
Published in the proceedings of TOOLS'USA, Volume IEEE TOOLS-39, Santa Barbara, August 2001

From Object Composition to Model Transformation with the MDA

Jean Bézivin
University of Nantes

2, rue de la Houssinière, BP 92208
44322 Nantes cedex 3, France

Jean.Bezivin@sciences.univ-nantes.fr

Abstract
The object technology revolution has allowed the replacement of the more than twenty-

years old step-wise procedural refinement paradigm by the more fashionable object
composition paradigm. Surprisingly this evolution seems itself today to be triggering another
even more radical change, towards model transformation. As a concrete trace of this, the
Object Management Group (OMG) is rapidly moving from its previous Object Management
Architecture vision (OMA) to the newest Model-Driven Architecture (MDA). Some of the
main characteristics of this new organization will be outlined in the presentation.

1. Introduction

The OMG has proposed a modeling language called UML (Unified Modeling
Language) for describing all kinds of object-oriented software artifacts. The internal
architecture and applicability scope of UML are not yet completely stabilized [4]. In order to
allow other similar languages to be defined as well, the OMG uses a general framework based
on the MOF (Meta -Object Facility [6]). UML and the MOF are the centerpieces of the four-
layers modeling stack of the Model-Driven Architecture MDA ([8], [1]). The real status of
these modeling layers is still unsettled. One way to look at the architecture is to compare it to
the area of programming languages (Figure 1). At the lowest M0 level we find the real world,
corresponding to a given execution of say a Pascal program. At level M1 we find the models,
corresponding for example to a given Pascal program. For one such Pascal program there is
infinity of possible executions. At level M2 we find the meta-models, corresponding for
example to a grammar for the Pascal language. For a given grammar, there is infinity of well-
formed programs. Finally level M3 is the meta -meta-model level. It may be compared to the
self-defined, extended BNF formalism. The EBNF formalism allows defining infinity of
grammars. In the standard OMG modeling stack, the MOF at level M3 is self-defined and
allows defining meta-models at level M2. The UML meta-model is one of the well-known
examples. It allows defining UML models at level M1. A given UML model describes a real
phenomenon at level M0, with entities and events unique in time and space.

2. Models Everywhere

The consensus on UML has been instrumental in this transition from code-oriented to
model-oriented software production techniques. A key role is now played by the concept of
meta-model. The notion of a meta-model is strongly related to the notion of an ontology [2],
used in knowledge representation communities. The MOF has emerged from the recognition
that UML was one possible meta-model in the software development landscape, but that it
was not the only one. Facing the danger of having a variety of different non-compatible meta-
models being defined and independently evolving (data warehouse, workflow, software
process, etc.), there was an urgent need for a global integration framework for all meta-
models in the software development scene. The answer was thus to provide one language for

Published in the proceedings of TOOLS'USA, Volume IEEE TOOLS-39, Santa Barbara, August 2001

defining meta-models, i.e. a meta-meta-model. Each meta-model defines itself a language for
describing a specific domain of interest. For example UML describes the artifacts of an
object-oriented software system. Some other meta-models may address domains like legacy
systems, data warehouses, software process, organization, tests, quality of service, party
management, etc. Their number is important and keeps growing, under the control of the end-
user and platform working groups. They are defined as separate components and many
relationships exist between them.

the MOF
MMM

the UML
MM

a UML
model m

a particular
use of m

the UPM
MM

the CWM
MM

another UML
model m’

