
 

1

 

UP

 

GRADE is the European Journal for the 
Informatics Professional, published bimonthly at 
<http://www.upgrade-cepis.org/>

 

Publisher
UP

 

GRADE is published on behalf of CEPIS (Council of 
European Professional Informatics Societies,
<http://www.cepis.org/>) by NOVÁTICA
<http://www.ati.es/novatica/>, journal of the Spanish CEPIS 
society ATI (Asociación de Técnicos de Informática
<http://www.ati.es/>).

 

UP

 

GRADE is also published in Spanish (full issue printed, some 
articles online) by NOVÁTICA, and in Italian (abstracts and some 
articles online) by the Italian CEPIS society ALSI
<http://www.alsi.it> and the Italian IT portal Tecnoteca
<http://www.tecnoteca.it/>.

 

UP

 

GRADE was created in October 2000 by CEPIS and was first 
published by NOVÁTICA and INFORMATIK/INFORMATIQUE, 
bimonthly journal of SVI/FSI (Swiss Federation of Professional 
Informatics Societies, <http://www.svifsi.ch/>).

 

Editorial Team

 

Chief Editor: Rafael Fernández Calvo, Spain, <rfcalvo@ati.es> 
Associate Editors: 
• François Louis Nicolet, Switzerland, <nicolet@acm.org> 
• Roberto Carniel, Italy, <carniel@dgt.uniud.it>

 

Editorial Board

 

Prof. Wolffried Stucky, CEPIS Past President 
Prof. Nello Scarabottolo, CEPIS Vice President
Fernando Piera Gómez and
Rafael Fernández Calvo, ATI (Spain)
François Louis Nicolet, SI (Switzerland)
Roberto Carniel, ALSI – Tecnoteca (Italy)

 

English Editors:

 

 Mike Andersson, Richard Butchart, David 
Cash, Arthur Cook, Tracey Darch, Laura Davies, Nick Dunn, 
Rodney Fennemore, Hilary Green, Roger Harris, Michael Hird, 
Jim Holder, Alasdair MacLeod, Pat Moody, Adam David Moss, 
Phil Parkin, Brian Robson.

 

Cover page

 

 designed by Antonio Crespo Foix, © ATI 2003

 

Layout:

 

 Pascale Schürmann

E-mail addresses for editorial correspondence:
<rfcalvo@ati.es>, <nicolet@acm.org> or 
<rcarniel@dgt.uniud.it>

E-mail address for advertising correspondence:
<novatica@ati.es>

 

Up

 

grade

 

 Newslist

 

 available at 
<http://www.upgrade-cepis.org/pages/editinfo.html#newslist> 

 

Copyright

 

 
© NOVÀTICA 2004. All rights reserved. Abstracting is permitted 
with credit to the source. For copying, reprint, or republication 
permission, write to the editors. 

The opinions expressed by the authors are their exclusive 
responsibility.

ISSN 1684-5285

 

Vol. V, No. 2, April 2004

 

2 From the Editors’ Desk
The 

 

UP

 

GRADE European Network: 

 

N przywitanie

 

 / Welcome! 

 

The members of the Editorial Team of 

 

UP

 

GRADE describe the aims and scope of the network of journals 
of CEPIS member societies, whose contents will enrich ours and offer a broader European view of ICT 
to our readership.

 

Joint issue with N

 

OVÁTICA

 

*

 

3 Presentation
UML: The Standard Object Modelling Language 

 

– Jesús García-Molina, Ana Moreira, 
and Gustavo Rossi 

 

The guest editors introduce the monograph, that includes a series of papers that reflect the state of the art 
of UML (Unified Modeling Language). These papers illustrate different aspects of UML, ranging from 
use cases to UML formalization, meta-modelling, profile definition, model quality, model engineering and 
MDA (Model Driven Architecture.) 

 

6 An Introduction to UML Profiles

 

 – Lidia Fuentes-Fernández and Antonio Vallecillo-
Moreno

 

This paper describes a set of steps to create a profile and argue the importance of profiles in MDA.

 

14 Aspect-Oriented Design with Theme/UML

 

 – Siobhán Clarke

 

The author describes her approach “Theme” to extending the UML in order to support the 
modularisation of a designer’s concerns, including crosscutting ones. 

