
Applying MDA Approach for Web Service Platform

Jean Bézivin(1) Slimane Hammoudi(2) Denivaldo Lopes(1)(2) Frédéric Jouault(1)(3)

(1) Atlas Group, INRIA and LINA
University of Nantes

2, rue de la Houssinière - BP 92208
44322 Nantes Cedex 3, France

(2) ESEO
4, rue Merlet de la Boulaye, BP 926

49009 cedex 01 Angers, France

(3) TNI-Valiosys
120, rue René Descartes

Technopôle Brest Iroise - BP 70801
29608 Brest Cedex, France

{Jean.Bezivin, Frederic.Jouault}@lina.univ-nantes.fr {shammoudi, dlopes}@eseo.fr

Abstract

In this paper, we present the development of an illus-
trative example of e-business based on two different appli-
cations of a Model-Driven Architecture (MDA) approach.
In the first application, the Platform-Independent Model
(PIM) is created using the Unified Modeling Language
(UML). This PIM is transformed using Atlas Transfor-
mation Language (ATL) to generate the Platform-Specific
Model (PSM) based on three target platforms: Java, Web
Service and Java Web Service Developer Pack (JWSDP).
In the second application, the PIM is created using En-
terprise Distributed Object Computing (EDOC) and trans-
formed into another PSM based on the same target plat-
forms. For this purpose we will use the illustrative example
of a travel agency to depict some issues of the approach.
Then, we will discuss mappings between meta-models.

1. Introduction

The central problem facing software developers at the
beginning of this century is the handling of systems that
are much more complex than before. They are complex not
only because the volume of code and data involved is much
larger but for many other reasons as well:

• They have to integrate a lot of new aspects (e.g. se-
curity, reliability and performance) from the start, in a
uniform way;

• These systems evolve much more quickly than pre-
viously. This is not only because business and appli-
cation requirements change, but also because the un-
derlying technological platforms are constantly evol-
ving, at a very fast rate. Protecting software invest-
ments from obsolescence due to platform integration
is a very important goal;

• As new technology arrives at a fast rate, old tech-
nologies do not disappear, but are concentrated in the

legacy software. As a consequence the evolution pro-
blem is augmented by a heterogeneity problem.

These three factors combined create a situation that may
be perceived as probably the biggest crisis until now in the
software industry.

In order to find reasonable solutions to these problems,
a radical paradigm shift seems necessary. The object tech-
nology introduced in the 80’s has given all that it could and
does not seem in a position to give much more. The com-
ponent technology has not significantly improved this situa-
tion and may be viewed as adding additional complexity to
a domain that needs simplification.

So the main proposed solution to the new software crisis
seems to be a paradigm change from object composition to
model transformation. Will that be sufficient? For the time
being it seems there are few alternative ways.

The idea is thus to consider everything as a model or
a model element. Models represent aspects of a system and
they can be combined. Models may also be transformed into
other models and the transformation itself is a model. With
this approach it is possible to separate platform independent
aspects in Platform-Independent Models (PIMs) from plat-
form specific aspects in Platform-Specific Models (PSMs).

The general idea seems then quite simple: use model
transformation to generate PSM from PIM. In practice we
still have a lot to learn before this may be generally applied
in industrial environments. The goal of this work is to bring
additional insight from the PIM to PSM transformation pro-
cess.

Models are not only unconstrained labeled oriented
graphs. Each model is based on the precise vocabulary and
additional properties of its unique meta-model. One can ea-
sily understand that there is not a unique meta-model for
PIM and another unique meta-model for PSM. Determin-
ing the meta-models that will be used in PIM to PSM trans-
formation is a hard task. We shall proceed here by practi-
cal experimentation, trying to draw the conclusions of our
work in the last part of this paper.

We have chosen the travel agency problem as an illus-
trative example to discuss some issues of the Model Driven
Architecture (MDA) approach to develop e-business. This
illustrative example is modeled in two ways: first, using the
Unified Modeling Language (UML) and secondly the En-
terprise Distributed Object Component (EDOC) [15]. Ac-
cording to MDA concepts, both models are considered as
PIMs that are manipulated and transformed following spe-
cific rules to create their PSMs based on Java, Web Service
and Java Web Service Developer Pack (JWSDP). We have
used the Atlas Transformation Language (ATL) [2] to de-
fine the transformation rules.

This paper is organized as follows. In section 2, we
present an overview of MDA and Web Service, and we situ-
ate our research. In section 3, the illustrative example is in-
troduced through use case diagram. In section 4, we show
the PIM of a travel agency created with UML, and the steps
of transformation from this PIM to PSM based on Java, Web
Service and JWSDP. In section 5, EDOC is used to build the
PIM of the illustrative example, and the steps of transforma-
tion from EDOC to Java, Web Service and JWSDP are pre-
sented. In the last section, we analyze our results and dis-
cuss the future direction of our research and approach.

2. Background

In recent years, MDA and Web Service have been in-
troduced and developed by organisms of standardization,
Object Management Group (OMG) and World Wide Web
Consortium (W3C), respectively. MDA consists of a set of
standards that assists the creation, implementation, evolu-
tion and deployment of systems driven by models. In the
context of MDA, Web Service is only one of many pos-
sibilities for target models [6][9]. Other target models can
also be used with MDA as Enterprise JavaBeans (EJB) or
CORBA Component Model (CCM) [1].

2.1. MDA

The OMG’s Model Driven Architecture (MDA) sepa-
rates the modeling task of the implementation details, with-
out losing the integration of the model and the develop-
ment in a target platform. The key technologies of MDA are
Unified Modeling Language (UML), Meta-Object Facility
(MOF), XML Meta-Data Interchange (XMI) and Common
Warehouse Metamodel (CWM) [14]. Together, they unify
and simplify the modeling, the design, the implementation,
and the integration of systems. One of the main ideas of
MDA is that each model is based on a specific meta-model.
Each meta-model precisely defines a domain specific lan-
guage. Finally, all meta-models are based on a meta-meta-
model. In the MDA technological space, this is the Meta-
Object Facility (MOF). There are also standard projections

on other technological spaces like XMI for projection on
XML and Java Metadata Interface (JMI) for projection on
Java [8].

