
 Copyright  2000 Page 1

www.objecteering.com
www.umlopenedition.com

www.softeam.fr

UML Profiles versus Metamodel
extensions : An ongoing debate

Philippe Desfray



 Copyright  2000 Page 2

UML 1.4 profiles modeling capacities

• Structuring the extensions (Profile = Packages)

• Defining new meta-classes (Stereotypes)

• Defining new meta-attributes (tagged values)

• Defining new meta-associations (tagged values, 
referencing to other model elements)

• Defining new constraints

• Modeling graphically profiles

This is almost all we need for defining metamodels



 Copyright  2000 Page 3

UML Profiles:
Adapting UML to each domain

UML 1.4

PROFILES STRUCTURE UML EXTENSIONS

<<profile>>
Scheduling, perf & time

<<profile>>
EDOC

<<profile>>
CORBA

<<profile>>
EJB

(Software Process Engineering 
Management)

<<profile>>
S.P.E.

<<profile>>
EAI

<<profile>>
QOS & Fault Tolerance



 Copyright  2000 Page 4

<<profile>>

Persistence PersistenceDataTypes
<<modelLibrary>>

UML Profiles 
Model example (1)

<<metaclass>>

Class <<metaclass>>

Attribute

<<stereotype>>

persistent

storageMode : KindOfStorage
<<stereotype>>

identifier

Constraint
{A persistent class, or one of its parent 
classes must have at least one 
<<identifier>> attribute}

storageMode : KindOfStorage

<<stereotype>>

<<stereotype>>



 Copyright  2000 Page 5

<<extension>>
MyC++Environment

<<profile>>
MyC++

<<profile>>
MyProductionStructure

<<modelLibrary>>
SpecificC++Libraries

<<profile>>
MyC++

<<profile>>
MyProductionStructure

<<modelLibrary>>

SpecificC++Libraries

<<extension>>
C++

<<profile>>
C++

<<profile>>
Makefile

<<profile>>
C++

<<profile>>
Makefile

<<modelLibrary>>
SpecificC++Libraries

<<modelLibrary>>

C++Libraries

UML Profiles : Model examples (2)



 Copyright  2000 Page 6

<<metaclass>>

Class

<<stereotype>>

Mutable

+MutabilityTechnique : string
+TargetClass : string

Constraint

{Classes having "class 

attributes" cannot be 

mutable.}

UML Profiles : Model examples (3)

<<stereotype>>



 Copyright  2000 Page 7

MOF : Model interoperability 
A major goal, hard to combine with flexibility

• Troubles with different versions of UML, becoming even harder when combined 
with MOF/XMI versions

• Tool implementer testimony : moving from one metamodel to another is a real 
heavy task, hard for tool implementers, heavy for end users

UML

EXTENSION 1 EXTENSION 2

Different instances, very hard to 
combine or to convert

Level 2

Level 1



 Copyright  2000 Page 8

MOF architecture (implicit) postulates for 
interoperability

• Metamodels are stable (standardized). They do not evolve, or do 
change only after a long stable period

• Metamodels are formal : there semantics are completely defined, 
in a precise and unambiguous way

The reality is :

• We (end users) wish a stable root standard but we never have (yet)

• The extensions that we define are incomplete, informal, and may 
even be contradictory

• We need flexibility, ability to change fast, to combine different 
views



 Copyright  2000 Page 9

A complementary view of MOF and profiles

UML

EXTENSION 1 EXTENSION 2

Profile
Profile

Profile
Profile

Profile

Profile
Profile

MOF based metamodels
STABLE, FORMAL, FROZEN CORE

UML profiles based extensions
FLEXIBLE, MIXABLE, MUTABLE

All at level 2 regarding  the MOF architecture



 Copyright  2000 Page 10

UML Profiles Flexibility

• Supporting profile combination : several profiles can be applied to the same 
model

– Ex : A class can be reactive (real time profile), and persistent (RDB 
profile) at the same time

– Even inconsistent profiles can be combined (ex : Java and C++)

• Supporting model exchange between different profiles

• Supporting the dynamic change of applied profiles to a model, in order to 
change perspective during the development lifecycle

UML profiles is a mechanism for defining flexible 
projections of a stable predefined core metamodel.

UML model elements have an immutable part (their core 
UML definitions) and mutable combinable extensions



 Copyright  2000 Page 11

Inherent properties of profiles

• A profile defines a projection of a reference metamodel

• Profiles provide a mechanism to define facets that can 
be applied to model elements and combined

• All elements defined in a profile are mutable. Mutability 
rules are driven by the reference metamodel



 Copyright  2000 Page 12

Rational for choosing the right 
metamodeling technique

• Your domain is well defined, and has a unique well accepted main set of concepts

• A model realized under your domain is not subject to be transferred into other 
domains

• There is no need to combine your domain with other domains 

è Choose a MOF based technique

• Your domain is not subject to consensus, many variations and point of view 
exist

• Many changes and evolutions may occur

• Your domain may be combined with other domains, in an unpredictable way

• Models defined under your domain may be interchanged with other domains 

è Choose a UML Profile based technique



 Copyright  2000 Page 13

Advanced profile usage

• Structuring case tool customizations using the 
UML profile mechanism

• Adding procedural features structured by UML 
Profile, thus providing
– Inheritance between tool customizations
– Model transformation rules
– Model presentation rules
– Model consistency checks rules



 Copyright  2000 Page 14

Combining profile for driving 
software development

Realization

UML/ C++

UML/ ORACLE

PHASEPROFILES

CodeCode

Design ModelDesign Model

AnalysisAnalysis
ModelModel

Design
UML Design

RDB Modeling

AnalysisUML Analysis

UML MODEL



 Copyright  2000 Page 15

XML

Components

Software Process

Real Time

EJB

Java

C++

UML
(packaged profiles)

Building Profile : a new kind of 
expertise in software development

UML Modeler UML Profile Builder

Design and implement UML 
expertise for any kind of domain

Use a customized Case tool 
adapted to your domain

Designer Domain Expert



 Copyright  2000 Page 16

Questions to be solved (UML2.0)

• Can the profile mechanism be merged with the MOF 
mechanism?

• Is it desirable to do so?

• If so there should be specific concepts for
– specifying the mutability, and view point aspects inherent 

to the profile technique, 

– providing an absolute guarantee of strong conformance to 
the reference (MOF based) metamodel.



 Copyright  2000 Page 17

MOF/Prodiles
A possible Approach for UML 2.0

MOF Based 
extension mechanisms

Isomorphism

UML Profiles 
extension mechanisms

MOF Based implementation
(backward compatibility)

Annotation based implementation
(backward compatibility)

Semantics for :
Metamodel projection
Mutability, 
Facets management


