Combining models and patterns:
delivering on the promise of increased
IT productivity

Ton Blankers, OptimalJ Product Manager, Compuware

Maintaining IT productivity in constantly changing technological and
business landscapes is very much like trying to hit several moving targets at
once. Many IT managers now have the daunting task of completing more
application development, testing and maintenance while working with reduced
staffs and smaller budgets, leading to longer working hours and a more
stressful working environment. Meanwhile, the technologies that IT staffs
must work with and integrate across their enterprises—platforms, networks,
servers, hardware and software—are becoming more complex on an almost

daily basis.

Increasing productivity in such an environment is a strain, at the very least.
Results from InformationWeek’s annual salary survey for 2002 show more than
50 percent of IT professionals and more than 60 percent of IT managers said
their jobs are more stressful than a year ago. Ultimately, increasing
productivity means finding ways to speed development in a wide variety of
technologies, achieving software reusability and increasing overall code

quality—without burning out reduced workforces.

That’s where advances over the past decade in pattern-based development,
especially as it relates to object-oriented programming, are beginning to
deliver on the promise of greater productivity. Pattern-based development
helps IT departments design software more quickly from a greater level of
abstraction—while at the same time improving the quality and reusability of

the code.

Simply put, patterns are created by architects to describe a general solution
to recurring software design problems; developers then apply the pattern
solution to their specific projects. Patterns capture specific knowledge about

the architectures, platforms and technologies to help create reusable code.

CompuwareCorporation



As architects create and link together more patterns to create a pattern
framework, they can significantly reduce the time it takes to develop an
application, compared to creating one from scratch.

Speaking in June 2002, Rikki Kirzner, Research Director at IDC, a world
leader in IT market research and analysis, explained the benefits of pattern-
based development for Java applications and J2EE in particular.

“The ability to develop specific patterns, containing specialized knowledge
that can be reused throughout the company, goes a long way toward helping
architects create and maintain an individual architectural style. Developers
can then focus on what needs to be built rather than on how it should be
built.”

Although pattern-based development does deliver on the promise of increased
developer productivity, does it go far enough? It can be argued that the answer
is no. The future to attaining even greater productivity heights is combining
models with patterns, as well as continuing to enhance the power of patterns.
Combining models and patterns can achieve even higher levels of abstraction
because models simplify the business process while patterns simplify
technology.

Giga presented the need for models plus patterns in January 2002 in a GigaTel
report entitled, “Application Development Tool Trends for .NET, J2EE and
Web Services.” Combining models and patterns results in design and
technology abstraction (requiring less coding and design skills), as well as
high productivity and consistency in application development.

The goal: reuse

Comparing the advances in hardware productivity to software development

is, frankly, comparing apples to oranges. Moore’s Law—originally a prediction
made in 1965 by Gordon Moore, the co-founder of Intel—states that the
number of transistors on a computer chip will double every 18 months. Thirty-
seven years later, the “law” still stands. No such law, or even prediction, exists
for programmer productivity. As engineers continue to find new ways to print
circuits smaller and smaller, no such level of productivity gains is visible on
the software development side.

Software development languages have gone through several generations: 3GL
languages such as Pascal, COBOL and C; and 4GL/Rapid Application
Development (RAD) object-oriented languages such as Forte, Powerbuilder
and UNIFACE. Each has made some improvements in speeding application
development. But current development, especially in Java environments, has
seen an erosion in developer productivity. As Java environments incorporate
and communicate with an increasing number of platforms, application
complexity grows—and developer productivity slows.



Reuse has long been a “philosopher’s stone” for IT departments seeking a way
to improve productivity. There have been a number of attempts to facilitate
greater levels of reuse, the main one being component-based development.
Just as the goal is for software components to move from a huge mass of
software toward a repository of clearly defined reusable software components,
the goal is for patterns to componentize knowledge into smaller, articulated
chunks for reuse.

What patterns are, and how they are used

To understand how patterns work, and how they benefit developers and
application quality, it’s helpful to understand the concept of patterns.

Patterns have long been used in a variety of scientific disciplines to create
new products or gather new information. Chemists use patterns of existing
chemical compounds to create new ones; anthropologists use cultural patterns
to extrapolate social events from ancient artifacts; medical scientists use
research methods such as double-blind tests to collect data on new treatments
and verify their efficacy.

The concept of software patterns appeared in the early 1990s. In 1995, four
developers who had been working on the concept published their landmark
work, “Design Patterns: Elements of Reusable Object-Oriented Software.”
The developers—Ralph Johnson, Erich Gamma, Richard Helm and John
Vlissides—came to be known as the Gang of Four, or GoF. Their book helped
create a burgeoning movement within the developer community to further
the use and development of patterns in software design.

Pattern-based application development is designed to deliver repeatable,
reusable code that addresses common—and even uncommon—business tasks
by first defining all the elements that affect a solution, and providing tested
examples of code that can then be implemented.

There’s a frequent question about patterns that those new to the concept
often ask: How does a pattern differ from a development method, a protocol,
a design or a coding standard? The answer is that a pattern can focus on any
one of these structures for developing code, but is not comprised solely of any
one of them. Patterns describe how and why a protocol or method or design
or coding standard may apply in a specific development context, and includes
detailed guidance to apply them.

