
© Ashley McNeile 2003 ashley.mcneile@metamaxim.com
 www.metamaxim.com

MDA: The Vision with the Hole? Ashley McNeile

Introduction

MDA (Model Driven Architecture) is a flagship initiative of the OMG (Object Management Group)
presenting a new vision of how application systems should be developed and managed.

Launched in 2001, MDA is now having a major impact on the work of the application development
methods and tools community. Currently, there are at least 40 tools that incorporate at least one of
the major aspects of MDA (the OMG website has a page at http://www.omg.org/mda/committed-
products.htm listing 42 of them) and there are perhaps another couple of dozen in the works.
According to Jon Siegel, the OMG’s vice president of technology transfer, MDA adoption has
caught on faster than any other OMG standard. PriceWatersCoopers’ Technology Centre recently
predicted that MDA will be one of the most important methodologies in the next two years

As is normal in this industry, much of the literature on MDA is saturated with new terminology and
hype. This makes it hard to get any insight into the real issues that are discussed feverishly in the
meeting rooms of OMG conferences or the offices of tool vendors.

In this article I want to describe one of the key MDA debates and expose some of the implications
arising from it. In particular I want to show that, if the development of the ideas and tools for MDA
continues on its current trajectory, there is a danger that one of its key objectives will be missed.

The Vision

The vision of MDA is both simple and grand. It objective is to decouple the way that application
systems are defined from the technology they run on. The purpose of this decoupling is to ensure
that the investments made in building systems can be preserved even when the underlying
technology platforms change.

The key buzz-words of MDA are PIM (Platform Independent Model) and PSM (Platform Specific
Model). Figure 1 shows the overall scheme.

The PIM is (in the words of the OMG) “a representation of
business functionality and behaviour, undistorted by technology
details”.

In order to implement a PIM on a specific platform, a tool is used
to generate the PSM from the PIM. The tool understands the target
technology and knows how to translate the logical constructs of the
PIM into a suitable form for the chosen platform. These mappings
can be complex, and a given element of the PIM may be mapped to
multiple elements in the PSM. For instance a single business object
of the PIM may be mapped to an SQL DB Table definition, an EJB
Entity Bean and a Remote Interface.

The PSM is also a model, but now at the design level and
reflecting the mapping to a target platform. The final stage is to
generate from the PSM the code and other technical artefacts (SQL
DDL, IDL Interfaces, deployment descriptors, etc.) needed to
deploy and run the system.

PIM
(Platform Independent

Model)

PSM
(Platform Specific

Model)

Code
Program code DB

Schema, etc.

Figure 1

© Ashley McNeile 2003 ashley.mcneile@metamaxim.com
 www.metamaxim.com

A central point about the MDA approach is that automation is used to produce the PSM and Code
from the higher level artefacts, as indicated by the gear-wheel symbols in Figure 1. This automation
not only speeds the development process but also ensures that the Code is a faithful representation
of the higher level models, and therefore that the models are a faithful representation of the Code.
That’s the theory, anyway!

The benefit claimed for MDA is that the PIM, being technology independent, is the best way to
capture and preserve the investment, intellectual and financial, made in the development of an
application. If the application needs to be deployed on several platforms, or migrated from one
platform to another as technology changes, the required code can be regenerated from the PIM.
This, it is argued, is faster and cheaper than migrating the deployed code.

Two Interpretations of MDA

A closer look at what tool developers and methodologists are doing reveals that there are two rather
different interpretations of how the MDA vision might be achieved. These two schools of thought
have been termed “elaborationist” and “translationist” (terms that were, I believe, originally coined
by Stephen Mellor).

I will describe each of these approaches in turn. A schematic of the first approach, the
elaborationist, is shown in Figure 2.

In the elaborationist approach, the definition of the
application is built up gradually as you progress through from
PIM to PSM to Code.

Once the PIM has been created, the tool generates a skeleton
or first-cut PSM which the developer can then “elaborate” by
adding further information or detail. Similarly, the tool
generates the final code from the PSM, and this may also be
elaborated. (Whether elaboration is required at both PSM and
Code levels depends on the tool and the circumstances.)

As a result of elaboration, it is possible that the lower level
models get out of step with the higher ones. For this reason,
tools generally support the capability to regenerate the higher
level models from the lower, shown in the diagram as upward
pointing arrows. The ability to generate downwards, modify,
and re-synchronise by generating upwards is known as
“round-trip engineering”.

Clearly, in this approach, the generated artefacts (the PSM and the Code) must be understandable to
the developer, otherwise modification (elaboration) would be not be possible. Contrast this with,
say, the output from a language compiler where the generated code is not intended to be touched
and is generally not human readable.