MDA also introduces other important concepts:
Platform-Independent Model (PIM), Platform-Specific
Model (PSM), transformation language, transforma-
tion rules and transformation engine. These elements of
MDA are depicted in figure 1.

Figure 1. Transformation in MDA

Each element presented in Figure 1 plays an important
role in MDA. In our approach, MOF is the well-established
meta-meta-model used to build meta-models. The PIM re-
flects the functionalities, the structure and the behavior of a
system. The PSM is more implementation-oriented and cor-
responds to a first binding phase of a given PIM to a given
execution platform. The PSM is not the final implementa-
tion, but has enough information to generate interface files,
a programming language code, an interface definition lan-
guage, configuration files and other details of implementa-
tion. Mapping [4] from PIM to PSM determines the equiva-
lent elements between two meta-models. Two or more ele-
ments of different meta-models are equivalents if they are
compatible and they cannot contradict each other. Model
transformation is realized by a transformation engine that
executes transformation rules. Transformation rules specify
how to generate a target model (i.e. PSM) from a source
model (i.e. PIM). To transform a given model into another
model, the transformation rules map the source into the tar-
get meta-model. The transformation engine takes the source
model, executes the transformation rules, and gives the tar-
get model as output.

Using one unique formalism (e.g. MOF) to ex-
press all meta-models is very important because this
allows the expression of all sorts of correspondence be-
tween models based on separate meta-models. Transfor-
mations are one important example of such correspon-
dence, but there are also others like traceability, etc. In
other words, given m1(s)/Ma and m2(s)/Mb, where m1

is a model of a system s created using the meta-model
Ma, and m2 is a model of the same system s created

2

using the meta-model Mb, then a transformation can be de-
fined as m1(s)/Ma → m2(s)/Mb. When Ma and Mb

are based on the same meta-meta-model, the transforma-
tion may be expressed in a unique transformation language
(i.e. a language independent of the meta-model). Further-
more, the transformation language itself may be considered
as a domain-specific language. This has many interes-
ting consequences. One of these is that a transformation
program corresponds to an MDA model. We may thus ea-
sily consider higher-order transformations, i.e. transforma-
tions having other transformations as input and/or produ-
cing other transformations as output.

One of the most popular meta-models is UML, but there
are plenty of other meta-models being defined. For example,
there could be a meta-model of the Java language. Based on
these two meta-models, it is possible to express a transfor-
mation from UML 1.5 class diagrams to Java 1.4.2 code.
In fact, models have been used for a long time, but they re-
mained disconnected from the implementation process.

The automatic generation of code to a specific lan-
guage from a UML class diagram is not new either; some
CASE tools give this support such as Poseidon for UML
(http://www.gentleware.com). However developers still
have to write all the application codes by hand. More-
over, when the application has to evolve to acquire new
capabilities or adapt to new technologies, these tools can-
not help the developer, and the model is used only as
documentation.

An Integrated Development Environment (IDE) provides
a set of tools integrated on a single user interface that of-
ten comprises a sophisticated text editor, a graphical editor
for GUI, an editor to database tables, a compiler and a de-
bugger, e.g. IBM’s WebSphere Studio and Microsoft’s Vi-
sual Studio .NET. An IDE can aid the software develop-
ment, but only in the programming phase (i.e. it is based on
code-centric approach).

A tool powered with MDA will be enabled to support
the system development throughout its life cycle. The deve-
lopment of large software systems can take some suggested
benefits (some benefits are still not proven) from MDA:

• the same PIM can be used many times to generate mo-
dels on different platforms (PSMs) [7];

• many views of the same system, e.g. many abstrac-
tion levels or details of implementation [14]. We de-
fine abstraction levels as the possibility to see a system
(e.g. applications and business process) fragmented in
many different and interlinked levels, each level de-
taching important characteristics of the same system;

• enhancement of the portability and of the interoperabi-
lity of systems in the level of models;

• preservation of the business’s logic against the changes
or evolution of technology [14];

• a uniform manner for business models and for tech-
nologies to evolve together;

• prevention against error-prone factors linked to manual
development of systems [12];

• increase the return on technology investments;

• enhancement of the reengineering [3], i.e. it assists the
recuperation of business’s logic from source codes or
from implementation environments;

• enhancement of the interaction and of the migration
between different technological spaces [3].

Apart from these benefits, the approach using models
forces the architects to think about the architecture and the
model behind the system in development, whereas a code-
centric approach makes architects concentrated on the code,
so they consequently forget the main properties of the sys-
tem.

Other case studies have shown some benefits of the MDA
Approach. In [12], the authors have demonstrated that the
development of a case study (i.e. J2EE PetStore) using a
MDA tool is 35% faster than the development using a code-
centric approach (i.e. using a non powered-MDA tool).

2.2. Web Service

A Web Service is a software application that has its in-
terfaces, its bindings and its invocations defined, described,
and discovered using XML artifacts. The key technolo-
gies that constitute a Web Service are: eXtensible Markup
Language (XML); Simple Object Access Protocol (SOAP)
[18]; Web Service Description Language (WSDL) [19]; and
Universal Description, Discovery and Integration (UDDI)
[17]. XML is an extensible markup language that has been
used for document and data representation. It is a simple
and powerful solution for the problem of Electronic Data In-
terchange (EDI). SOAP is a protocol to exchange informa-
tion in decentralized and distributed systems. UDDI is the
universal register of Web Services and its core is based on
XML files that may store information about a business en-
tity and its services. WSDL is an abstract definition based
on XML grammar to describe the syntax and semantics ne-
cessary to call up a service.

Other researches have considered some issues in the evo-
lution of Web Services, e.g. performance, interoperability,
usability and composition [11] [5] [16]. However, few of
them consider the MDA approach [6].

3. The Illustrative Example

To study the issues of the MDA approach, we have cho-
sen the illustrative example of a travel agency.

A travel agency sells flight tickets, reserves hotel rooms
and provides car rental. In order to provide these services

3

for its customers, a travel agency needs to establish business
links with other enterprises, i.e. airlines, car rental compa-
nies and hotels. In this context, a financial institution, i.e. a
bank, is required to facilitate the financial transactions be-
tween a customer and a business or between a business and
another business. Figure 2 presents a simplified use case di-
agram for a travel agency and its partners.

