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Abstract. To develop software with MDA, users need to apply a wide range of
model operations (i.e. operations taking models as inputs and outputs). All the
operations that users require for realizing the MDA software production are not
likely to be supported in a unique tool. Consequently, users need to connect different
tools for applying all the required operations. More precisely, they need the means
for linking the output of an operation to the input of another operation even if both
operations are not supported by the same tool. Due to the heterogeneity of tools in
both functionalities and the way users interact with them, connecting tools is
difficult. Nevertheless, today there are few works addressing this problem.
Therefore, we propose an architecture and a prototype enabling the operations of
different tools to be connected.

1 Introduction

According to Model Driven Architecture (MDA), models are treated as first-class
elements in software development [20]. MDA application requires a wide range of model
operations such as model edition [14], model storage [14], model manipulation [21][13],
code generation [8] and model transformation [4][6][7]. We can mention also model
execution and model validation as some work are now ongoing at the OMG (execution
semantics defined in UML 2.0 [24], Object Constraint Language 2.0 [23]). We think that
this list of model operations is not exhaustive and that new ones will be identified in the
future.

A lot of tools are now available commercially or as open source and provide various
model operations. For example, NetBeans Metadata Repository [17], ModFact [16],
Eclipse Modeling Framework (EMF) [9], and Univers@]lis [3] propose model storage and
model manipulation. Rational Rose [29], Objecteering [18], EclipseUML [10], Poseidon
[28] and ArgoUML [2] propose UML model edition and code generation. ArcStyler [1],
MIA [15], and UMT-QVT [31] propose model transformation. Although these tools cover
a lot of model operations, some operations, such as UML model execution [30], OCL
constraint verification [12], deep model copy operation [27], are not commonly supported
by commercial tools.

Currently, there is no single tool that proposes all model operations. There are too
many operations to be supported by a unique tool as we have already shown a non-
exhaustive list of operations. However, the MDA software production requires a wide
range of model operations to be used in different software development activities (e.g.
analysis phase, design phase, test phase, implementation phase). Therefore, the fact that
model operations are not supported by the same tool must not prevent models to be
processed by all the operations required in the MDA software production. In particular,



when users need to use two tools conjointly, they must be able to send an output model
produced by an operation of tool T1 as an input to an operation of tool T2. We use the
term “operation connection” to denote the action of linking an operation’s input to
another operation’s output.

Connecting model operations is a difficult problem. We identified that this problem
includes two sub-problems: functional connectivity and protocol connectivity. Functional
connectivity ensures that the inputs and outputs of model operations have compatible
types and can then be connected. This sub-problem particularly concerns the type
compatibility of models. Protocol connectivity ensures that model operation connections
can be realized. In particular, the connected operations must agree in a model
representation form and in a mechanism for transmitting models. Please note that we use
the term "protocol" in the sense that it can manage model transmission between
distributed operations (i.e. two connected operations are executed on different machines).

Moreover, it should be noted that connection of model operations must be automated in
order to let users concentrate on the profits of the connection and not on how to
technically realize the connection. Right now, because tools are only documented with
manuals (in natural language), we argue that functional connectivity cannot be automated
as there is no possibility for processing the model operation descriptions in order to check
the type compatibility.

On the other hand, each tool has its own model representation forms for encoding its
operations' inputs and outputs. The model representation can take either textual forms
(e.g. XML Metadata Interchange (XMI) [26], Human-Usable Textual Notation (HUTN)
[19]) or object forms in model repositories (e.g. Java Metadata Interface (JMI) [13], EMF
Repository [9]). Moreover, each tool provides a different way for users to interact to its
operations (i.e. some tools provide graphical user interfaces [29][18], some are executed
via command lines [16] and others propose APIs for calling model operations [9]). To
connect operations of different tools, a dedicated method must be used for each pair of
tools. This effort is costly and can only be done manually. For this reason, protocol
connectivity is not automated.

