta-Object Facility
a repository for metamodels.
CWM = Common
Warehouse Metamodel,
which can
map between models
QVT = Query/View/
Transform, a standard
for mapping between
(MOF) metamodels

This is presently an RFP
(request for proposal),
and not yet a standard

XMI = XML Model Interchange

66

PROJECT TECHNOLOGY, INC.

MDA standardization

UML 2.0 Infrastructure Jan 2003
QVT (metamodel-metamodel) Mar 2003
Marks Understood
Action Language Necessary?
Archetypes (metamodel-text) Not yet

The ADTF and the MDA WG proposes these RFPs.

67

PROJECT TECHNOLOGY, INC.

See also

MDA Distilled, Mellor, Scott, Uhl and Weise
Addison-Wesley, 2003

Executable UML, Mellor and Balcer,
Addison-Wesley, 2003

www.omg.org
www.projtech.com

68

PROJECT TECHNOLOGY, INC.

MDA Distilled

MDA Distilled
Started in earnest in March 2002
First four chapters sent for review in July 2002
Chapters 5-9 sent for review February 2003
Meeting to complete last five chapters June 2003
Review complete by July 2003
“I have scheduled your book to go into
production on 8/1/03.”
(i.e. 2003-08-01)

69

PROJECT TECHNOLOGY, INC.

Brought to you by…

Accelerating development of high-
quality systems.

Makers of BridgePoint ®
Modeling Tools

Stephen J. Mellor
Project Technology, Inc.
http://www.projtech.com