Customer

AirLinesService

RentingCarService

HotelService

BankService

TravelService

Travel Agency AirLines

CarHire

Hotel

Bank

Figure 2. Use case diagram of the Travel
Agency

Figure 2 shows a customer who plans to make a trip.
In order to make this trip, he accesses the Web site of a
travel agency that sells flight tickets, provides car rental and
room reservations. The customer enters his requirements.
The travel agency receives the requirements of the customer
and sends them to the airline, car-hire company, and hotel.
The travel agency receives the possibilities from the three
partners and choses the best solutions for flights, cars and
hotels. It sends them to the customer who choses, reserves
and pays for a flight ticket, a car and a hotel room. The pay-
ment is made with the support of a bank.

In the next sections, this illustrative example will be
modeled, implemented, and deployed, driven by models
using the MDA approach. Firstly, the PIM of this illustra-
tive example will be created using UML, and the PSM will
be generated on Java, Web Service and JWSDP. In the sec-
ond experiment, the PIM of the same illustrative example
will be based on EDOC that will be transformed into a PSM,
based on the same target platforms.

4. The PIM using UML

Figure 3 shows the PIM of the illustrative example. In
this paper, the fragment of the PIM is presented without
the behavioral modeling part to simplify the presentation
of our work. In this figure, six classes implement the main
characteristics of the system in our illustrative example:

Customer, TravelAg, AirLines, CarHire, Hotel and
Bank.

The Customer accesses the travel agency service. The
TravelAg provides the services to find, reserve, pay and
cancel a flight ticket, a car and a room. The AirLines,
CarHire and Hotel provide services to find, reserve, pay
and cancel their products. The Bank relays the financial
transaction among the partners.

bank

hotel

carhire

airlines

travelagency

customer

Customer

+find_travel(travel_req:Travel_req) : Travel_list

+reserve_travel(travel_inf:Travel_Inf) : Reserv

+pay_travel(pay_inf:Pay_Inf) : Ack_pay

+cancel_travel(reserv_inf:Reserv) : Ack_cancel

TravelAg

+find_travel(travel_req:Travel_req) : Travel_list

+reserve_travel(travel_sel:Travel_Inf) : Reserv

+pay_travel(pay_inf:Pay_Inf) : Ack_pay

+cancel_travel(reserv_inf:Reserv) : Ack_cancel

AirLines

+find_flight(inf_req:Fly_req) : Fly_list

+reserve_flight(fly_sel:Fly_Inf) : Reserv

+pay_flight(pay_inf:Pay_Inf) : Ack_pay

+cancel_flight(reserv_inf:Reserv) : Ack_cancel

CarHire

+find_car(car_req:Car_req) : Car_list

+reserve_car(car_sel:Car_Inf) : Reserv

+pay_car(pay_inf:Pay_Inf) : Ack_pay

+cancel_car(reserv_inf:Reserv) : Ack_cancel

Bank

+make_payment(pay_inf:Pay_Inft) : Ack_pay

Hotel

+find_room(room_req:Room_req) : Room_list

+reserve_room(room_sel:Room_Inf) : Reserv

+pay_room(pay_inf:Pay_Inf) : Ack_pay

+cancel_room(reserv_inf:Reserv) : Ack_cancel

+airlines_serv

+carhire_serv

+bank_serv

+travel_serv

+bank_serv +bank_serv

+hotel_serv

+bank_serv+bank_serv +bank_serv

+airlines_serv

+carhire_serv

+bank_serv

+travel_serv

+hotel_serv

Figure 3. PIM of Case Study Travel
Agency(fragment)

4.1. From PIM (UML) to PSM (Java)

Figure 1 depicts the steps of model transformations in
the context of MDA. According to this approach, the source
and target meta-models must be instances of the MOF. The
source meta-model chosen was UML that is MOF compli-
ant. The PIM is an instance of UML, then it is MOF compli-
ant too. In order to make the transformation, the PSM must
be created as an instance of a meta-model based on MOF.
As the target platforms are Java, Web Service and Java Web
Service Developer Pack (JWSDP), their MOF compliant
meta-models are required.

Figure 4 presents a possible meta-model for the Java lan-
guage (fragment). The main elements of this Java meta-
model are:

• JavaElement - is a generalization for other ele-
ments such as JavaPackageElement, JavaMember,
JavaValue and JavaParameter;

• JavaPackageElement - is a generalization for the
JavaPackage;

4

JavaClass

+isActive : Boolean

JavaInterface

JavaMethod

+isNative : Boolean

+isSinchronized : Boolean

+body : String

JavaParameter

+result : Boolean

JavaField

+isTransient : Boolean

+isVolatile : Boolean

+isFinal : Boolean

<<enumeration>>

Modifier

+abstract

+final

+regular

+static

JavaPackageElement

JavaPrimitiveType

+kind_name : Kind

JavaValue

+value : String

JavaElement

+name : String

<<enumeration>>

Visibility

+public

+protected

+package

+private

<<enumeration>>

Kind

+byte

+short

+int

+long

+float

+double

+char

+boolean

+String

JavaClassifier

+modifier : Modifier

+visibility : Visibility

JavaPackage

JavaMember

0..*

0..1
+super

+sub

0..*+parameters

+owner0..1

0..*

+implements 0..*
+implementedby

+has

+value 0..1

+isOfType

0..*

+isOfType

0..*

0..1

0..*
+nested

0..1

0..*+contents

0..*

+owner
+isOfType

0..*

0..*

+value

+has

0..1

+owner0..1

+parameters 0..*

0..*

0..*

0..*

0..1

0..*
+nested

+isOfType

+isOfType

0..*

+owner
+isOfType

+super

+sub0..1
+contents

0..1

0..*

+implementedby

+implements

0..*
0..*

Figure 4. Java Meta-model

• JavaPackage - is a container for all classes and inter-
faces of Java;

• JavaClassifier - is the base for JavaPrimitive-
Type, JavaClass and JavaInterface. It de-
fines the association super for inheritance and has
JavaMember (i.e. the base for JavaField and
JavaMethod);

• JavaPrimitiveType - can be a byte, short,
boolean, ...;

• JavaClass - is a specialization of JavaClassifier
that has JavaField and JavaMethod as member;

• JavaInterface - is a specialization of
JavaClassifier and it has the prototypes of
methods (i.e. signature or contract) and constant
JavaFields (i.e. final static attributes);

• JavaField - is a composition of only one value and
it has a type JavaPrimitiveType, JavaClass or
JavaInterface;

• JavaMethod - has the signature of the operation, the
JavaParameters and the body of the method;

• JavaParameter - is the argument of the
JavaMethod and it can be input (if result is
false) or output (if result is true);

• JavaValue - is used to initialize a JavaField with
an initial value.