 

21 In Search of a Basic Principle for Model Driven Engineering

 

 – Jean Bézivin

 

This article offers an interesting look at the essential features of this new software development paradigm.

 

25 The Object Constraint Language for UML 2.0 – Overview and Assessment

 

 – Heinrich 
Hussmann and Steffen Zschaler

 

This paper, authored by members of the OCL 2.0 team, gives an overview of the new aspects of the second 
version of this language and also provides a critical discussion of a few selected aspects of it. 

 

29 Developing Security-Critical Applications with UMLsec. A Short Walk-Through

 

 – Jan 
Jürjens

 

The problems of creating high-quality critical systems is analysed in this paper, that shows how using 
UML modelling can help solve them and presents a tool to support the proposed approach. 

 

36 On the Nature of Use Case-Actor Relationships

 

 – Gonzalo Génova-Fuster and Juan 
Llorens-Morillo

 

In this paper some issues are addressed that regard the relationships in which use cases and actors may 
take part, presently defined in UML as associations. 

 

43 Metrics for UML Models

 

 – Marcela Genero, Mario Piattini-Velthuis, José-Antonio 
Cruz-Lemus, and Luis Reynoso

 

This paper offer a vision of the state of the art of metrics for measuring quality of some basic UML 
diagrams (such as class, state and use case diagrams) and OCL expressions. 

 

49 Using Refactoring and Unification Rules to Assist Framework Evolution

 

 – Mariela I. 
Cortés, Marcus Fontoura, and Carlos J.P. de Lucena

 

In their paper the authors use UML-F, a UML designed for describing frameworks, to present two 
techniques aimed at facilitating framework maintenance and evolution. 

 

UP

 

GRADE European Network

From “Pro Dialog” (Poland):

56 Parallel Programming Support System for Transputers – Educational Software 

 

– Mikolaj 
Szczepanski and Rafal Walkowiak

The paper presents a method for integrating applications data, aimed at data aggregation and transfer in 
software applications when integration of those applications has to be fast and should be done with 
minimum source code modifications.

 

News Sheet 

61 ENISA: The European Network and Information Security Agency created

61 News from EUCIP and ECDL

 

* This monograph will be also published in Spanish (full issue printed; summary, abstracts and some articles online) by 
NOVÁTICA, journal of the Spanish CEPIS society ATI (Asociación de Técnicos de Informática) at <http://www.ati.es/ 
novatica/>, and in Italian (online edition only, containing summary abstracts and some articles) by the Italian CEPIS society 
ALSI and the Italian IT portal Tecnoteca at <http://www.tecnoteca.it>.

 

UML and Model Engineering 

 

Guest Editors: 

 

Jesús García-Molina, Ana Moreira, and Gustavo Rossi

 

 

Mosaic

Next issue (June 2004):
“Digital Signature”
(The full schedule of UPGRADE is 
available at our website)

http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.upgrade-cepis.org
http://www.ati.es/novatica/infonovatica_eng.html


UML and Model Engineering

© Novática UPGRADE Vol. V, No. 2, April 2004 21

In Search of a Basic Principle for Model Driven Engineering

Jean Bézivin

In November 2000, the OMG (Object Management Group) made public the MDA™ (Model Driven
Architecture) initiative, a particular variant of a new global trend called model engineering. The basic ideas
of model engineering are germane to many other approaches such as generative programming, domain
specific languages, model-integrated computing, software factories, etc. MDA may be defined as the
realization of model engineering principles around a set of OMG standards like MOF (Meta Object
Facility), XMI (XML Metadata Interchange), OCL (Object Constraint Language), UML (Unified Modeling
Language), CWM (Common Warehouse Metamodel), SPEM (Software Process Engineering Metamodel),
etc. Similarly to the basic principle “Everything is an object” that was important in the 80’s to set up the
object-oriented technology, we suggest here, in model engineering, that the basic principle “Everything is a
model” may be key to identifying the essential characteristics of this new trend.

Keywords: MDA, Meta Model, Model Driven Architecture,
Model Driven Engineering.