Despite the needs for connecting model operations, there are currently few works
concerning this problem. The Eclipse platform has been developed for connecting tools.
But Eclipse does not take into account the particularity of the model world. Although the
EMF offers the integration of modeling tools into Eclipse, it does not address at all the
functional connectivity problem and the way tool connections are realized is limited to the
use of the EMF's Java AP

We propose here the Model Bus architecture for addressing the functional connectivity
and the protocol connectivity problems. Model Bus is mainly based on middleware
technologies such as CORBA and Web Services but it adds new features for dealing with
modeling aspects. Model Bus enables the automation of model operation connections. We
have implemented a prototype of Model Bus inside the Eclipse platform and we have
connected several model operations proposed by the ModFact tools.

This paper is organized as follows. Section 2 discusses the difficulties of model
operation connection. Theses difficulties will be illustrated through an example in section
3. Section 4 presents Model Bus architecture and explains how Model Bus can automate
model operation connection. In section 5, Model Bus is used to solve the difficulties
illustrated in the previous example. Section 6 validates our concepts by presenting our
prototype. Section 7 compares our approach with others. The last section concludes our
work and presents research perspectives.



2 Model operation connection problem

The difficulties of model operation connections are related to two sub-problems:
functional connectivity and protocol connectivity.

2.1 Functional connectivity

Functional connectivity ensures that the inputs and outputs of model operations have
compatible types and can then be connected (i.e. an operation can consume the output of
another operation). Though the type compatibility is a well-known problem, it has not
been addressed in the model world. Unlike classical data type, the model type
compatibility is not a trivial problem because today, there is no well-known, precise
definition of model types. Finding such a definition is also complex because there are
uncountable kinds of models (e.g. UML models, SPEM models, CWM models ...). We
identify the characteristics that must be taken into accounts for defining model types.
Then we relate them to the model type compatibility problem.

Metaclasses: It is a common practice to use a metamodel to define the type of model.
In other words, a model is anything conforming to the metamodel. We argue this approach
is not sufficiently precise. Firstly, there is no agreement on what is precisely a metamodel:
Is it a single metapackage (i.e. MOF package) or a collection of metapackages? Secondly,
a metamodel contains several metaclasses. As a result, this model type definition allows
models to be instances of any metaclasses. However, an operation may be capable of
processing the instances of only some metaclasses (e.g. operation capable of processing a
UML class but not UML use case).

Therefore, metaclasses are required to be identified for defining a model type. The
figure below shows how an input type and output type of a model operation is defined.
The dark circles represent two metaclasses whose instances can be processed by the
operation and a metaclass whose instances are produced by the operation.
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Fig. 1. Roles of metaclasses in the model type definition

“Any” vs. specific model types: A model type is said to be specific if the
corresponding models can contain only instances of some specific metaclasses. On the
contrary, for the “any” model type, the corresponding models can contain instances of any
metaclasses. The "any" model type is necessary because we have found several operations
that require the "any" model type (e.g. generic transformation engine [22], or reflective
MOF repository [16] [17]).

Model granularity: A model can contain either a single instance of a metaclass (e.g. a
UML package, a UML class) or a collection of instances (UML packages, UML classes).
Therefore, the model type definition must specify the number of instances that is allowed,
for example, a single instance, no more than two instances, or any number of instances.
For collection-granularity model types, the order of instances in the collection may have
meanings. Therefore, the type definition should specify whether the instances are required
to be ordered.



The characteristics presented above are required for checking the type compatibility
problem. We present some checking rules that use those characteristics.

Metaclasses: 1) An output model type (T1) is conformed to an input model type (T2) if
the metaclasses corresponding to T1 are contained in the set of metaclasses corresponding
to T2.

“Any” vs. specific model types: 1) All specific model outputs are compatible to an
"any" model input. 2) An "any" model output may not be conformed to a specific model
input depending on the runtime type of that "any" model output. Therefore, the metaclass
checking is necessary at runtime.

Model granularity: 1) The instance number range of the output model type must be
included in the one of input model type. For example, "a single instance" is included in
"no more than two instances". 2) Connecting an unordered-collection output to an
ordered-collection input may cause non-deterministic results; therefore users should
receive warnings.

It can be observed that if those characteristics were precisely specified in a well-
defined format, the automation of the checking rules would be feasible. However, in
current practice, the input and output types of model operations are neither precise nor
well-formed. It is because they are described in natural languages (i.e. in tool manuals).
That is why the functional connectivity problem is difficult to be solved.