The model transformation needs to determine what ele-
ments of the UML meta-model will be mapped to the ele-
ments of the Java meta-model.

Figure 5 shows a possible mapping from the UML meta-
model to the Java meta-model (i.e. fragment). This mapping
is realized by a set of rules that specify the elements of the
source meta-model, i.e. UML, which are equivalents to ele-
ments of the target meta-model, i.e. Java meta-model. In this
figure, the mapping of two meta-models is presented using
a graphical notation. The UML meta-model is presented
in the left side, the mapping in the center, and the Java
meta-model in the right side. This graphical notation has
the following elements: connection (source and target), as-
sociation, transformation rule and composition. A connec-
tion links one or more meta-model element(s) to a transfor-
mation rule. The association shows a relation between rules.
The composition shows a tight relation between rules (i.e.
composite rules). The transformation rule takes a source
element and generates the suitable target element. In our
work, we have used ATL [2] to create transformation rules,
but this can be made using eXtensible Stylesheet Language
Transformation (XSLT) [10] or logical languages [7] or
other transformation language based on Object Constraint
Language (OCL) as ATL.

XSLT and logical languages make possible the manipu-
lation of XML files (i.e. structured documents) to accom-
plish the transformation from source to target model. Both
are efficient for models based on simple meta-models, but
they are limited and error-prone for the transformation of
models based on large meta-models.

ATL1 is MDA compliant and uses a repository to store
and to manipulate the source and target meta-models in or-
der to perform the transformation following the mapping
defined using transformation rules. In this work, we have
used MDR repository [13]. It stores metadata as Java and/or
CORBA objects that are exposed using Java and/or CORBA
interfaces.

Despite the use of XSLT and logic languages to make
transformation rules, ATL is simpler and allows manipula-
tions to be closer to the elements of meta-models and mo-
dels. In fact, ATL was designed to make model transforma-
tion, and XSLT was designed to make general transforma-
tion.

After identifying the equivalent elements between UML
and Java meta-models, we can describe the mappings from
UML to Java. Thus, we have the following mappings (we
will present only a few ATL transformation rules):

• The UML Class is mapped to JavaClass through the
rule C2C:

1 A new implementation of ATL under Eclipse is scheduled for 2004.

5

Figure 5. Mapping from UML to Java Meta-model (fragment)

rule C2C{
from c : UML!Class
to jc : Java!JavaClass
mapsTo c(
name <- c.name,
visibility <-
if c.visibility = #vk_public then
#public

else
#private

endif,
modifier <-
if c.isAbstract then
#abstract

else if c.isLeaf then
#final

else
#regular

endif endif,
isActive <- c.isActive,
super <-
c.generalization->first().parent,

implements <-
c.clientDependency->

select(e|e.hasSterotype(’realize’))
->collect(e | e.supplier))

}

This rule creates an instance of Java!JavaClass
named jc and initializes it with the same charac-
teristics as the UML!Class c (from the source
model). Thus, name is given the value of c.name,
visibility is set according to the value of
c.visibility, modifier is set according to the
value of c.isAbstract or c.isLeaf. The attribute
isActive is given the value of the c.isActive,
super is assigned with a Java!JavaClass (cor-
responding to c’s parent). The implements is
set to a Java!JavaInterface (corresponding to
UML!Interface implemented by c). Since we
are working here with Java and we want to sim-
plify our discussion about model transformation, we
will not allow UML’s multiple inheritance. Howe-
ver, the UML’s multiple inheritance can be handled in

Java meta-model using Java Interfaces.

• The UML AssociationEnd is mapped to JavaField
through the rule Ae2F:

rule Ae2F{
from ae : UML!AssociationEnd
to jf : Java!JavaField
mapsTo ae(
name <- ae.name,
visibility <-
if ae.visibility = #vk_public then
#public

else
#private

endif,
isTransient <- false,
isVolatile <- false,
isFinal <- false,
isOfType <- ae.participant,
owner <- ae.getOtherEnd().participant)

}

This rule creates an instance of Java!JavaField
and initializes it with the same characteristics as
UML!AssociationEnd. Thus, name is given the
value of ae.name, visibility is set accor-
ding to the value of ae.visibility. The at-
tribute isTransiend, isVolatile and isFinal

are set to false. The attribute isOfType is assigned
with a ae.participant. The owner is set accor-
ding to Java!JavaClass or Java!JavaInterface
(const field).

The mapping from UML meta-model to Java meta-
model also shows the interdependencies between rules.
Rule P2P involves calling the rules C2C and I2I. Rule C2C
involves calling the rules Ae2F, OM2M and A2F. Rule I2I in-
volves calling the rules OM2M and A2F (constant field).

Figure 5 shows the existence of many-to-one mappings.
A many-to-one mapping has many elements of the meta-
model source and only one element of the meta-model
target. This is a consequence of the semantic difference

6

between the source and target meta-model. Sometimes,
the semantics of two or more elements of a meta-model
is represented using only one element of another meta-
model. In the case of the mapping from UML to Java meta-
model, the UML Operation and Method are mapped into
JavaMethod.

4.2. From PIM (UML) to PSM (Web Service)

As shown in Figure 1, the transformation of PIM (UML)
into PSM (Web Service) requires the support of two meta-
models: source and target. The source is UML and so no
further commentary is needed. On the other hand, we need
to provide specific meta-models for Web Services.

Among Web Service technologies, the most important
for our study are UDDI and WSDL. However, to simplify
our discussion about Web Service in the context of MDA,
we have chosen only to present the WSDL meta-model and
the mapping from UML meta-model to WSDL meta-model.
Figure 6 shows the WSDL meta-model.