Introduction
An important paradigm shift is happening in the field of

software engineering that may have important consequences on
the way information systems are built and maintained. As J.
Greenfield and K. Short say in [3]: “The software industry
remains reliant on the craftsmanship of skilled individuals
engaged in labour intensive manual tasks. However, growing
pressure to reduce cost and time to market and to improve soft-
ware quality may catalyse a transition to more automated
methods. We look at how the software industry may be industri-
alized, and we describe technologies that might be used to sup-
port this vision. We suggest that the current software develop-
ment paradigm, based on object orientation, may have reached
the point of exhaustion, and we propose a model for its succes-
sor.”

The central idea of object composition is progressively being
replaced by the notion of model transformation. One can view
these in continuity or in rupture. The idea of software systems
being composed of interconnected objects is not in opposition
to the idea of the software life cycle being viewed as a chain of
model transformations.

The OMG Model Driven Architecture
In November 2000, the OMG (Object Management

Group) announced its MDA™ (Model Driven Architecture)
initiative [8]. The consensus on UML (Unified Modeling Lan-
guage) has been instrumental in this transition from code-ori-
ented to model-oriented software production techniques. A key
role is now played by the concept of meta-model. But this is not
sufficient. The recognition that UML was one possible meta-
model in the software development landscape, but not the only
one, gave rise to the MOF (Meta Object Facility). To avoid a

variety of different non-compatible meta-models being defined
and independently evolving (data warehouse, workflow, soft-
ware process, etc.), there was an urgent need for a global inte-
gration framework for all meta-models in the software develop-
ment scene. The answer was to provide one language for
defining meta-models, i.e. a meta-meta-model (level M3 in
Figure 1). Each meta-model defines itself a language for
describing a specific domain of interest (level M2 in Figure 1).
For example UML describes the artifacts of an object-oriented
software system. Some other meta-models may address
domains like legacy systems, data warehouses, software proc-
ess, organization, tests, quality of service, party management,
etc. Each is important and their numbers keep growing. They
are defined as separate components and many relationships
exist between them. 

The real change in model engineering happened when it
became clear that models could be directly used in software
production chains. Although this direct use had often been
previously considered and partially applied, its large-scale

1

2

Jean Bézivin is professor of Computer Science at the University
of Nantes, France, member of the newly created ATLAS research
group in Nantes (INRIA & CNRS/LINA). He has been very active
in Europe in the Object-Oriented community, starting the ECOOP
series of conference (with P. Cointe), the TOOLS series of confer-
ences (with B. Meyer), the OCM meetings (with S. Caussarieu and
Y. Gallison) and more recently the <<UML>> series of conferenc-
es (with P.-A. Muller). He also organized several work-shops at
OOPSLA like in 1995 on “Use Case Technology”, in 1998 on
“Model engineering with CDIF”, at ECOOP in 2000 on “Model
Engineering”, etc. His present research interests include object-
oriented analysis and design, product and process modelling,
legacy reverse engineering, general model engineering and more
especially model-transformation languages and frameworks.
<Jean.Bezivin@lina.univ-nantes.fr>

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html


UML and Model Engineering

22 UPGRADE Vol. V, No. 2, April 2004 © Novática

industrial deployment may now be envisioned [3]. Until now
object analysis and design models have mainly been used to
document software systems. Analysts and designers built mod-
els that were provided to programmers only as inspiration
material to facilitate the production of concrete software. The
move from this ‘contemplative’ period to a new situation where
production tools will be model driven has been facilitated by
the introduction of standards like the XMI (XML Metadata
Interchange) recommendation [7]. 

The MDA approach is not based on a unique idea. Among the
objectives pursued, are the separation from business-neutral
descriptions and platform dependent implementations, the
expression of specific aspects of a system under development
with specialized domain-specific languages, the establishment
of precise relations between these different languages in a
global framework and, in particular, the capability to express
operational transformations between them.

Model transformation is also central to the MDA approach.
A proposal was originally made in [4]. A request for proposal
[6] is currently undergoing for defining some sort of a “Unified
Model Transformation Language”. This will allow transform-
ing model Ma into another model Mb, irrespective of the fact
that their corresponding meta-models MMa and MMb are iden-
tical or different. Furthermore, the transformation program,
composed of a set of rules as described in Figure 2, should itself
be considered as a model Mt. As a consequence, it will be based
on the meta-model MMt, an abstract definition for this unified
model transformation language.