The elaborationist approach to MDA probably represents the mainstream. It is essentially a
mechanisation of the familiar OO development approach, where first an analysis model (OOA) is
produced, followed by design model (OOD) and finally code. In the traditional approach, however,
there was no automation of the production of models, either forwards or backwards. MDA brings
this automation.

Elaborationist

PIM

PSM

Elaborate

Code

Elaborate

Figure 2

© Ashley McNeile 2003 ashley.mcneile@metamaxim.com
 www.metamaxim.com

The second interpretation of MDA is the translationist, and a schematic of this approach is shown in
Figure 3.

In this approach, the PIM is translated directly into the final
code of the system by code generation.

The transformation (or translation) of the PIM into the final
code is performed by a sophisticated code generator,
sometimes called a “Model Compiler”, and symbolised by the
large arrow. It is driven by Generation Rules that describe
how the elements of the PIM are to be represented in the final
code.

The PSM is an intermediate stage in the generation and is
internal to the code generator. It is generally not visible or
editable by the developer and that is why I have shown it with
a dashed outline.

A feature of the translationist approach is that the downstream artefacts (PSM and Code) are not
further elaborated or amended by hand. The PIM (plus the Generation Rules) are the full source of
the generated system and there is no need to look at or amend the generated artefacts, in the same
way that there is no need to look at or amend the output from a programming language compiler.
Because changes are made upstream and propagated by regeneration, round-trip engineering is not
required to keep everything synchronised.

The translationist approach derives, in the main, from work on real-time and embedded systems, in
particular that of Sally Shlaer and Stephen Mellor in the 1980s. Although it is now being
repositioned as a mainstream MDA technique, suitable also for business information and
transactional systems, current use of the translationist approach is still mainly in this domain.

Over the past year or so about half a dozen books about MDA have been published (the OMG has a
page listing these books at http://www.omg.org/mda/reading-room.htm). I want to mention two of
the books, shown in Table1, one giving the elaborationist view and the other the translationist view.
These books were written by people deeply involved in developing MDA and currently represent
the definitive accounts the two approaches.

Table 1 includes brief quotes showing what the authors of each say book say about the other
approach. It would not be true to say that the two camps are war, because the MDA umbrella is
large enough at present to accommodate both. But is clear that the proponents of each have robust
opinions about their superiority!

TWO BOOKS ABOUT MDA
TITLE MDA Explained. The Model Driven

Architecture: Practice and Promise
Executable UML. A Foundation for
Model Driven Architecture.

AUTHORS Anneke Kleppe
Jos Warmer
Wim Bast

Stephen Mellor
Marc Balcer

APPROACH
DESCRIBED

Elaborationist Translationist

WHAT IT SAYS
ABOUT THE
OTHER.
APPROACH

“Executable UML [= Translationist] is suitable
within specialized domains, but even there the
benefits are less than you would expect …”
(Page 36)

“Because elaboration is stupid”
(Page 303)

Translationsist

PIM

PSM

Code
Figure 3

 Genersation
Rules

Table 1

© Ashley McNeile 2003 ashley.mcneile@metamaxim.com
 www.metamaxim.com

Modelling Behaviour

Whatever interpretation of MDA is held, the modelling approach used in the PIM must address the
behaviour of the application. The OMG has the following statement on its website:

“Fully-specified platform-independent models (including behaviour) can enable intellectual
property to move away from technology-specific code, helping to insulate business applications
from technology evolution and further enable interoperability.”
(http://www.omg.org/mda). [The italics are mine.]

Moreover, if behaviour is fully captured there is the potential to execute the model as kind of
prototype, which can be used to validate that the model works as expected and that it meets the
requirements of the users. Richard Soley, CEO of OMG, in his presentation “MDA: An
Introduction” says that one of the aims of MDA is that “Models are testable and simulatable”.
Oliver Sims, an active member of various OMG Task Forces who served for several years on the
OMG Architecture Board, says in his presentation “MDA – The Real Value” that “The aim [of
MDA] is to build computationally complete PIMs”. Here the term “computationally complete”
means executable, and therefore testable. (Both these presentations are available at
http://www.omg.org/mda/presentations.htm).

This brings us to the key question of how behaviour is specified in a PIM, and whether a PIM can
indeed be executed and tested. While there is general agreement within the MDA community that
the structural aspects of a system are captured using the structural modelling techniques of UML,
there are different views about how the behaviour or dynamics of a system should be represented.
This divergence of view is the source of the hole mentioned in the title of this article.

The statements shown in Table 2, taken from the two books mentioned earlier, illustrate this
difference of thinking.