WSDLElement

Documentation

Definition

+name

+targetNameSpace

Extensible Element
Types

Message

PortType

Binding

Service

Import

Port

OperationType
OneWayOperation

RequestResponseOperation

SolicitResponseOperation

Part

NotificationOperation

ParamType

+name

+message

FaultType

+name

+message

Binding_operationType

StartWithExtensionType

Fault

+name

0..1

+types

+message

0..*

+portType

0..*

0..*
+binding

+service
0..*

+documents
0..1

+doc

+import 0..*

+port 0..*

+binding

+oneway

0..1

0..1+requestresponse

+solicitresponse

0..1

+part0..*

+type

+notification

0..1

+input
+input

+output

0..*

+fault

+input
+output

+fault
0..*

+output

0..*+operataion

0..*

+operation

0..1+input

+output

0..1

+fault

0..*

+import 0..*

+types

0..1

+message

0..*
0..* +part

0..*

+portType

+operataion 0..*

+binding
0..*

+type

+operation

0..*

+binding

+service
0..*

0..*+port

Figure 6. WSDL Meta-model

WSDL is basically composed of:

• Types - describes abstract data types;

• Message - describes the message structure;

• PortType - presents the Web Service Interface;

• Binding - represents the way the service is accessed;

• Service - describes who provides the service.

The transformation engine (see Figure 1) gets the UML
model and obtains the WSDL instance. In the transforma-
tion process, rules map from UML meta-model instances to
WSDL meta-model instances.

Figure 7 depicts the mapping from UML meta-model to
WSDL meta-model. According to this figure, we have the
following mappings:

• The UML Interface is mapped to WSDL PortType,
Binding and Service through the rule I2Pt:

rule I2Pt{
from itf : UML!Interface
to pt : WSDL!PortType
mapsTo itf(

name <- itf.name,
operations <- [O2O.wsdlop]
itf.feature ->
select(e | e.oclIsKindOf(UML!Operation))),

bd : WSDL!Binding(
name <- itf.name + ’Binding’,
type <- pt,
operations <- [O2O.wsdlob]
itf.feature ->
select(e | e.oclIsKindOf(UML!Operation))),

sv : WSDL!Service(
name <- ’Service’ + itf.name,
port <- pport),

pport : WSDL!Port(
name <- itf.name+’Port’,
binding <- bd,
soap <- ssoap),

ssoap : WSDL!SOAP(
location <-
’http://host:port/’ +
context-path/url-pattern ’ -- to be replaced)

}

This rule creates an instance of WSDL!PortType.
The name is set according to the value of itf.name.
The operations is assigned with all wsdlop (ins-
tance of WSDL!PortTypeOperation) created ac-
cording to the UML!Operation owned by the cur-
rent UML!Interface. It also creates an instance of
WSDL!Binding. The name is set with the value of
itf.name + ’Binding’. The type is pt (i.e. the
created WSDL!PortType). The operations is as-
signed with all WSDL!BindingOperation wsdlob

created according to the UML!Operation owned
by the current UML!Interface. It also creates
WSDL!Service and initializes it.

Figure 7 shows the existence of one-to-many mapping.
A one-to-many mapping has one element of the meta-model
source and many elements of the meta-model target. This is
also a consequence of the semantic difference between the
source and target meta-model. Sometimes, the semantics of
one element of a meta-model is represented using many el-
ements of another meta-model. In the case of the mapping
from UML to WSDL meta-model, the UML Interface is
mapped into WSDL PortType, Binding and Service.

As shown in this section, one benefit of MDA is its capa-
bility to allow the generation of several implementations, on
different platforms, from a business model. In other words,

7

Figure 7. Mapping from UML to WSDL Meta-model (fragment)

the business system characteristics are only acquired and
modeled once.

4.3. JWSDP platform

In sections 4.1 and 4.2, we have shown a transformation
from PIM into PSM for our illustrative example. To create
the final implementation of the example, it is still necessary
to define a JWSDP meta-model, detailing the deployment
files.

An important characteristic of JWSDP is the manner in
which a service is implemented. A JavaClass that pro-
vides its methods as services must implement an Inter-
face that extends java.rmi.Remote and its methods throw
java.rmi.RemoteException. Figure 8 shows the sim-
plified JWSDP meta-model.

JavaClassJavaInterface

JWSDP_jaxrpc-ri

JWSDP_web

JWSDP_config-interface

JWSDP_config-wsdl

+implementedby

+implements

Figure 8. JWSDP Meta-model (fragment)

JWSDP needs four deployment files: web.xml,
jaxrpc-ri.xml, config-wsdl.xml and config-

-interface. In our approach, these files are created using
the information contained in JavaClass. These gener-
ated deployment files are incomplete and must be final-
ized before the deployment. In fact, deployment files have
information that is available only in the time of deploy-
ment.

For example, the JavaClass is mapped to JavaClass,
JavaInterface, JWSDP web, JWSDP jaxrpc ri,
JWSDP config wsld and JWSDP config interface

through an ATL transformation rule. This rule creates a
JavaClass and a JavaInterface. The JavaClass will
have the same characteristics as the original JavaClass,

but it will implement the generated JavaInterface. It
also creates the deployment files.

4.4. The PSM based on Java, Web Service and
JWSDP

In the transformation process, we proceeded as follows.
First, we built the UML model of the travel agency (sec-
tion 3 and 4). Second, we showed how a UML model can be
transformed into a Java model (section 4.1). Second, we de-
picted how a UML model can be transformed into a WSDL
model (section 4.2). Third, we presented how a Java model
can be transformed into JWSDP model (section 4.3).

The PSM shown in Figure 9 was generated from the PIM
of the travel agency. It is an instance of the meta-models
of Java, Web Service and JWSDP represented as UML pro-
files. We used UML profiles only to visualize the final PSM,
and all model transformations were based on specific meta-
models. In this figure, some details are omitted to simplify
the presentation of the target model. Car hire and hotel ser-
vices are not shown, but they have the same structure as the
airline.

This PSM is not yet the final implementation, but has
enough information to generate part of the final code and
deployment files. The PSM is a model that can be exported
outside of the MDR repository as a XMI file or as Java files
and description files (i.e. XML files). Afterwards, the Java
files and description files must be completed.