another
use of m

Level M3

Level M2

Level M1

Level M0

EBN
F

the
Pascal

gram
m

ar
a Pascal

program
P

an execution
X

of
program

P

Figure 1 The OMG four layers standard modeling stack

3. Model serialization
The real change in the model engineering happened when it became clear that model

could be directly used in software production chains. Although this possibility had often been
considered and partially applied, we may now envision its large-scale industrial deployment.
Until now object analysis and design models have mainly been used to document software
system. Analysts and designers were building models that were provided to programmers
only as inspiration material to facilitate the production of concrete software. The move from
this "contemplative" period to a new situation where production tools will be model-driven
has been facilitated by the introduction of the XMI recommendation [7]. This XMI
recommendation builds upon many other standards like UML, MOF, OCL and XML. We
may recognize its importance from the fact that many new proposals at OMG are no more
provided as a simple paper description, but as a XMI DTD as well, corresponding to the
MOF-compatible meta-model of the proposal. This helps to reduce the gap between human
readable and computer interpretable standards.
The W3C XML standard provides the transfer syntax but also a complete technological space
with widely available and well-engineered tools on which to map the MOF-compatible
models. This will allow for example to apply transformation systems like XSLT to any kind
of high level models. As Figure 2 suggests, there is a similarity between the relation of a XMI
document to a XMI DTD or schema on one side and the relation of a MOF-based model to a
MOF-based meta-model on the other side. The XML, MOF, UML and OCL standards are
well integrated in XMI and play together to provide a powerful model serialization tool. The
move from DTDs to XML schemas is being integrated into this process and will strengthen
the resulting possibilities.

Published in the proceedings of TOOLS'USA, Volume IEEE TOOLS-39, Santa Barbara, August 2001

Person

name : String
ssnb : Integer
age : Integer

<!Element Person>
(name,
ssnb,
age)

>

<Person>
<name> John Pendibidu </name>
<ssnb> 15802354450722 </ssnb>
<age> 34 </age>
</Person>

XMI Document

XMI DTD or Schema

UML model

Figure 2 XMI representation of MOF-compatible models

4. Separation of aspects
The MDA is preparing for a new situation where models will be first class entities.

They will be stand-alone and on-line accessible (Figure 3). This means that the execution
model will contain execution objects and if necessary these execution objects will have the
capacity to access other attributes explicitly represented in other models. Ultimately, all
entities present in the various models may show autonomous behavior. This organization is
based on the fact that there may exist a common execution bus (i.e. CORBA, DotNet, the
Web, Java) and an "orthogonal" common representation bus (i.e. the MOF). The architecture
suggested by Figure 3 goes much beyond proposals of separation of aspects with AOP
(Aspect-Oriented Programming, [3]). It shows how the meta-modeling framework may
provide possibilities only currently offered by computational introspection and reflection. Of
course the separation of aspects with meta -models will make its way in a progressive
evolution. However more limited applications of this general scheme to deal with the
reification of contracts, exceptions or performance QoS specification may be envisioned on a
medium-term basis.

Common BUS (e.g. CORBA + MOF)

Execution
model

Execution
model

Architecture
model

Architecture
model

Deployment
model

Deployment
model

Business
model

Business
model

Design
model

Design
model

Test
model

Test
model

Usage
model (Use Cases)

Usage
model (Use Cases)

Resource
Model (platform)

Resource
Model (platform)

Exception
model

Exception
model

Figure 3 Separation of aspects with a general model infrastructure

5. Middleware generation support
One important functionality is present in the MOF, which is made available to all

meta-model branches. This is middleware generation support. Originally this was provided
only for the OMG standard middleware, i.e. CORBA. In the new MDA organization, instead
of targeting only the CORBA middleware, the integrated facility will allow to generate for a
number of different platforms: Sun (Java/EJB), Microsoft (C#/DotNet), the Web, etc.
Furthermore any new middleware that may appear in the future can easily be integrated. Let

Published in the proceedings of TOOLS'USA, Volume IEEE TOOLS-39, Santa Barbara, August 2001

us take, as an illustrative example, the UML fragment defined in Figure 4. This could produce
the corresponding CORBA API for accessing Employee objects in the IDL language.
Alternatively we could also generate Java interfaces from the same fragment as illustrated by
Figure 4.