2.2 Protocol connectivity

Protocol connectivity concerns how model operation connections can be concretely
realized. We identify that the difficulties of protocol connectivity are caused by two
heterogeneity aspects of tools: 1) the model representation forms the tools choose for
encoding their operations' inputs and outputs and 2) how users interact with tools for
applying their operations (interaction style).

Model representation forms: Tools currently available have their own model
representation forms. On one hand, some tools use models represented in textual formats.
For example, Rational Rose has its proprietary format (MDL). UMT-QVT can read and
write models in the HUTN format. Poseidon and ArgoUML use the XMI format. On the
other hand, some other tools require models in object representations. For example, the
ModFact transformation engine requires object-form models in the JMI repository and the
Java code generation tool, which is a part of EMF, requires object-form models in the
EMF repository.

Interaction styles: The way users interact with tools can vary from a tool to another.
For example, Rational Rose offers to users a graphical user interface (GUI) for applying
code generation operation on a UML model. ModFact provides a command line interface
for applying a DTD generation on a MOF model. EMF provides an API for using the
model manipulation operation on an EMF repository. Moreover, tools that support multi-
users can provide remote access. For instance, ModFact repository allows the model
manipulation operation to be accessible through the CORBA RPC. We can also anticipate
tools offering Web Service access to their operations.

In the first aspect, the heterogeneity does not allow the operations of different tools to
share input and output models. For example, an operation of a tool using object-form
models (in a JMI repository) cannot process models produced by an operation of another
tool using models written in the textual HUTN format.

In the second aspect, the heterogeneity of interaction styles (e.g. GUI, command line,
API or RPC) force users to switch from one interaction style to another for connecting
operations. Moreover, some interaction styles, such as GUI and command line are only



intended for manual use. Other interaction styles such as API, Web Service, allow the
operations to be used in programs. However, since they are too heterogeneous, the
programs must be manually written for connecting operations. As a result, automating the
operation connections is difficult.

This heterogeneity problem is a well-known problem and several solutions have
already been proposed (e.g. CORBA, Web Service). However, those solutions do not
address the interoperability of the modeling tools where models are first-class data to be
exchanged among model operations.

3 Operation connection example

The difficulties of tool connections will be illustrated through an example: a UML to
Enterprise Java Bean (EJB) transformation. This example uses the following scenario:
First a user will find a UML model in a UML Repository tool. This tool gets a model
name as an input and returns a UML model as an output. This output is connected to the
input of a Transformation tool for transforming the UML model to an EJB model. The
output of the transformation tool (i.e. EJB model) will be connected to the input of a Code
Generation tool for generating an EJB application (i.e. code). The figure below illustrates
the operation connections in this example (i.e. from UML Repository to Transformation
and from Transformation to Code Generation).
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Fig. 2. Example: a UML to EJB transformation

We will detail hereafter the functional connectivity and protocol connectivity problems
related to this scenario.

3.1 Functional connectivity difficulties

We will show that the type characteristics identified in II.1 are necessary for checking the
type compatibility.

Metaclasses: We assume that the UML Repository can support two operations:
findPackage and findClass (c.f. the figure below). The findClass and findPackage
operations require a class name and a package name as input (i.e. model name)
respectively. As a result, the user must choose, among findPackage and findClass, the
operation compatible to the transformation operation. However, this choice cannot be
made if the tool manual informally states that the transformation operation takes a “UML
model” and returns an “EJB model” because the user does not know whether the required
UML model must be a UML package or a UML class. Therefore, the input and output of
the transformation operation must be described in terms of metaclasses (i.e. Package and
Class metaclasses in UML metamodel). If the instance types are specified as shown in the
following figure, the user will see that the findPackage operation is compatible to the
transformation operation and should be chosen.



findPackag
findClass

UML Repository UML metamodel Transformation

transform

Fig. 3. Checking type compatibility using metaclass matching

"Any" vs. specific model types: The generic transformation operation that takes and
produces any kind of models (i.e. "any" model type) has already been identified in [22]. If
the transformation tool in this example proposed this operation, the user would need to
verify at run-time the actual type of its output model (as it can be any kind of models),
before connecting it to the code generation operation, which requires a specific model
type input.