The future of patterns

There are many types of patterns in use today from many sources, including
those from the GoF. Sun’s J2EE patterns constitute another popular use of
pattern-based development. Strictly speaking, however, it can be argued
that these so-called patterns are more code templates or code patterns than
patterns in the true meaning of the word. Whereas developers do gain some

3



economies of time by using these code patterns, as they speed up initial
development, their limitations as “true” patterns are beginning to be felt. The
reason: Code patterns do not help to accelerate ongoing maintenance and
change. Most of the patterns in use today are code templates and perform a
very specific task, which is to provide code to developers that can be cut and
pasted where required.

The power of patterns has to be brought to the next level. The key
requirement, however, is to combine patterns and models to achieve even
greater productivity improvements. The combination of patterns and models
reduces technology and business complexity.

Object Management Group’s (OMG’s) Model Driven Architecture (MDA)

is a key emerging standard. PricewaterhouseCoopers highlighted MDA in

its 2002-2004 Technology Forecast as a “significant technology trend” to
watch. MDA promotes the concept of models and patterns. MDA aims to
automatically transform models into a proper architecture and eventually into
a working application. The key element MDA does not offer yet is the set

of rules to transform a Platform Independent Model (PIM) into a Platform
Specific Model (PSM) and eventually into code. The solution here is the use
of transformation patterns. These transform higher-level business models and
PIMs automatically into lower-level models and code, to reduce complexity.

OMG is working currently with Compuware and Sun, among others, to define
this standard and make it part of MDA. When this standard is accepted, it
will be possible to solve the real problem: accelerating application delivery by
simplifying development. In this way, business-focused developers with
varying experience levels can rapidly produce reliable business applications on
complex platforms such as J2EE and .NET.

To gain further benefits from patterns, patterns themselves also need to be
taken to the next level. A key requirement is pattern editing. Pattern editing
functionality enables software architects to build and maintain their own
patterns, tailored to their companies’ requirements, to automatically
implement working applications. Patterns result in fast, efficient, standard
development throughout the development process—focusing developers

on what to build rather than how to build it. Editing gives architects a
mechanism to define patterns that developers automatically use when
building applications. Developers who use patterns no longer need to exert
time and effort on complex, technical infrastructures.

Improvement is also needed to allow patterns to be used by other patterns—
so-called pattern “frameworks.” Pattern frameworks are the combination of
patterns at different levels, the platform-independent level, the platform-
specific level and the code level. Together, these patterns form a pattern
framework, which reuses best practices or implements software development
standards, to accelerate development.



Compuware products
and professional services—
delivering quality applications

Compuware is a leading global
provider of software products and
professional services which IT
organizations use to develop,
integrate, test and manage the
performance of the applications that
drive their businesses. Our software
products help optimize every step in
the application life cycle—from
defining requirements to supporting
production service levels—for web,
distributed and mainframe platforms.
Our services professionals work at
customer sites around the world,
sharing their real-world perspective
and experience to deliver an
integrated, reliable solution.

Please contact us to learn more about
how our comprehensive products and
services can help your organization
improve productivity, create higher
quality applications and ensure
performance in production.

All Compuware products and services listed within are
trademarks or registered trademarks of Compuware
Corporation. Java and all Java-based marks are trademarks
or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All other company or
product names are trademarks of their respective owners.
© 2003 Compuware Corporation

2T
COREIRARE ©
ST o)

o S

A
&
S
D558 e
£ %
g5 e
0088 Zany
® 0% ol
b
o

N 500

WWW.compuware.com

4/03

Online exchanges and open sharing of patterns between developers are still in
an early stage, but are necessary and will grow quickly as more developers and
IT managers realize the benefits from pattern-based development. In its most
basic sense, patterns don’t define a new way to code, but rather a new way to
collect and share all relevant information about how to code for a specific
problem, and open sharing of patterns will aid this.

Using “true” patterns, organizations can:

= increase reuse and productivity, leveraging pre-defined designs, structure and
code, and capture the specific knowledge of the few skilled architects within
an organization

= achieve fast, efficient, standard development throughout the development
process—focusing developers on what to build rather than how to build it

= retain business and technology knowledge from IT staff that would
otherwise disappear once a skilled staff member leaves the organization

= smooth implementations of new software versions, as patterns can
incorporate the latest versions and applications are updated automatically

= increase the quality of code, as each pattern contains code that has already
been tested and used in production.

Conclusion

Patterns hold great promise for software development, and it can be said
that they're already delivering some degree of that promise to application
development, easing developer workloads and making development faster. It
is the combination of models and patterns, however, that will deliver the real
promise of increased productivity, together with initiatives to take patterns
to the next level. As the number of information technologies increase,
some form of business and technology abstraction must come into place

if developers are to keep pace. Pattern-based, model-driven development
reduces the pressure of time to market, delivers more agile and less costly
applications, and answers the need to “do more with less” in tough
economic conditions.

Compuware OptimalJ

Compuware Optimall is an enterprise application development environment
designed for organizations that are adopting J2EE standards and Model Driven
Architecture (MDA), as standardized by the Object Management Group
(OMG), in order to accelerate the development, integration and maintenance
of applications for competitive advantage.

OptimalJ uses patterns to automatically translate business models into working
applications by implementing OMG’s MDA in its entirety. OptimalJ enables
organizations to rapidly respond to change, increase development efficiency
and dramatically decrease maintenance costs.




