MDA Distilled

Stephen J. Mellor
Vice-President

Project Technology, Inc.
http://www.projtech.com

PROJECT TECHNOLOGYinc.

Table of contents

—

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels

Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

What'’s the problem?

5 r i 1 1 1 |
PROJECT TECHNOLOGY, INC.

Software is expensive, and productivity is
low for many reasons. Amongst them:

Code is at too low level of abstraction

Reuse occurs (to the extent it does at all) at
too low a granularity

Any code is glued together (at great expense)
to its infrastructure (also expressed as code)

Mapping information (design expertise) is

applied—then lost \

Expensive and
hard-to-find!

Language abstraction

O I I
PROJECT TECHNOLOGY, INC.

High-level language source code is two-dimensional.

High Level
Language
Source Code

- @ U

Assembler Source Code Mod.el
Compiler Compiler

Machine Code Assembly Code Source Code

Executable
Models

Assembly
Code

1960’s 1980’s 2000°’s

ardware Software
Platfor Platfor

Sequential Block-structured Graphical
1-D 2-D 3-D

Reuse granularity

O I I
PROJECT TECHNOLOGY, INC.

Components and frameworks require common
infrastructure.

Domain
Models

Components
And
Framworks

Functions

1970’s 1980’s 1990’s 2000’s

Code binds

O I I
PROJECT TECHNOLOGY, INC.

Code is glued to its infrastructure:
m Binds device control to the database

m Binds the copier to
(device control and the database)
m Binds the image to the ?
(copier and ?
Device Control

(device control and
the database))...

Mapping information is lost

PROJECT TECHNOLOGY, INC.

m Mapping between layers is all skilled manual labor.
m And once a mappings is ‘found,’ it is applied by hand

®m When a change is made, the mappings are not
repeatable.

All manual work!

A0C

Imaging Copier Device Control Data Management

& >

Components of an MDA solution

PROJECT TECHNOLOGY, INC.

Capture each layerin a
A platform-independent manner
i E as intellectual property.

Capture the mappings to the
T implementation as intellectual
property (IP).
& D

Models and mappings become

Layer by layer. assets.

Enter Model-Driven Architecture

PROJECT TECHNOLOGY, INC.

Finance MDA: an interoperability
A standard for combining
Manufacturing E-Commerce . -
models at design-time.

Telecom

This enables a market
for IP in software.

Transportation HealthCare

® OMG

Enter Model-Driven Architecture

PROJECT TECHNOLOGY, INC.

Finance M DA .

A
m Captures IP as models
Manufacturing E-Commerce .
and enables protection
of them

m Allows IP to be
Telecom mapped automatically

—>» | Allows multiple
implementations

m Makes IP portable

Transportation HealthCare
Y This enables a market
More... for IP in software.

® OMG

10

11

Table of contents

)

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels

Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

Modeling language for software

PROJECT TECHNOLOGY, INC.

“The Unified Modeling Language is a language for
specifying, constructing, visualizing, and

documenting the artifacts of a software-intensive
system.”

The UML Summary
unifiad
modeling
language

12 ® Object Management Group

Abstraction and classification

PROJECT TECHNOLOGY, INC.

¥ name, Pet Types
name, weight, + name
weight, standOffinde + weight

standOfflIndex [| |

Classif
name, y Dog Cat
weight, + slobberFactor + standOfflndex
slobberfactor

Problem domain Model

13

Why model?

O I I
PROJECT TECHNOLOGY, INC.

A good model:

m Abstracts away not-currently-
relevant stuff

m Accurately reflects the relevant
stuff, so it...

m Helps us reason about our
problem

Is cheaper to build than code
Communicates with people
Communicates with machines

15

What is a model?

O I I
PROJECT TECHNOLOGY, INC.

A model is coherent set of elements that:

m Covers some subject matters
m Doesn’t have to cover all subject matters

m At some level of abstraction @

m Doesn’t have to define realizations

m That need not expose everything
m Doesn’t have to show everything at once %

m That need not be complete in itself N
m Doesn’t have to include “code”

Seating plan?

Materials?
Interior?

No engine yet!

16

Subject matters

Good models come from
separating layers by subject
matter, so that each one is
platform independent,

A change to models in one
subject matter should not
necessitate reconstruction of
models in another subject
matter.

PROJECT TECHNOLOGY, INC.