Model granularity: The transformation operation in this example does not specify
how many instances (of metaclasses) the target model will contain. If the target model
contains multiple instances while the code generation operation can handle only one
instance, the operation connection will cause errors.

3.2 Protocol connectivity difficulties

Figure 2 also illustrates the model representation form (italic text) and the interaction style
(underlined text) of each tool. The tools in this example use different model representation
forms. Therefore, we can remark problems in the following connections: the connection of
the UML Repository’s output (XMI 1.2) to the Transformation’s input (HUTN) and the
connection of the Transformation's output (HUTN) to the Code Generation’s input (JMI
objects).

Furthermore, some interaction styles, such as command lines or GUIs, require manual
interventions from the user. In other words, the user has to get back the output of an
operation and manually forward it to another operation for connecting them. For this
reason, operation connections cannot be automated. It is also not convenient for the user
to switch from one interaction style to another when the interaction styles are
heterogeneous. These disadvantages are illustrated as follows:

Connecting UML Repository to Transformation: First, the user has to use a
command line for getting a UML model from the UML Repository. Then, he/she must
manually transfer the UML model to the Transformation operation through GUI.

Connecting Transformation to Code Generation: First, the user will use the GUI of
the Transform operation for getting back the transformation result (i.e. the EJB model).
Then he/she must write a Java program for invoking code generation operation through
the Java APIL.

4 Model Bus

4.1 Solving functional connectivity

The design principle of our approach is to offer a uniform way for describing the model
operations of tools. In particular, the input and output types of the operations must be
precisely defined in order that the operation connections can be checked. The next figure
contrasts the current practice and our solution. In the current practice, as we have



mentioned that today there is no well-known, precise definition of model types, the global
view of model operations is unclear and does not enable the type compatibility checking
in connected operations. Our approach proposes a uniform view where operations are
similar to software components having precise input and output definitions.

Current practice Using M odel Bus

Fig. 4. Model operations viewed as software components

We propose a metamodel, called Functional Description (c.f the next figure). This
metamodel describes the signatures of model operations in an abstract way. Like classical
operations, model operations can have inputs and outputs of basic types (e.g. String,
Integer, Boolean, Enumeration). However they have a new important feature: their input
and output types can be models.
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Fig. 5. Functional Description metamodel

The Functional Description metamodel addresses the problem of the type compatibility
verification by allowing operations to be sufficiently described. The model characteristics
presented in II.1.1 can be precisely specified as follows.

Metaclasses: The metaclass SpecificModelType references MOF metaclasses whose
instances can be contained in input and output models. For example, in the description of
an operation requiring a UML use case, the SpecificModel Type will point to the metaclass
UseCase in the UML metamodel. As a result, if users are not sure what exactly UML use
cases are, or which version of UML the operation requires, they can obtain the complete
definition of UML use cases (from a specific version of the UML metamodel) referenced
by this description.

"Any" vs. specific model types: The “any” and specific model types can be
distinguished  using  metaclasses  SpecificModelType  and  AnyModelType.
SpecificModelType points to the metaclasses whose instances are expected while
AnyModelType indicates that the parameter can contain instances of any metaclasses of
any metamodels.

Model granularity: MultiplicityType allows model granularity to be specified using
the upper and lower attributes. The different values of upper and lower can express



various granularity semantics. For example, [2..2] (i.e. lower=2, upper=2) and [1..*] (i.e.
lower=1, upper= -1) denote that the model must contain respectively “exactly two” and
“one or more” instances. Moreover, the isOrdered attribute specifies whether the order of
instances (in a multi-instance model) has particular meanings.

The Functional Description is similar to MOF 1.4 operation definition [21]. However,
it introduces two new features. Firstly, in MOF operations, a parameter type is limited to
be a single metaclass. Therefore we cannot define, for example, a model type which can
be either a UML class or a UML package. In the Functional Description,
SpecificModelType can define more flexible types because it can reference more than one
metaclass. Secondly, in MOF operations, the "any" model type parameter doesn’t exist.
Thus, we introduced the AnyModelType metaclass in the Functional Description.