These are some elements of the MDA four-level stack. They
are rapidly evolving, producing powerful industrial tools that
are being applied in particular areas. However, the research

community is also trying to understand the concepts and prin-
ciples underlying this industrial MDA approach. In the next
section we look at some of the possible core concepts of model
engineering.

Basic Principles
A basic principle in object technology (“Everything is an

object” [P1]) was most helpful in driving the technology in the

3

Level M0

Level M1

Level M2

Level M3

the SPEM
MM

the UML
MM

the CWM
MM

a UML
model M

another UML
model M’

a particular
use of m

another
use of m

EBN
F

the Pascal
gram

m
ar

a Pascal
program

 P

an execution
X of

program
 P

the MOF
MMM

Figure 1: The OMG Four Layers Standard Modeling Stack.

Figure 2: Meta-model Based Model Transformation.

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html


UML and Model Engineering

© Novática UPGRADE Vol. V, No. 2, April 2004 23

80s, in the direction of simplicity, generality and power of inte-
gration. Similarly in model engineering, the basic principle
“Everything is a model” [P2] has many interesting properties,
among them the capacity to generate a realistic research agen-
da. We suggest that this may be most useful in understanding
many questions about model engineering in general and the
MDA™ approach in particular.

As suggested by Figure 3 and Figure 4, the conceptual tools
that were in focus in the 80s are being renewed. In the begin-
ning of object technology, what was important was that an
object could be an instance of a class and a class could inherit
from another class. This may be seen as a minimal definition in
support of principle [P1]. We call the two corresponding basic
relations instanceOf and inherits. Very differently, what now
seems to be important, is that a particular view (or aspect) of a
system can be captured by a model and that each model is writ-
ten in the language of its meta-model. This may be seen as a
minimal definition in support of principle [P2]. We call the two
basic relations representedBy and conformantTo. It is very like-
ly that the discussions on the exact meaning of these two
central relations associated with principle [P2] will take as
much time to settle as the sometimes heated initial discussions
took, on the two relations associated with principle [P1].

Incorrect use of the old [P1] relations within the new context
of model engineering, for example by stating that a model in an
instanceOf a meta-model, often leads to much confusion and
does not help in clarifying a complex evolution.

Recognizing the difference between the two sets of relations
[P1] and [P2] will also help to stress that the model engineering
and the object technology views of the software development
world should not be viewed as opposite but as complementary
approaches.

The basic use of a meta-model is that it facilitates the separa-
tion of concerns. When dealing with a given system, one may

observe and work with different models of this same system,
each one characterized by a given meta-model. When several
models have been extracted from the same system with differ-
ent meta-models, these models remain related and, to some
extent, the reverse operation may apply, namely combination of
concerns. What we need for that is a clean organization of com-
posite models, in regard to the corresponding composite meta-
models.

The organization of the classical four-level architecture of
OMG should more precisely be named a 3+1 architecture as
illustrated in Figure 5. At the bottom level, the M0 layer is the
real system. A model represents this system at level M1. This
model conforms to its meta-model defined at level M2 and the
meta-model itself conforms to the meta-meta-model at level
M3. The meta-meta-model conforms to itself. This is very
similar to the organization of programming languages, as
already suggested in the right-hand column of Figure 1. A self-
representation of the EBNF (Extended Backus-Naur Form)
notations takes some lines. This notation allows defining infin-
ity of well-formed grammars. A given grammar, for example
the grammar of the Pascal language, allows defining the infinity
of syntactically correct Pascal programs. One Pascal program
is a symbolic representation of the infinity of its possible exe-
cutions. The Pascal program, the Pascal grammar, the EBNF
self-described notation are all examples of symbolic models.
The execution of the program, on the contrary, is a real phe-
nomenon involving changes of values in electronic memories
and much more: it is part of the real world.

Everything is an object [P1]

Everything is a model [P2]

Figure 3: Basic Notions in 
Object Technology [P1].

Figure 4: Basic Notions in 
Model Engineering [P2].

Figure 5: The 3+1 MDA Organisation Revisited.

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html


UML and Model Engineering

24 UPGRADE Vol. V, No. 2, April 2004 © Novática

The consequence of applying principle [P2] to the software
development domain is that we are now observing the appear-
ance of a large number of fine-grained high abstraction meta-
models, each one defining a domain specific language. There is
a need to organize this huge collection of meta-models, on the
conceptual [2] or practical [1] points of views.