A “PIM”
= Cabin
]
= Door
= Button Elevator = Shaft
= Panel . = Bank
= Field)
User Interface Transport
= |oad
1 = Axis
Device I/0O = Acceleration
Profile

Digital Input Signal

Sensor Calibration
Command Bitmap

Analog Input Signal

Motor Step

17

Language Abstraction

- 0DV ~0 0D —TC W

O I I
PROJECT TECHNOLOGY, INC.

Abstract

A

Start with an abstract problem (e.g. a Bank),
with an abstract modeling language (e.g. UML).

End with a concrete
statement of the solution in a
low-level concrete language

Concrete

Abstract Language Concrete

18

Model Views

5 r i 1 1 1 |
PROJECT TECHNOLOGY, INC.

A diagram is a coherent view on a model.

Diagrams A

19

Incompleteness

O I I
PROJECT TECHNOLOGY, INC.

Code can be added to a model later.

20

Executable UML models

O I I
PROJECT TECHNOLOGY, INC.

UML can be used as a semantic modeling language, if we:
m Define actions
m Define the context
m Define execution rules

for an underlying semantic model.

The underlying semantic o
model is an: X

executable
translatable
UML.

21

Defining behavior using UML

PROJECT TECHNOLOGY, INC.

®m UML can now be used

e L to define behavior
Other m UML 1.5/2.0 now has
Systems Action Semantics
\ B Use an executable
translatable profile of
UML (UML)
Behavior m XUML defines

behavior without
making premature
design decisions

Network
Interfaces

Three primary diagrams

Batch

Batch ID {I}

R4

Amount of Batch
Recipe Name {R2}
Status

PROJECT TECHNOLOGY, INC.
m Class
Temperature Ramp diagram
2 P B Statechart
B4 Do Temp. Ramp(Batch ID, dlagram
St End Time, End Temp)]
St . m Action
Er Creating I
N
g: Start Controlling (Ramp ID) a guage

Lifecycle for

Temperature R

22

Controlling

A 4

Temp. Ramp Compld | creating

Entry/

Complete .
P Create TempertaureRamp with

Action for Creating

BatchID, EndTime, EndTemp
Assign CurrentTime to Self.StartTime;
Assign Self -> [R4] CookingTank.

ActualTemp to Self.StartTemp;

Ended(Ramp ID)

Generate StartControlling (Ramp ID);

23

Table of contents

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels

Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

What is a metamodel?

O I I
PROJECT TECHNOLOGY, INC.

A metamodel captures
developer models in a
model repository.

- n

What is the structure
of the repository?

\7 _

UML metamodel

O I I
PROJECT TECHNOLOGY, INC.

+typedFeature

StructuralFeature

multiplicity : Multiplicity
changeability : ChangeableKind
targetScope : ScopeKind
ordering : OrderingKind

+type

Class

isActive : Boolean

V

Classifier

+owner
0..1

{ordered}

+feature *

+type

Feature

/\

Attribute

initialValue : Expression

25

ownerScope : ScopeKind
visibility : VisibilityKind

BehavioralFeature

isQuery : Boolean

0..1 -

+specification

Operation

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean

specification : String

+specificatios

Instance-of

PROJECT TECHNOLOGY, INC.

Fido(20Kqg, Awful):Dog

Munchin(16Kqg, FeedingOnly):Cat

L apKitty(12Kqg, LaplLover):Cat

Instances

Instance of

Pet Types
+ name

weight, + vlveight

standOfflndex . [|

. Classify o oot

Weigh’t, + slobberFactor + standOffIndex

slobberfactor .

26 Problem domain Model

The relationship to the metamodel

” PROJECT TECHNOLOGY, INC.
T
name, weight, + name
weight, standOfflnde + vlveight
standOffIndex : | |
rame. Classify Dog Cat
weight, + slobberFactor + standOfflndex
slobberfactor .
Problem domain: Pets A pet model
Instance of
Pet
+ name Class
+ weight
|
| |
Dog Cat Attribute
+ slobberFactor + standOffiIndex
Problem domain: A model Problem domain: A modeling language

27 (l.e. a Metamodel)

Metamodel instances

O I I
PROJECT TECHNOLOGY, INC.