For automation aspect, we built a repository based on Java Metadata Interface (JMI) 13
for storing all operation descriptions defined by the Functional Description metamodel.
This repository offers an API for manipulating operation descriptions. Using this API, a
program can navigate in operation descriptions for checking type compatibility of
connected operations. Therefore, our solution supports the automation of type
compatibility verification.

4.2 Solving protocol connectivity

In section 2.2, we have already explained that the tools heterogeneity causes difficulty for
users. However, it is not a good idea to limit all tools to only one protocol (i.e. one model
representation form and one interaction style). Each protocol has its own advantages. For
instance, it is simple and convenient to execute local tools' operations via an API call. For
multi-user tools, remote access protocols such as CORBA or web service are suitable.
This trade-off leads us to the following design principles:

Model Bus protocols: There should be a set of well-known and well-defined protocols
allowing tool implementers to choose a protocol suitable for their tools. We will call those
protocols Model Bus protocols. Each protocol definition will include model representation
definition and interaction style definition.

Generation rules: For each Model Bus protocol, we also provide rules for generating
1) skeleton codes allowing operations to be invoked and 2) operation invocation codes for
connecting outputs of an operation to inputs of other operations. Therefore, our solution
can automate operation connections.

The figure below illustrates how Model Bus solves the protocol connectivity problem.
Without Model Bus, when a new tool is added, users will need to develop a dedicated
method for connecting it with each existing tool. By using Model Bus, a new tool can
connect to others through the Model Bus protocols without any manual efforts: the codes
for connecting operations will be automatically generated using our generation rules.

Oc j? New tool
<></7 New tool O o
o A Model Bus
’ ¢> V/
. /X/ X \/ D D D protocols
» 00 O O O
Current practice Using Model Bus

Fig. 6. How Model Bus enables protocol connectivity

Model Bus protocols: We propose a metamodel, called Protocol Description (c.f. next
figure), for describing Model Bus protocols. The EntryPoint metaclass is used for



associating the protocol aspect with the functional aspect of operations. More precisely,
this metaclass is associated with the Operation metaclass defined in the Functional
Description metamodel. This association specifies how the operations defined abstractly
in the Functional Description can be concretely invoked.

Tool
“name : String

1 "*? Operation
EntryPoint (from Abstract)
* 1_*|M@name : String

\ [ |
SIC Ry Eoin CorbaEntryPoint | | WsEntryPoint

. (from Jmi) : (from Corba) (from Ws)
&implClass : string

Fig. 7. Protocol Description metamodel

EntryPoint can be specialized for representing each Model Bus protocol. We identify here
three Model Bus protocols: WsEntryPoint, CorbaEntryPoint, JmiEntryPoint. Each
protocol is briefly defined in the next table according to model representation form and
interaction style.

At this time, we have only implemented JmiEntryPoint. Therefore, in the rest of article,
we will focus on this EntryPoint. However, the implementation of other protocols will
follow the same principle.

Table 1. Model Bus protocols

EntryPoint Model Representation Form Interaction Style
WsEntryPoint XMI SOAP messages
(Web Service)
CorbaEntryPoint CORBA objects (based on MOF-IDL) | CORBA
JmiEntryPoint Java objects (based on JMI) Local Java API

Generation rules: For automating tool access, the tool description (i.e. Functional and
Protocol Descriptions) is used by both tool providers and users: Firstly, tool providers use
it to generate skeleton codes allowing operations to be invoked. These skeleton codes will
be used either for implementing the operations or for delegating to existing implantation.
Secondly, users will use it to generate codes for invoking the operations.

For JmiEntryPoint, a tool description will be mapped to a Java interface. This interface
will serve for both tool providers and users: It allows tool providers to provide the
operation implementation conforming to JmiEntryPoint protocol. For users, it will be used
in the generated codes that connect operations (as we will later demonstrate in 5.2).

The rules for generating this Java interface are defined in terms of the correspondences
between tool description metaclasses and Java constructs as briefly shown the following
table.

A JmiEntryPoint is mapped to a Java interface. Each operation referred by the
JmiEntryPoint will be mapped to a Java method “java.util. Map <Operation.name>
(java.util.Map inputMap)”. inputMap allows the operation’s input parameters to be
passed as name-value pairs in the map data structure (java.util.Map). Likewise, the
returned map will contain the name-value pairs of all output parameters.