The impact on the organization of the software production
and maintenance work-bench is also beginning to appear. The
UML modelling tool, which was previously at the centre of this
workbench, is now only one tool among others, allowing the
initial capture of UML models. At the same time, we see a
number of new tools appearing, like independent transforma-
tion engines and frameworks. All these tools operate on top of
a model and meta-model repository. Each of them implements
a limited set of specific operations on models and meta-models.
Their behaviour is sometimes partially driven by generic
uploadable meta-models. 

In this rapid evolution of the industrial landscape, we can
clearly see the impact of principle [P2] at work. One need not
have, for example, only one standard UML to Java transforma-
tion option, ‘hardwired’ in a given UML tool. On the contrary,
one will use this UML tool to capture UML models, and then,
from a large library of transformations, choose the ones that
would suit its own goal and environment. If none is found, one
may specialize some of them to correspond to its particular
needs. Besides transformation tools, there will also be verifica-
tion, metrication, legacy recovery, model weaving tools and
many more. All these tools will uniformly access models, meta-
models, and their elements through a common standard repos-
itory API. This regular industrial organization of the tool coop-
eration, in the software production chain, is made possible
because of the unification power of models.

Conclusions
The move from procedural technology to object technol-

ogy has triggered a more radical change in our way of consid-
ering information systems and of conducting software engi-
neering operations. One of the possible evolutionary paths is
called model engineering. This consists in giving first-class
status to models and model elements, similarly to the first class
status that was given to objects and classes in the 80s, at the
beginning of the object technology era. The essential change is
that models are no longer used only as mere documentation for
programmers, but can now be directly used to drive software
production tools.

Considering everything as a model in a software develop-
ment approach has many consequences that are progressively
emerging. The MDA is one of the first industrial large-scale
applications of this principle. High synergy between these
industrial application experiments and general research consid-
eration in the field is likely to produce long term improvement
in the domain of software production methods.

Acknowledgements
I would like to thank the members of the CNRS MDE/AS group for

participating in various discussions on the topics. The responsibility
for how their suggestions were interpreted (or misinterpreted) in this
version remains, of course, entirely mine. I also want to specially
thank Jean-Marc Jézéquel, Frédéric Jouault, Joaquin Miller and
Bernard Rumpe for many clarifying discussions on these subjects. 

References
[1]

J. Bézivin, S. Gérard, P. A. Muller, L. Rioux. MDA Components:
Challenges and Opportunities. Metamodelling for MDA Work-
shop, York, 2003, <http://www.sciences.univ-nantes.fr/info/lrsg/
Pages_perso/JB/Jean.Bezivin.html>. 

[2]
J. Bézivin, O. Gerbé. Towards a Precise Definition of the OMG/
MDA Framework. ASE’01, Automated Software Engineering,
San Diego, USA, November 26–29, 2001, 
<http://www.sciences.univ-nantes.fr/info/perso/permanents/atl/
publications/ ASE01.OG.JB.pdf>. 

[3]
J. Greenfield, K. Short. Software factories Assembling Applica-
tions with Patterns, Models, Frameworks and Tools.
OOPSLA’03, Anaheim, Ca., USA.

[4]
R. Lemesle. Transformation rules based on meta-modelling.
EDOC’98, San Diego, 3–5 November 1998, 
<http://www.sciences.univ-nantes.fr/info/lrsg/Pages_perso/RL/
Publications/EDOC98-lemesle.pdf>.

[5]
Object Management Group: OMG/MOF Meta Object Facility
(MOF) Specification. September 1997, 
<http://www.omg.org/docs/ad/97-08-14.pdf>.

[6]
Object Management Group: OMG/RFP/QVT MOF 2.0 Query/
Views/Transformations RFP. October 2002, 
<http://www.omg.org/docs/ad/02-04-10.pdf>.

[7]
Object Management Group: XML Model Interchange (XMI).
October 1998, <http://www.omg.org/docs/ad/98-10-05.pdf>.

[8]
R. Soley and the OMG staff. Model Driven Architecture. Novem-
ber 2000, <ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf>.

4

http://www.upgrade-cepis.org/issues/2004/2/upgrade-vV-2.html
http://www.ati.es/novatica/infonovatica_eng.html