Just like an application model,

28

the meta-model has instances. Class
Class ID] Name Descr'n
> 100 Recipe | ...
- > 101 Batch |
102 Temp | ...
-_> Ramp
‘ Create Batch(Amount of Batch,
l Recipe Name)
Filling ~
Filled(Batch ID) \ State
. Cooking \ \ Class ID| State # Name
Temperature Ramp Complete(Ba®\~A 101 1 Fi”ing
L ™ 101 2 Cooking
EmpLying 101 3 Emptying
éEmptied(Batch ID) 102 1
102 2 | ...
102 | | ..

Recipe

Recipe Name
Cooking Time
Cooking Temg
Heating Rate

Model
Schema
(M1)
Batch
Batch ID {l}

Amount of Batch
Recipe Name {R2}
Status

MetaModel
Schema (M2)

Class

Class ID {l}

State

R13
Class ID {l, R13}

Name
Description

State Number
Name

Recipe
Recipe Cooking | Cooking Heating
Name Time Temp Rate
Nylon 23 200 2.23
K:t\;I Batch
Batch ID |Amount of] Recipe Status
Batch Name
1 100 Nylon Filling
2 127 Kevlar Emptying
3 93 Nylon Filling
4 123 Stuff Cooking

Model Instances (MO0)

[

State MetaModel
Class ID| State # N'a.me Instances (M1]
101 1 Filling
101 2 e
101 3 Class
102 1 Class ID NarT]e Descr'n
102 > 100 Recipe |
102 101 Batch | ...
102 Temp | ...
Ramp

30

Four-layer architecture

The “four-layer
architecture” is a
simple way to
refer to each
layer.

(In reality,
meta-levels are
relative.)

PROJERE TECHNOLOGY, INC.

31

Fourth Layer

PROJECT TECHNOLOGY, INC.

The fourth layer is a mode/ of the metamodel,
which yields a "meta-meta-model.” It is the
simplest model that can model the metamodel.

A metamodel of the "meta-meta-model” (i.e. the
“meta-meta-meta-model”) would have the same
structure as the meta-meta-model. This layer is:

m Reflective

m Normally associated with the MOF Mféi?sazid

E “meta?!”

32

MOF

PROJECT TECHNOLOGY, INC.

The Meta-Object Facility is an OMG standard
that defines the structures for M3.

Any metamodel can be captured in MOF
(not just UML), which makes it the basis
m for defining standards that ...
m .../map between metamodels.

33

Table of contents

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels

Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

34

Mapping functions

PROJECT TECHNOLOGY, INC.

A mapping function transforms one model into
another.

S Abstract

u A

'j? / From here?

e

C

t To here?
M

a

t

t

e Concrete

r >

Abstract Language Concrete

35

Types of mappings

In general, a mapping can be:

Abstract
A

Representing

PROJECT TECHNOLOGY, INC.

< Merging >

Concrete

“ DD Z,rO0OD—TCW

Mig rat;tg>
Abstract Language Concrete

Example of merging mapping

O I I
PROJECT TECHNOLOGY, INC.

Elevator uses Transport
Bridge between domains

> = Safe acceleration
Transport

= Floor selection

Elevator = Cabin dispatching _
= Precise transport

= Door open/close timing

Shaft Load Acceleration
Profile
Axis of
Door Motion g
-
Bank Cabin iy
Motor

gotoFloor (Cabin 3, Floor 6) move (Load 14, Position 334.25, Ramp 3B)

[
»

cabinArrived ()

moveCompleted ()

A

36

Metamodel-metamodel mappings

PROJECT TECHNOLOGY, INC.

All models are

Elevator manipulated

:
oy

through the MOF
(Meta-Object

User Interface Infrastructure

e

Underlying repository (MOF)

37

38

Why MOF?

5 r i 1 1 1 |
PROJECT TECHNOLOGY, INC.

A metamodel (as stored in MOF) allows us to state
mapping rules.

m For each Class....

m For each Structural Feature...

m For each Attribute...

m For each Action

rather than manipulate specific classes in the
developer model.

|II

This means a standard “"mapping tool” can be

defined: QVT.

39

Metamodel-metamodel mappings

function Transform

param inst_ref class

.open OOA, Arch;

.select many PDMs related by
class—>attribute[R105] in OOA

.for each PDM in PDMs

.endfor

.end function

PROJECT TECHNOLOGY, INC.

QVT is a standard
approach for defining
mapping functions

that map between
metamodels

Insert PDM in PDMTable in Arch; < ——

Inserts element
(“attribute”) in target
metamodel.

m Query
m View
m Transform

40

QVT

O I I
PROJECT TECHNOLOGY, INC.