Person
name : String
ssnb : Integer
age : Integer

Employee
salary : Integer
dept : String

Interface Person
{
}
Class Person

{ public String name;
public int ssnb;
public int age;

}

Interface Employee
{
}
Class Employee extends Person

{ public int salary;
public String dept;

}

Figure 4 A UML model fragment and a corresponding Java code fragment

Our illustration was a UML fragment. Obviously any model based on a MOF-compliant
meta-model would have the same property. This possible generation of IDL APIs from UML
models means different things. It will be no more necessary to define end-user
recommendations in IDL since the high level UML expression will be able to generate
automatically for this target. When we look at the activity spent in this area by various end-
user OMG working groups (Transport, HealthCare, Electronic Commerce, etc .), we see the
important impact of this move. The fact that the target middleware may be parametrically
changed (IDL, Java, C#, the WEB, etc.) offers a lot of way for economy. There are also
additional advantages in doing this move since we can inject a variable dose of precision into
UML models by adding OCL statements. This is not an all-or-nothing process (i.e. using a
formal specification language or not using one at all), but an engineering decision. Of course
this was not possible with IDL or with any other common target middleware.

MOF

Source
Meta-model

Source
Model

Target
Meta-model

Target
Model

Transformation
rules

Figure 5 Meta-model based model transformation

6. Model Transformation

The question of model transformation also lies at the center of the MDA approach.
The designer and programmer would be given for example the profiles UML for CORBA or

Published in the proceedings of TOOLS'USA, Volume IEEE TOOLS-39, Santa Barbara, August 2001

UML for C++ and can then use these dialects of UML to prepare for the transformation
between a UML design model and IDL or C++ code, with the help of some limited facilities
provided by the UML CASE tool vendors. As a matter of fact the possibilities don't lie there
but in more general approaches, as illustrated by Figure 5. A typical proposal has been made
in [5]. We may consider that we have here two meta-models. The source one could be UML
for example and the target one could be C# ore more realistically a DotNet meta-model. The
transformation of the UML model to EJB code may be specified by a set of rules defined in
terms of the corresponding meta-models. The expression of these rules may be facilitated if a
basic generic framework is present in the MOF. The transformation engine itself may be built
on any technology like the XSLT tools.

7. Conclusion

The move from procedural technology to object technology has triggered a more
radical change in our way of considering information systems and of conducting software
engineering operations. One of the possible evolution paths is called model engineering. It
consists in giving a first-class status to models and model elements, similarly to the first class
status that was given to objects and classes in the 80s, at the beginning of the object
technology era. The essential change is that models are no more used only as mere
documentation for programmers, but they can be directly used to drive tools.
OMG was set up twelve years ago to solve the basic problem of object interoperability (how
to make heterogeneous software written in C++, Eiffel, Smalltalk, etc. function properly upon
various different distributed platforms). The answers have been CORBA, IDL, IIOP, etc. and
the OMA distributed programming framework. Today we are facing new and harder
interoperability problems and it will probably take a longer time to solve them. What is
needed is a sound global model-engineering framework. The MDA organization is an initial
answer to this challenge. The OMG four-levels modeling stack is the operational kernel of the
MDA.

8. References
[1] Dsouza, D. Model-Driven Architecture and Integration: Opportunities and Challenges

Version 1.1. February 2001, available at www.kinetiuym.com

[2] Guarino N., Welty, C. Towards a Methodology for Ontology-based Model Engineering. in
Bézivin, J. and Ernst, J., (eds.), First International Workshop on Model engineering, Nice, France,
June 13, 2000, available at www.metamodel.com

[3] Kiczales, G. & al. Aspect-Oriented Programming in Aksit, M. and Matsuoka, S. (eds.), 11th
European Conference on Object-Oriented Programming, LNCS #1241, pages 220-242, Springer
Verlag, 1997

[4] Kobryn, C. The Road to UML 2.0: Fast track or Detour. SD Magazine, April 2001.

[5] Lemesle, R. Transformation Rules Based on Meta-Modeling EDOC,'98, La Jolla, California, 3-5
November 1998, pp.113-122.

[6] OMG/MOF Meta Object Facility (MOF) Specification. OMG Document AD/97-08-14,
September 1997. available at www.omg.org

[7] OMG/XMI XML Model Interchange (XMI) OMG Document AD/98-10-05, October 1998.
available at www.omg.org

[8] Soley, R. and the OMG staff Model-Driven Architecture. OMG draft document available at
www.omg.org November 2000.