This application of the MDA approach illustrates how a
formal model of a business (i.e. PIM of travel agency) can
be transformed into several platforms (PSMs).

Our experience creating transformation rules has re-
vealed that the use of UML profiles to develop a PIM and
build its PSM has some disadvantages: large transforma-
tion rules; excessive utilization of filters and instructions of
flow control (if-then-else); excessive comparison of strings.
Using profiles, we cannot profit from the main advantages
of a language such as ATL, i.e. a transformation language

8

bank
airlines

travelagencycustomer

<<JavaClass>>

Customer

+find_travel(travel_req:Travel_req) : Travel_list

+reserve_travel(travel_inf:Travel_Inf) : Reserv

+pay_travel(pay_inf:Pay_Inf) : Ack_pay

+cancel_travel(reserv_inf:Reserv) : Ack_cancel

<<JavaClass>>

TravelAg

+find_travel(travel_req:Travel_req) : Travel_list

+reserve_travel(travel_sel:Travel_Inf) : Reserv

+pay_travel(pay_inf:Pay_Inf) : Ack_pay

+cancel_travel(reserv_inf:Reserv) : Ack_cancel

<<JavaClass>>

AirLines

+find_flight(inf_req:Fly_req) : Fly_list

+reserve_flight(fly_sel:Fly_Inf) : Reserv

+pay_flight(pay_inf:Pay_Inf) : Ack_pay

+cancel_flight(reserv_inf:Reserv) : Ack_cancel

<<JavaClass>>

Bank

+make_payment(pay_inf:Pay_Inft) : Ack_pay

<<JavaInterface>>

Int_AirLines

+find_flight(inf_req:Fly_req) : Fly_list

+reserve_flight(fly_sel:Fly_Inf) : Reserv

+pay_flight(pay_inf:Pay_Inf) : Ack_pay

+cancel_flight(reserv_inf:Reserv) : Ack_cancel

<<JavaInterface>>

Int_TravelAg

+find_travel(travel_req:Travel_req) : Travel_list

+reserve_travel(travel_sel:Travel_Inf) : Reserv

+pay_travel(pay_inf:Pay_Inf) : Ack_pay

+cancel_travel(reserv_inf:Reserv) : Ack_cancel

<<JavaInterface>>

Int_Bank

+make_payment(pay_inf:Pay_Inft) : Ack_pay

<<WSDL>>

TravelAg_wsdl

<<UDDI>>

TravelAg_uddi

<<JWSDP_jaxrpc-ri>>

TravelAg_jaxrpc-ri

<<JWSDP_web>>

TravelAg_web

<<JWSDP_config-wsdl>>

TravelAg_config-wsdl

<<JWSDP_config-interface>>

TravelAg_config-interface

<<JWSDP_web>>

AirLines_web

<<UDDI>>

AirLines_uddi

<<JWSDP_config-wsdl>>

AirLines_config-wsdl

<<JWSDP_jaxrpc-ri>>

AirLines_jaxrpc-ri

<<JWSDP_config-interface>>

AirLines_config-interface

<<WSDL>>

AirLines_wsdl

<<WSDL>>

Bank_wsdl

<<UDDI>>

Bank_uddi

<<JWSDP_web>>

Bank_web

<<JWSDP_jaxrpc-ri>>

Bank_jaxrpc-ri

<<JWSDP_config-wsdl>>

Bank_config-wsdl

<<JWSDP_config-interface>>

Bank_config-interface

+airlines_serv+bank_serv

+travel_serv

+bank_serv

+airlines_serv+bank_serv

+bank_serv

+travel_serv

Figure 9. PSM of the Case Study Travel Agency(fragment)

designed to manipulate meta-models and models. The use
of profiles to build PIMs and PSMs makes the creation of
transformation rules difficult. On the other hand, the manip-
ulation of specific meta-models based on MOF have given
some benefits such as simplicity of the transformation rules,
transformation rules can directly manipulate meta-model el-
ements and short transformation rules.

5. The PIM using EDOC Model

The UML profile for EDOC is a framework to develop
components based on EDOC systems [15]. It is composed
of a set of profiles which define: Enterprise Collaboration
Architecture (ECA), patterns, and technology specific mo-
dels and technology mappings.

The ECA allows the definition of PIMs and provides five
UML profiles:

• Component Collaboration Architecture (CCA) uses
classes, activity and collaboration graphs to model the
structure and behavior of components;

• Entity profile uses a set of UML extensions to model
entity objects;

• Events profile is a set of UML extensions to model the
events of a system;

• Business Process profile complements the CCA and
models the system behavior;

• Relationships profile extends the UML core facilities
to attend to the requirements of the relationship in ge-
neral and business modeling and software modeling.

Patterns provide standard models that can be employed
to elaborate good object models for EDOC systems.

The ECA is focused on the specification of the struc-
tural and behavioral parts of EDOCs. On the other hand, the
technology specific models and the technology mappings are
part of EDOC specification that takes into account the map-
ping from ECA specification to technology specific models.
It defines an EDOC profile for Enterprise Java Beans and
another for Flow Composition Model (FCM).

Figure 10. The community Process of the
Travel Agency (CCA Notation)

Figure 10 shows the community process for our illus-
trative example using the CCA notation. It is a simplified
model that only shows the components that participate in
the business process. The travel community process speci-

9

fies how a customer, a travel agency, airline, car-hire enter-
prise, hotel, and bank collaborate to complete a transaction
within a business. Each role is played by the suitable com-
ponent usage, i.e., Customer, TravelAg, ..., Bank.

The Customer collaborates directly with the TravelAg
through the BuyTravel and SellTravel protocol
ports, according to the BuySellTravel protocol. The
TravelAg collaborates with the AirLines through
the BuyFlightTicket and SellFlightTicket pro-
tocol ports, according to the BuySellFlight proto-
col. As the AirLines, the TravelAg collaborates with
the CarHire, Hotel and Bank to accomplish a tran-
saction. Figure 11 presents the contracts of components
using the UML profiles for EDOC (i.e. UML nota-
tion).