The rest of the metaclasses (Parameter, Multiplicity, Type) serve as constraints on



parameter values: PrimitiveType is mapped directly to Basic Java types (e.g.
java.lang.String, java.lang.Boolean). For ModelType, the parameter values must be
objects  representing  metaclass  instances in  JMI  repositories  (i.e.
java.jmi.reflect.RefObject). For the optional parameter (i.e. MultiplicityType.lower>0),
the map entry representing the parameter’s value can be absent. For the parameter
containing multiple objects (i.e. MultiplicityType.upper>1), the class java.util.Collection
is used for holding the objects.

Table 2. Correspondences between tool description metaclasses and Java constructs

[Tool description metaclasses Implementation
UmiEntryPoint IA singleton Java Interface <JmiEntryPoint.implClass>
Operation IA Java method :
Java.util. Map <Operation.name>(java.util. Map inputMap)
Parameter  [Input IA map entry (<Parameter.name>, value) in inputMap
Output IA map entry (<Parameter.name>, value) in returned Map
Multiplicity [lower>=1 Corresponding map entry is required
Type lower=0 Corresponding map entry is optional
upper>1 or upper=* [Value must be instance of java.util.Collection
Type IPrimitiveType Basic Java types (e.g. java.lang.String, java.lang.Boolean)
[EnumerationType [javax.jmi.reflect.RefEnum
ModelType javax.jmi.reflect.RefObject

5 Model Bus example

We take the same example in section 3 for illustrating how Model Bus can solve the
operation connection difficulties.

5.1 Solving functional connectivity

For solving functional connectivity problem, we define each tool using the Functional
Description metamodel. The result is shown in the following table.

Table 3. Example of Functionality Descriptions

Tool Operation Parameter IDirection “Any” or specific model type
Multipicity [Metaclass identification

Uml findClass className In[1.1] PrimitiveType (String)

IRepository class Out [1..1] SpecificModelType

(Model Management::Package)
findPackage [packageName |In[l..1] PrimitiveType (String)
package Out [1..1] SpecificModel Type
(Foundation::Core::Class)
lUmIToEjb (transform sourceModel  |In [1..%] SpecificModel Type

(Model Management::Package)
targetModel ~ [Out [1..¥] SpecificModelType
(ejb::EjbComponent)

Code generateSinglejebjComponent |[[n[1..1] SpecificModel Type
Generation [Component (ejb::EjbComponent)
generate ebjComponents [[n [1..%] SpecificModel Type

Components (ejb::EjbComponent)




The first tool, UmlRepository, offers two operations: findClass and findPackage. The
former returns a UML class from a given name while the latter returns a UML package.
The second tool, UmiToEjb, offers the transform operation that transforms UML
packages (instances of metaclass Model Management::Package in the UML metamodel)
into instances of EbjComponent (defined in the EJB metamodel). The last tool,
CodeGeneration, offers  two operations:  generateSingleComponent  and
generateComponents. The former requires a single EbjComponent instance while the
latter requires a collection of EbjComponent instances.

For connecting the operations, users must choose one operation for each tool. Since the
UmlRepository tool and CodeGeneration tool propose more than one operation,
appropriate choices must be made. The next figure shows the choices that the user makes
(i.e. findPackage, transform, generateComponents).

To verify that the choices are correct, the user can use the following rules to check
automatically the type compatibility of the inputs and outputs of the connected operations.

packageName package sourceModel targetModel ebjComponents

I e e I e e e B
ﬁndPackage ' transform generateComponents
(in UmlRepository) (in UmIToEjb) (in CodeGeneration)

Fig. 8. Example of model operation connections

The findPackage & transform operations: The output parameter of the former
operation (package) is connected to the input parameter of the latter operation
(sourceModel). The model types of both parameters correspond to the same metaclass
(Model_Management::Package) and hence are compatible. Their granularities are also
compatible ([1..1] = [1..*]). Therefore, the operation connection is correct.

The transform & generateComponents operations: The output parameter of the
former operation (fargetModel) is connected to the input parameter of the latter operation
(ebjComponents). The model types of both parameters correspond to the same metaclass
(ejb::EbjComponent). Their granularities are also compatible ([1..*] > [1..*]). Therefore,
the operation connection is correct.