PIM BEHAVIOUR DEFINITION
APPROACH Elaborationst Translationist
VIEW OF BEHAVIOUR “The dynamics of the system are

represented by pre- and post-
conditions on operations.”
(MDA Explained: page 36)

“The behaviour of a system is driven by
objects moving from one stage in their
lifecycle to another in response to events. ”
(Executable UML: page 6)

METHOD OF
MODELLING BEHAVIOUR

Pre- and post-conditions on
operations in class definitions.

Statemachines and Activities.

LANGUAGE USED Object Constraint Language (OCL) Action Language (AL)

In the elaborationist view, behaviour is specified by defining the conditions (pre-conditions) that
must pertain for an operation to take place, and the effects (post-conditions) that result from its
execution. The pre- and post-conditions are specified in the Object Constraint Language (OCL),
which is a formal language for specifying assertions (formally, an “expression language”). The
actual operation itself is not specified in the PIM, although in some cases it can be inferred. To
quote again from the book, MDA Explained: “For relatively simple operations the body of the
corresponding operation might be generated from the post-condition, but most of the time the body
of the operation must be written in the PSM” (page 36). This means that, in general, the PIM is not
an executable artefact.

In the translationist view, behaviour is specified as statemachines and Action Language. The
statemachines specify the states that an object can have in its lifecycle, and how an object moves

Table 2

© Ashley McNeile 2003 ashley.mcneile@metamaxim.com
 www.metamaxim.com

from state to state as events take place. Activities (specified in Action Language) specify what an
object does when its state changes. Action Language, unlike OCL, is an imperative language. This
approach results in models that are executable, and therefore testable.

Object Constraint Language and Action Language are both OMG standards, associated with the
overall UML standard but essentially separate from each other.

To summarise. Behaviour in a PIM is specified differently in the elaborationist and translationist
approaches. PIMs constructed according to the former approach are not executable or testable,
whereas PIMs constructed according to the latter approach are.

The Hole

The title of this article speaks of a hole. This hole is a consequence of the likely adoption pattern of
the competing MDA approaches.

As noted earlier, the translationist approach derives from work in real-time/embedded systems. The
use of statemachines for specifying behaviour in this type of system has a long history, easily pre-
dating UML. There is reason to suppose, therefore, that the translationist approach, with its reliance
on statemachines, will fit well with current practice in this domain.

In business information and transactional systems, statemachines are seldom used. In this domain,
behaviour is normally modelled using the Use Case and Collaboration diagrams of UML. These
diagrams, however, are not suitable for code generation or model execution and do not feature in
MDA as mainstream artefacts, although they may, of course, still be produced. To people working
in this domain, it is likely that the translationist approach will be seen as alien. Indeed, to date there
is no evidence that translationist tools are making any penetration into this market.

At least in the short to medium term, it is likely that the approaches and associated tools will be
positioned by vendors to address the domains that represent their historical origins: elaborationist
for business systems and translationist for real-time. For builders of business systems, this would
mean that MDA will fall short of one of its key objectives – it will not be possible to execute, test or
simulate a PIM.

Where do we go from here?

If this prognosis is correct, and builders of business systems will not be able to execute and test
their PIMs, something has to give. Perhaps the notion that the “PIM is testable and simulatable”
will have to be quietly dropped as a feature of MDA and instead be viewed as a nice bonus if it can
be achieved. My personal opinion is that this would be a pity, for two reasons:

1. The ability to test a PIM is valuable. It not only provides the developers with the assurance
that the dynamics they have modelled are coherent but, more importantly, gives users and
other non-technical stakeholders a means of interacting with the model and testing it
themselves during its development. This would offer real benefits where the requirements are
complex or uncertain, by allowing significant testing to take place in the context of the PIM
where making corrections is easier and cheaper.

2. If executing the PIM is not possible, the MDA process becomes a kind of mechanised
waterfall. Of course the development will be iterative but, however good the round-trip
engineering facilities, the temptation will be not to go back to the top with each iteration.
Synchronisation of the (non-executable) behavioural modelling in the PIM with the
executable will then tend to evaporate, and trust in the PIM as a true representation of what
has been built will be lost. This will make MDA easy prey for the Agile Modelling brigade

© Ashley McNeile 2003 ashley.mcneile@metamaxim.com
 www.metamaxim.com

who will argue that the process is tool-centric busy work of dubious value, and that we should
go back to using a whiteboard.

If the notion of a testable PIM is to become a reality for all users of MDA, the translationists will
need to back up the claim that their approach works well for business applications by establishing a
track record of successful projects. Until this happens the elaborationists will continue to say, as
they do now, that the approach is only suitable for specialised domains.