<<ProcessComponent>>

Customer

<<ProcessComponent>>

TravelAg

<<ProtocolPort>>

BuyTravel

<<ProtocolPort>>

SellTravel

<<Protocol>>

BuySellTravel

<<Protocol>>

BuySellFlight

<<ProtocolPort>>

BuyFlightTicket

<<ProtocolPort>>

SellFlightTicket

<<ProcessComponent>>

AirLines

<<initiates>> <<responds>>

<<responds>>

<<initiates>>

<<responds>>

<<initiates>>

<<responds>><<initiates>>

Figure 11. Contracts of Components

The activities in the community process Travel
Agency start by the Customer initiating the interac-
tions on its BuyTravel protocol port, according to the
BuySellTravel protocol presented in Figure 11 and fur-
ther depicted in Figure 12 that details the structure.
The structure is composed of other protocols, such as
FindTravel, ReserveTravel, ..., CancelTravel. The
TravelAg will follow the BuySellTravel protocol, and
when opportune will initiate the BuySellFlight,..., and
BuySellHotel protocol.

Figure 12. BuySellTravel Protocol structure

5.1. From PIM (EDOC) to PSM (Java)

Figure 13 depicts the mapping from the EDOC-CCA
meta-model [15] to the Java meta-model. The main ele-
ments of the EDOC-CCA meta-model used in our approach
are:

• DataElement - a generalization for DataType or
CompositeData (a type of data);

• FlowPort - extends Port and describes the
form which may produce or consume a single
DataElement;

• OperationPort - defines a port which implements
the typical call-return semantics and one-way opera-
tion;

• ProtocolPort - defines the use of a protocol and can
involve the use of two-way interactions between com-
ponents;

• ProcessComponent - a processing component that
collaborates with other ProcessComponents using
Ports within a CCA composition. It externalizes com-
positional objects as a component.

Before creating the mapping between the EDOC-
CCA and Java meta-model, we must find the equiva-
lent elements. In figure 13, DataType is equivalent to
JavaPrimitiveType, CompositeData is equivalent to
JavaClass, Attribute is equivalent to JavaField, and
so on.

After identifying the equivalent elements between
EDOC-CCA and Java meta-models, we can describe the
mapping from EDOC to Java (we will present only a few
ATL transformation rules):

• CompositeData is mapped to JavaClass through
the ATL transformation rule Cd2C:
rule Cd2C{
from cd : EDOC!CompositeData
to jc : Java!JavaClass
mapsTo cd(

name <- cd.name,
modifier <- #regular,
visibility <- #public,
member <- cd.feature)

}

This rule creates an instance of Java!JavaClass
and initializes it with the same characteristics as
cd. Thus, name is given the value of cd.name,
modifier is set to #regular, visibility to
#public and member is assigned with the Java equi-
valent of cd.feature.

• ProcessComponent is mapped to JavaClass
through the transformation rule Pc2C:
rule Pc2C{
from pc : EDOC!ProcessComponent
to jc : Java!JavaClass
mapsTo pc(

name <- pc.name,

10

Figure 13. Mapping from EDOC to Java Meta-model

visibility <- #public,
modifier <- #regular,
isActive <- false)

}

This rule creates an instance of Java!JavaClass
and initializes it with the characteristics of pc. Thus,
name is given the value of pc.name, visibility
is set to #public, modifier to #regular, and
isActive to false.

A model based on EDOC systems can be created by
the utilization of UML profiles for EDOC-CCA. Then,
the transformation from a PIM based on EDOC-CCA
meta-model to Java meta-model can also be expressed
as a transformation from UML profiles for EDOC to
UML profiles for Java. However, in our approach we
have privileged the direct transformation from EDOC
to the Java meta-model.

5.2. From PIM (EDOC) to PSM (Web Service)

Figure 14 depicts some elements of the EDOC-CCA
meta-model and the corresponding element of the WSDL
meta-model. According to this figure, we have the follow-
ing mappings:

• The CCA-FlowPort is mapped to WSDL Part
through the rule F2P:
rule F2P_in{
from fp : EDOC!FlowPort(fp.direction=#initiates)
to p_in : WSDL!Part
mapsTo fp(
name <- fp.type.name,
type <- fp.type,
owner <- [O2O.inp_m] fp.owner)

}

rule F2P_out{
from fp : EDOC!FlowPort(fp.direction=#response)
to p_out :WSDL!Part
mapsTo fp(
name <- fp.type.name,
type <- fp.type,
owner <- [020.out_m] fp.owner)

}

In fact, this mapping is made up of two
rules: F2P in and F2P out. F2P in creates a
WSDL!Part from the EDOC!FlowPort (with direction
#initiates). F2P out creates a WSDL!Part from
the EDOC!FlowPort (with direction #response).
Each p in and p out receives a name and a type.

• The CCA-ProcessComponent is mapped to WSDL
Service through the rule Pc2S:

rule Pc2S{
from pc : EDOC!ProcessComponent
to sv : WSDL!Service
mapsTo pc(

name <- pc.name,
port <- [P2PType.pport] pc.owner.ports->
select(e | e.oclIsKindOf(EDOC!ProtocolPort)))

}

This rule creates an instance of WSDL!Service

and initializes it with the characteristics of
EDOC!ProcessComponent pc. Thus, name is
given the value of pc.name, port is assigned with the
WSDL!Port equivalent to EDOC!ProtocolPort, and
location is set to a value that must be changed be-
fore the deployment.

Analyzing figure 14, we can note that the semantics
of EDOC elements are closer to that of WSDL elements
than to UML elements. Thus, the mapping from EDOC to
WSDL is more precise than the mapping from UML to
WSDL. In this case, the mapping is more precise because
it can better reproduce the target model from the source
model.

In section 5.1, we obtained the Java model from the PIM
using EDOC model. We can apply a similar transformation
process presented in section 4.3 to generate the PSM based
on JWSDP. Afterwards, the final PSM can be exported as
XMI or Java code and deployment files.

11

Figure 14. Mapping from EDOC to WSDL Meta-model

6. Conclusion

In the two applications of the MDA approach presented
in this paper, i.e. a PIM using UML and another using
EDOC, the e-business characteristics were explored with-
out paying attention to implementation details. Afterwards,
the three platform specific models (Java, Web Service and
JWSDP) were generated using the ATL transformation lan-
guage. One of the objectives of this experimentation was to
show the importance of model transformation in the MDA
approach. Furthermore, we have illustrated how well a lan-
guage like ATL may be used to achieve these goals.