If the user made bad choices, the similar analysis as above could detect bad operation
connections. For example, the connection of the findClass operation to the transform
operation would be incorrect because the model types of their parameters are incompatible
(metaclass Foundation::Core::Class vs metaclass Model Management ::Package). The
connection of the transform operation to the generateSingleComponent operation would
also be incorrect because the granularities of their parameters are incompatible ([1..*] >

[1..1]).

5.2 Solving protocol connectivity

In this step, the Protocol Description metamodel is used for specifying how the user can
interact with tools. Suppose that all tools provide JmiEntryPoint protocol (they may also
provide other alternative Model Bus protocols). Hence, in the tool descriptions, all the
instances of Operation (from the Functional Description metamodel) will be associated to



a JmiEntryPoint instance. Java interfaces can therefore be generated from the tool
descriptions as shown below:

public interface UmlRepository {
public Map findPackage (Map inputMap);

public Map findClass (Map inputMap); }
public interface UmlToEjb {
public Map transform(Map inputMap); }

public interface CodeGeneration {
public Map generateSingleComponent (Map inputMap) ;
public Map generateComponents (Map inputMap); }

To execute all the operation connections, only a simple code is needed for connecting
them. For brevity, only the connection of transform operation and generateComponents
operation is shown below. The two operations are connected by linking the targetModel
output to the ebjComponents input. To connect them, first the operation producing the
output (i.e. transform) is invoked (line a). Then, the output is extracted from the map data
structure (line b). Next the output is linked to the input by putting it in the map entry (line
d). Finally, the operation consuming the input (i.e. generateComponents) is invoked (line

e).

a. Map transformOutput = UmlToEjb.transform(transformInput) ;
b. Collection targetModel = (Collection)
transformOutput.get (“targetModel”) ;

c. Map generateComponentsInput = new Hashtable();

d. generateComponentsInput.put (“ebjComponents”, targetModel);

e. Map generateComponentsOutput =
CodeGeneration.generateComponents (CodeGenerationInput);

The codes for linking other parameter pairs follow the same pattern. For this reason, by
specifying a parameter pair to be linked, we can automatically generate the code.

6 Proof of concepts: Model Bus Integrated Environment (MBIE)

We have implemented a Model Bus prototype on the Eclipse platform. This prototype is
called Model Bus Integrated Environment (MBIE). MBIE provides two services. Firstly,
it allows users to browse all tool descriptions. In particular, users can examine the
signature of each model operation. Secondly, MBIE automatically generates a GUI from
tool descriptions. Users can then use this GUI for invoking an operation of any tool. This
implementation proves that 1) tool descriptions can be automatically processed and 2) The
invocation of any operation can be automated in the sense that users need not writing
codes.

The following figure illustrates the MBIE architecture. MBIE is connected to the bus
like other tools. Instead of accessing the bus directly, users can alternatively use the GUI
facilities provided by MBIE to interact with tools. MBIE contains two components:
Functional Management and Protocol Management. The Functional Management allows
users to browse tool descriptions. The Protocol Management allows users to invoke the
chosen operation via an automatically generated GUI.

Functional Management provides a GUI, called Functional View (c.f. the next
figure), which lets users explore tools’ Functional Descriptions (i.e. model operation
signatures) and then select an operation to be invoked. As shown in the figure, three tools
are available: BimLookup, which provides lookup operations for tool descriptions,



ModelSharing, which offers a model storage operation, and ModelTransformation, which
proposes a transformation operation based on Transformation Rule Language [7]. This
Functional View also shows that the ModelTransformation tool offers the transform
operation having four parameters (rules, sourceModel, targetMetamodel and
targetModel).

Zxam}ne.s tool | TFunctional Model Bus Integrated Environment
description....®Management Protocol
: > [Management
invokes
operations ¢ Model Bus protocols
A X
BimLookup ModelSharing ModelTransformation
(tool lookup service) =
0o0ls

Fig. 9. MBIE Architecture

Protocol Management allows users to invoke a model operation through the
Operation Call Dialog, which is automatically generated from the signature of the
operation. Firstly, this GUI takes inputs from users. Then the operation is invoked using
the appropriate protocol, specified by the Protocol Description. The invocation
mechanism is transparent to users. Finally, the results are returned to users.