There is presently no standard, but three
approaches present themselves:

m Imperative,

m Template,

m Declarative.

The RFP explicitly demands declarative, but
alternatives have been proposed.

41

Table of contents

PROJECT TECHNOLOGY, INC.

. What's the problem?
Models

Metamodels
Mappings

Marks

Representing models
. Agile MDA

Conclusion

® N O U A W N e

42

Why marks?

PROJECT TECHNOLOGY, INC.

A mark distinguishes multiple possible targets.

Remote
Invocation
Invocation
isRemote
isLocal
Local

Invocation

43

Kinds of marks

O I I
PROJECT TECHNOLOGY, INC.

Discriminators and enumerators
[1sRemote | 1s Boolean]

Quantities
(1f numInstances < Q and

frequencyOfAccess < F 7
LinkedList |
HashTable)

Inputs

(Append “db ” to all database operation names)

Other marks

Marking models

O I I
PROJECT TECHNOLOGY, INC.

A marking modelis a way to declare:
m Names of marks
m Where they belong in the metamodel
m Their types.

Invocation: Accessibility ::=
[1sRemote | 1s Boolean] = isRemote

ClassExtent: StorageType ::=
(1f numInstances < Q && frequencyOfAccess < F

? LinkedList
| HashTable) : int

45

Table of contents

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels
Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

46

Profiles

O I I
PROJECT TECHNOLOGY, INC.

A profileis a UML mechanism used to define and
extend metamodels.

m Profiles may be used to define metamodels for
PIMs and PSMs

m Profiles may be used to define marking models

A profile is defined in terms of:
m Stereotypes that extend “meta-"classes, and
m (Constraints, defined using OCL

Example

O I I
PROJECT TECHNOLOGY, INC.

C tfe <<stereotype>>
ORI {required} Bean
<<stereotype>>
<<stereotype>> Session
Entity
<<enumeration>> State: StateKind
StateKind
Stateless
Stateful

Figure 12-99: A simple EJB profile
Superstructure submission

48

Table of contents

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels
Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

Elaborative development

O I I
PROJECT TECHNOLOGY, INC.

Implementation .
Design and Architecture Details and Code Code Generation

Preliminary
Design

Manually Created Code Target Code assembled
Bodies and Implementation from Hand-Coded

Details Required for Model
Execution and Code
Generation

Intermixed Application

and Design
Bodies inserted into a
generated framework

=~ 0DV E~~00—0TC W

50

What’s wrong with that?

PROJECT TECHNOLOGY, INC.

Each meta-model
demands its own profile.

Each transformation goes
through the MOF, but

m (he transformations must
be specific to the profile

m even though the

transformation language is

standardized

|
Abstrac g)
A
A\ﬁ
Concrete
Abstract Language Concrete

51

What’s the solution?

O I I
PROJECT TECHNOLOGY, INC.

Model each domain using a:
m single neutral formalism that
m (perforce) conforms to the same metamodel

\ A design-time interoperability bus

52

What’s the solution?

O I I
PROJECT TECHNOLOGY, INC.

Connect up the models according to:
B a single set of mapping rules that
m operate on to the same metamodel

Merging
mapping

53

Metamodel-to-text mappings

PROJECT TECHNOLOGY, INC.

MDA needs a way to map data from a metamodel
into text.

function PrivateDataMember

.param inst_ref class

.select many PDMs related by
class—>attribute[R105]

for each PDM in PDMs

${PDM.Type} ${PDM.Name};
.endfor

.end function

function ClassDef
param inst_ref class
class ${class.name} :
public Activelnstance {
private:

invoke PrivateDataMember(class)

|

.end function

Example

PROJECT TECHNOLOGY, INC.

The archetype language produces text.

.select many stateS related to instances of
class—>[R13]StateChart —>[R14]State
where (selected.isFinal == FALSE)

public:
enum states e
{ NOSTATE =0,

public:
enum states e

{NO STATE=0,
for each state in stateS

Filling ,
if (not last stateS) Cooking ,
${stateName }, NUM_STATES = Emptying
.else I
NUM STATES = ${state.Name}
.endif

.endfor

L

Agile MDA

O I I
PROJECT TECHNOLOGY, INC.

Each model we build covers a single subject matter.

We uses the same executable modeling language
for all subject matters.

The executable model does not imply an
implementation.

Compose the models automatically.

This last is design-time composability—a bus.

*

55

Model compilers

PROJECT TECHNOLOGY, INC.