ATL is thus a good transformation language, but the suc-
cess of an MDA approach also depends on many other fac-
tors, such as: the quality of the meta-models used to ab-
stract and implement the system; the quality of the mapping
between the source and target meta-models and the abstrac-
tion levels used in the chosen approach (e.g. business model
and system model). In addition, the efficiency of transfor-
mation rules depends on the compatibility between the cho-
sen meta-models. A transformation rule is efficient if it is
capable of generating a target model element from a source
model element.

EDOC provided a better representation of the functiona-
lities and behavior patterns for a distributed system. Thus,
it facilitates the generation of a more complete PSM than
that obtained with UML. This was possible, because EDOC
provides elements that are closer to the considered problem.
Moreover, it is designed for distributed systems, while UML
is more generic. Furthermore, when the PIM meta-model
and the PSM meta-model present elements with equivalent
structures and behaviors, the mapping is even easier.

Our experience using ATL has revealed that model trans-
formation gives some benefits such as better formed tar-
get models. The definition of a PIM for the travel agency

and the transformation rules have minimized possible errors
linked with the manual creation of PSM. Moreover, this has
minimized the time taken for debugging. The model trans-
formation has also established a uniform style of develop-
ment that is interesting in large projects.

MDA also has its limits and its requirements. The illus-
trative example has confirmed that the MDA approach can-
not provide 100% of the final implementation (e.g. code,
config files, deployment files). However, it is reasonable
to consider that the percentage of the final implementation
generated using the MDA approach is a consequence of the
meta-models used. We have come to the following conclu-
sions with our experiment:

• Abstraction levels are necessary - a business model
should be analyzed and designed following abstrac-
tion levels. This approach efficiently assists the deve-
lopment of large systems;

• The gap between meta-models can be decisive for the
transformation - the size of the gap between the source
and target meta-model has a profound impact on the
efforts to create transformation rules. A source model
can be transformed into a target model if its respec-
tive meta-models present equivalent characteristics. If
the distance between two meta-models is more signif-
icant, an intermediary meta-model may be necessary
to facilitate the mapping. However, it is often impos-
sible to transform models based on meta-models that
are completely different (i.e. syntactically and seman-
tically different). In other words, a model transforma-
tion is realizable only if the equivalent elements be-
tween the source and target meta-models can be deter-
mined;

• UML profiles are limited - UML profiles allow the ex-
tension of the UML meta-model. However, UML pro-

12

files make the creation of transformation rules difficult.
In this paper, we have shown that specific meta-models
based on MOF (such as Java meta-model presented in
section 4.1) are more suitable to enable the creation of
clear transformation rules.

In future work, we will emphasize the dynamic charac-
teristics, i.e. the e-business’ behavior and the Web Service
Composition.

References

[1] M. Belaunde, J. Bézivin, and P. T. Ha. Implementing EDOC
business components on top of a CCM platform. The 7th In-
ternational IEEE Enterprise Distributed Object Computing
Conference (EDOC’03), 2003.

[2] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui.
First experiments with the ATL model transformation lan-
guage: Transforming XSLT into XQuery. 2nd OOPSLA
Workshop on Generative Techniques in the context of Model
Driven Architecture, October 2003.

[3] J. Bézivin and N. Ploquin. Tooling the MDA framework: a
new software maintenance and evolution scheme proposal.
Journal of Object-Oriented Programming (JOOP), Decem-
ber 2001.

[4] G. Caplat and J. L. Sourrouille. Model Mapping in MDA.
Workshop in Software Model Engineering (WISME2002),
2002.

[5] M. Carman, L. Serafini, and P. Traverso. Web Service Com-
position as Planning. Workshop on Planning for Web Ser-
vices, June 2003.

[6] D. Frankel and J. Parodi. Using Model-Driven
ArchitectureTM to Develop Web Services. Techni-
cal report, IONA Technologies PLC, April 2002.

[7] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood.
Transformation: The Missing Link of MDA. First Inter-
national Conference on Graph Transformation (ICGT2002),
October 2002.

[8] Java Community Process. JavaTM Metadata Interface(JMI)
Specification, Version 1.0, June 2002.

[9] J. Koehler, R. Hauser, S. Kapoor, F. Y. Wu, and S. Kumaran.
A model-driven transformation method. The 7th Interna-
tional IEEE Enterprise Distributed Object Computing Con-
ference (EDOC’03), 2003.

[10] J. Kovse and T. Härder. Generic XMI-Based UML
Model Transformations. Proc. 8th International Conference
on Object-Oriented Information Systems (OOIS’02), pages
192–198, September 2002.

[11] J. Martin, A. Arsanjani, P. Tarr, and B. Hailpern. Web
Services: Promises and Compromises. Queue, 1(1):48–58,
2003.

[12] Middleware Company. Model Driven Development for J2EE
Utilizing a Model Driven Architecture (MDA) Approach.
Technical report, The Middleware Company, June 2003.
Available at www.middleware-company.com/casestudy.

[13] netBeans.org. Metadata Repository (MDR). Available at
http://mdr.netbeans.org.

[14] OMG. Model Driven Architecture (MDA)- document num-
ber ormsc/2001-07-01, 2001.

[15] OMG. UML Profile for Enterprise Distributed Object Com-
puting Specification, February 2002.

[16] S. Staab, W. van der Aalst, V. R. Benjamins, A. Sheth, J. A.
Miller, C. Bussler, A. Maedche, D. Fensel, and D. Gannon.
Web Services: Been There, Done That? IEEE Intelligent Sys-
tems, 18(1):72–85, Jan/Feb 2003.

[17] UDDI.ORG. Universal, Description, Discovery and In-
tegration (UDDI) Version 3.0, July 2002. Available at
http://www.uddi.org.

[18] W3C. Simple Object Access Protocol (SOAP) 1.1, May 2001.
Available at http://www.w3.org/TR/SOAP.

[19] W3C. Web Services Description Language (WSDL) 1.1,
March 2001. Available at http://www.w3c.org/tr/wsdl.

13