The figure below shows an Operation Call Dialog for invoking the transform operation.
This dialog allows users to supply three inputs parameters (rules, sourceModel, and
targetMetamodel) and to receive the result (targetModel).
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Fig. 10. Functional View (left) and Operation Call Dialog (right)

7 Related Works

The works related to Model Bus concern frameworks where tools can be integrated. Our
previous work, Integrated Transformation Environment (ITE) [5], allows users to use
many transformation engines in the same environment. Compared to Model Bus, the ITE
approach is more restrictive. Firstly, ITE Ilimits integrated tools to be model
transformation tools having one input model and one output model. Model Bus can
describe more flexible functionalities (i.e. any number of inputs and outputs). Secondly,



ITE uses metamodels for defining model types. Since this approach is not sufficient,
Model Bus proposes a more precise definition of model types using metaclasses.

The providers of some repository implementations such as Netbeans Metadata
Repository [17], Eclipse Modeling Framework [9], and Univers@lis [3] propose
frameworks where all tools share the same central repository. This approach allows tools
to be tightly integrated: all models are stored in the same repository and hence can be
shared among all tools. For example, model visualization, transformation and code
generation tools are integrated in the same Univers@lis repository. However this
approach has two disadvantages. Firstly, it does not solve the functional connectivity
problem. More precisely, it does not address how operation connection correctness can be
checked. On the other hand, Model Bus offers a metamodel for describing model
operation signatures and also rules for checking the model type compatibility. Secondly,
the central repository approach is not suitable for distributed environments: the remote
access to the central repository is costly and can expose security risks. To overcome this
problem, Model Bus includes the Web Service protocol for supporting distributed tools.

Middleware architectures such as Web Service [32] and CORBA are similar to Model
Bus in the sense that they allow operations (or services) to be described (e.g. CORBA’s
IDL, Web Service’s WSDL) and they define protocols for invoking operations (CORBA’s
IIOP, Web Service’s SOAP Bindings). However, those architectures do not support
operations that have model inputs and output. Model Bus is dedicated to modeling
aspects. It defines model types to be used in model operations and the protocols for
invoking those operations.

The workflow process definition language (WPDL) [33] allows process connections to
be specified. Some work for applying WPDL for connecting modeling tools [11] has been
made. However this work did not address the functional and protocol connectivity
problems. For this moment, Model Bus does not have a metamodel for expressing how
operations are connected. We think that a subset of WPDL can be reused for expressing
this aspect in the model world.

8 Conclusion and perspectives

Model Bus allows model operations to be connected. To connect operations, the
functional connectivity and the protocol connectivity problems must be solved. To solve
the functional connectivity problem, we proposed the Functional Description metamodel
for describing model operation signatures. In particular a precise model type definition
was described. As a result, type compatibility of the connected parameters can be
automatically checked. To solve the protocol connectivity problem, we defined a set of
Model Bus protocols allowing operations to be invoked. We have shown how the tool
descriptions (i.e. Functional Description and Protocol Description) can be used to
automatically generate a Java interface for tool providers to implement the operations and
for users to invoke the operations. We have also demonstrated how to generate codes for
automating operation connections.

The Model Bus prototype is implemented in Eclipse Platform. It offers users the high-
level facilities for browsing tools and invoking an operation of any tools. This prototype
proves that tool description can be automatically processed and Model Bus automates the
operation invocation.

For future work, we plan to advance this research particularly in two aspects. At this
time, model operations are described in terms of model element types and model
granularities. However, some operations require model types to be more specific, for
example, an operation that requires a UML class having at least one attribute, an operation



that requires a UML class with stereotype ««Table»>. Therefore, we plan to augment model
type semantics with Object Constraint Language (OCL). We think that this improvement
will ensure better the correctness of operation connections.

For the second aspect, we want to propose a method for rigorously expressing how
operations are connected. For example, "output A of operation O1 is connected to input B
of operation O2". In particular, we need a metamodel for describing the structure of this
information. This metamodel will allow us to specify software development scenarios
involving many model operations. We also look forwards to automating the execution of
those scenarios.
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