A model compiler compiles each model according
to a single set of architectural rules so that the
various subject matters are known to 1it together.

A design-time
interoperabili
ty bus

A model compiler
m Normalizes models to the infrastructure
m Combines models at design time.

Model compilers

O I I
OJECT TECHNOLOGY, INC.

System dimensions
include:

m Concurrency and
sequentialization

m Multi-processing &
multi-tasking

Persistence
Data structure choices

m Data organization
choices

57

58

Examples

5 r i 1 1 1 |
PROJECT TECHNOLOGY, INC.

Financial system Embedded system

m Highly distributed m Single task

m Concurrent B No operating system
m Transaction-safe with rollback m Optimized data

m Persistence, with rollback access and storage
m C++ mC

Telecommunication system Simulation system
m Highly distributed m Mostly synchronous
m Asynchronous m Few tasks

m Limited persistence capability m Special-purpose
m C++ language: “Import”

All domains are translated

] SAME models on each
platform!
i'— —————— Elevator F=———=——-— —'i
| |
| |
| |
| |
| |
J’r_l .
User Interface Transpaort
| |
I I
| | Platform A
=
I = Device /O |=-— I
Platform Specific
Model Execution Environment Platform B

Design is specific to category
of platforms

59

~_ e m

1

User Interface

PROJECT TECHNOLOGY, INC.

60

Building the system

O I I
PROJECT TECHNOLOGY, INC.

Generate deliverable production code.

Archetypes
(Weaving rules)

8 s

Run-Time Library

(Mechanisms)
j -

> Model Compiler

iz
//

Libraries, Legacy or
Hand-written code

61

Retargeting the environment

PROJECT TECHNOLOGY, INC.

Realized in
thin
systems
Realized in
General
Purpose
Computers
MDA models can have
Realizedin _ 4 o, multiple implementations
Silicon %‘ depending on the target

environment.

62

Table of contents

PROJECT TECHNOLOGY, INC.

What's the problem?
Models

Metamodels
Mappings

Marks

Representing models
Agile MDA

Conclusion

© N O U AW D=

63

Building a market

O I I
PROJECT TECHNOLOGY, INC.

Design time composability:

m protects IP

m allows IP to be mapped to multiple implementations
B enables a market in IP in software

@cC

64

MDA enables a market for IP in software!

PROJECT TECHNOLOGY, INC.

A A, A A ..

development
produces
expenses.

Model-driven
development
produces assets.

65

OMG TLAs

O I I
PROJECT TECHNOLOGY, INC.

MOF = Meta-Object Facility

a repository for metamodels. F""f“"***

CWM = Common Manufacturing Fﬂummeme
Warehouse Metamodel,

which can \QQS“"QE

map between models 5 ﬁ

QVT = QUEFY/ VleW/ Space i - ﬂﬂﬂﬂﬂl Url\fﬂnﬂ Telecom
Transform, a standard < € || Architecture FJ5 — >

for mapping between
(MOF) metamodels

m This is presently an RFP / e‘cnous \a
(request for proposal), Transportation HealthCare
and not yet a standard Y

XMI = XML Model Interchange

66

MDA standardization

PROJECT TECHNOLOGY, INC.

UML 2.0 Infrastructure Jan 2003
QVT (metamodel-metamodel) Mar 2003
Marks Understood
Action Language Necessary?
Archetypes (metamodel-text) Not yet

The ADTF and the MDA WG proposes these RFPs.

67

See also

5 r i 1 1 1 |
PROJECT TECHNOLOGY, INC.

MDA Distilled, Mellor, Scott, Uhl and Weise
Addison-Wesley, 2003

Executable UML, Mellor and Balcer,
Addison-Wesley, 2003

WWw.omg.org
WWWw.projtech.com

68

MDA Distilled

O I I
PROJECT TECHNOLOGY, INC.

MDA Distilled

Started in earnest in March 2002

First four chapters sent for review in July 2002
Chapters 5-9 sent for review February 2003
Meeting to complete last five chapters June 2003
Review complete by July 2003

“I have scheduled your book to go 1nto
production on 8/1/03.”
(1.e. 2003-08-01)

Brought to you by...

O I I
PROJECT TECHNOLOGY, INC.

Accelerating development of high-
quality systems.

Makers of BridgePoint ®
Modeling Tools

Stephen J. Mellor
Project Technology, Inc.

http://www.projtech.com
69

